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THE SUBSTITUTION THEOREM FOR SEMILINEAR

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS†

Salah-Eldin A. Mohammed∗ and Tusheng Zhang∗∗

Abstract. In this article we establish a substitution theorem for semilinear stochastic evolution equa-

tions (see’s) depending on the initial condition as an infinite-dimensional parameter. Due to the infinite-

dimensionality of the initial conditions and of the stochastic dynamics, existing finite-dimensional results

do not apply. The substitution theorem is proved using Malliavin calculus techniques together with new

estimates on the underlying stochastic semiflow. Applications of the theorem include dynamic char-

acterizations of solutions of stochastic partial differential equations (spde’s) with anticipating initial

conditions and non-ergodic stationary solutions. In particular, our result gives a new existence theorem
for solutions of semilinear Stratonovich spde’s with anticipating initial conditions.

1. Introduction. Statement of the substitution theorem.

The main objective of this article is to answer the following simple (but basic) question:

Given a non-anticipating stochastic partial differential equation with its initial condition as an

infinite-dimensional parameter, is it justified to replace the initial condition/parameter by an arbi-

trary random variable?

An answer to the affirmative for the above question is well-known for a wide class of finite-

dimensional sde’s via the substitution theorems in [Nu.1-2] and [M-S.2]). However, the existing

substitution theorems in ([Nu.1-2],[M-S.2]) do not apply to infinite-dimensional systems. There are

two serious obstructions to this approach:

• The substitution theorems are based largely on finite-dimensional selection techniques that

are known to fail in infinite-dimensional settings, as indicated by the failure of Kolmogorov’s

continuity theorem for infinite-dimensional random fields ([Mo.1-2], [M-Z-Z]) and the failure

of Sobolev inequalities in infinite dimensions.

• The infinite-dimensionality of the dynamics renders the conditions of the substitution the-

orems in [Nu.1-2] inapplicable (cf. Theorem 3.2.6 [Nu.1], Theorem 5.3.4 [Nu.2]).

Both obstructions are resolved using ideas and techniques of the Malliavin calculus together with

new global estimates on the semiflow generated by the spde (Section 2) ([Ma]). The use of Malliavin

† June 10, 2007. To appear in Journal of Functional Analysis, 2007.
∗The research of this author is supported in part by NSF Grants DMS-9975462, DMS-0203368 and DMS-0705970.
∗∗The research of this author is supported in part by EPSRC Grant GR/R91144.

AMS 1991 subject classifications. Primary 60H10, 60H20; secondary 60H25.
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2 S.-E.A. MOHAMMED AND T.S. ZHANG

calculus techniques in this context seems to be necessitated by the infinite-dimensionality of the

underlying stochastic dynamics.

The difficulty in proving the substitution theorem for stochastic systems with memory was

pointed out by M. Scheutzow and one of the authors in ([M-S.1], Part II); but no rigorous proof

or counterexamples are known. The purpose of the discussion in [M-S.1] is to provide a dynamic

characterization of stable/unstable manifolds for stochastic systems with memory near hyerbolic

stationary states.

In work by Grorud, Nualart and Sanz-Solé ([G-Nu-S]) a substitution theorem for Stratonovich

integrals in Hilbert space is developed under the restriction that the substituting random variable

takes values in a relatively compact set in the Hilbert space. The substitution result in [G-Nu-S] is

obtained within the context of Hilbert-space-valued stochastic ordinary differential equations, using

metric entropy techniques. Cf. also [A-I], where the substituting random variable takes values in a

σ-compact space.

In this article we establish a substitution theorem for semilinear spde’s for a large class of

infinite-dimensional Malliavin smooth random variables. We strongly believe that the techniques

developed in this article will yield a similar substitution theorem for semiflows induced by sfde’s.

We expect the results in this article to be useful in establishing regularity in distribution of

the invariant manifolds for semilinear spde’s.

In order to formulate our results, consider the following semilinear Itô stochastic evolution

equation (see):

du(t, x) = −Au(t, x) dt+ F
(

u(t, x)
)

dt+Bu(t, x) dW (t), t > 0

u(0, x) = x ∈ H

}

(1.1)

in a separable real Hilbert space H.

In the above equation A : D(A) ⊂ H → H is a closed linear operator on the Hilbert

space H. Assume that A has a complete orthonormal system of eigenvectors {en : n ≥ 1} with

corresponding positive eigenvalues {µn, n ≥ 1}; i.e., Aen = µnen, n ≥ 1. Suppose −A generates a

strongly continuous semigroup of bounded linear operators Tt : H → H, t ≥ 0. Furthermore, we

let F : H → H be a (Fréchet) C1
b non-linear map, that is F has a globally bounded continuous

Fréchet derivative DF : H → L(H).

Let E be a separable Hilbert space and W (t), t ≥ 0, be an E-valued Brownian motion

defined on the canonical filtered Wiener space (Ω,F , (Ft)t≥0, P ) and with a separable covariance

Hilbert space K. In particular, K ⊂ E is a Hilbert-Schmidt embedding. Furthermore, Ω is the

space of all continuous paths ω : R → E such that ω(0) = 0 with the compact open topology, F is

its Borel σ-field, Ft is the sub-σ-field of F generated by all evaluations Ω 3 ω 7→ ω(u) ∈ E, u ≤ t,

and P is Wiener measure on Ω. The Brownian motion is given by

W (t, ω) := ω(t), ω ∈ Ω, t ∈ R,
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and may be represented by

W (t) =

∞
∑

k=1

W k(t)fk, t ∈ R, (1.2)

where {fk : k ≥ 1} is a complete orthonormal basis of K, and W k, k ≥ 1, are standard independent

one-dimensional Wiener processes ([D-Z.1], Chapter 4). Note that, in general, the above series

converges absolutely in E but not in K.

Denote by L2(K,H) ⊂ L(K,H) the Hilbert space of all Hilbert-Schmidt operators S : K →

H, given the norm

‖S‖2 :=

[ ∞
∑

k=1

|S(fk)|2H

]1/2

,

where | · |H is the norm on H. Suppose B : H → L2(K,H) is a bounded linear operator. The

stochastic integral in (1.1) is defined in the following sense ([D-Z.1], Chapter 4):

Let ψ : [0, a] × Ω → L2(K,H) be (B([0, a]) ⊗F ,B(L2(K,H))-measurable, (Ft)t≥0-adapted

and such that

∫ a

0

E‖ψ(t)‖2
L2(K,H) dt <∞. Define

∫ a

0

ψ(t) dW (t) :=

∞
∑

k=1

∫ a

0

ψ(t)(fk) dW k(t),

where theH-valued stochastic integrals on the right-hand side are with respect to the one-dimensional

Wiener processes W k, k ≥ 1. Note that the above series converges in L2(Ω,H) because

∞
∑

k=1

E

∣

∣

∣

∣

∫ a

0

ψ(t)(fk) dW k(t)

∣

∣

∣

∣

2

=

∫ a

0

E‖ψ(t)‖2
L2(K,H) dt <∞.

Throughout the rest of the article, we will denote by θ : R × Ω → Ω the standard P -

preserving ergodic Wiener shift on Ω:

θ(t, ω)(s) := ω(t+ s) − ω(t), t, s ∈ R.

Hence (W, θ) is a helix:

W (t1 + t2, ω) −W (t1, ω) = W (t2, θ(t1, ω)), t1, t2 ∈ R, ω ∈ Ω.

As usual, we let L(H) be the Banach space of all bounded linear operators H → H given the

uniform operator norm ‖·‖L(H). Denote by L2(H) ⊂ L(H) the Hilbert space of all Hilbert-Schmidt

operators S : H → H, furnished with the Hilbert-Schmidt norm:

‖S‖2 :=

[ ∞
∑

n=1

|S(en)|2H

]1/2

.
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A mild solution of (1.1) is a family of (B(R+) ⊗ F ,B(H))-measurable, (Ft)t≥0-adapted

processes u(·, x, ·) : R+ × Ω → H, x ∈ H, satisfying the following stochastic integral equation:

u(t, x, ·) = Ttx+

∫ t

0

Tt−sF (u(s, x, ·)) ds +

∫ t

0

Tt−sBu(s, x, ·) dW (s), t ≥ 0, (1.3)

([D-Z.1-2]).

The see (1.1) has the equivalent Stratonovich form

du(t, x) = −Au(t, x) dt+ F
(

u(t, x)
)

dt−
1

2

∞
∑

k=1

B2
ku(t, x) dt+Bu(t, x) ◦ dW (t)

u(0, x) = x ∈ H











(1.4)

where Bk ∈ L(H) are given by Bk(x) := B(x)(fk), x ∈ H, k ≥ 1.

Condition (A1):
∞
∑

n=1

µ−1
n ‖B(en)‖2

L2(K,H) <∞.

Conditions (A2):

(i) A−1 is a trace class operator, i.e.,
∞
∑

n=1

µ−1
n <∞.

(ii) Tt ∈ L(H), t ≥ 0, is a strongly continuous contraction semigroup.

Conditions (B):

(i) The operator B : H → L2(K,H) can be extended to a bounded linear operator H →

L(E,H), which will also be denoted by B.

(ii) The series
∞
∑

k=1

‖Bk‖
2
L(H) converges, where the bounded linear operators Bk : H → H, k ≥ 1,

are defined as in (1.4).

Remarks.

(i) Note that Condition (A1) is implied by the following two requirements:

(a) The operator B : H → L2(K,H) is Hilbert-Schmidt.

(b) lim inf
n→∞

µn > 0.

(ii) Requirement (b) above is satisfied if A = −∆, where ∆ is the Laplacian on a compact

smooth d-dimensional Riemannian manifold M with boundary, under Dirichlet boundary

conditions.

(iii) Suppose A = −∆ where ∆ is the Laplacian on a compact smooth d-dimensional manifold

with Dirichlet boundary condition. Then Condition (A2) implies that d = 1. This follows

easily from the fact that µn = O(n2/d) for large n ([T], Theorem 3.1, p. 89).

(iv) Unlike Condition (A2), note that Condition (A1) does not entail any restriction on the

spatial dimension of the underlying spde.
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Under Conditions (B) together with either (A1) or (A2), the see (1.1) (or (1.4)) admits a

perfect (B(R+) ⊗ B(H) ⊗ F ,B(H))-measurable cocycle (U, θ), U : R+ × H × Ω → H, with the

following properties:

(i) For each ω ∈ Ω, the map R+ × H 3 (t, x) 7→ U(t, x, ω) ∈ H is continuous; and for fixed

(t, ω) ∈ R+ × Ω, the map H 3 x 7→ U(t, x, ω) ∈ H is C1.

(ii) U(t+ s, ·, ω) = U(t, ·, θ(s, ω)) ◦ U(s, ·, ω) for all s, t ∈ R+ and all ω ∈ Ω.

(iii) U(0, x, ω) = x for all x ∈ H,ω ∈ Ω.

For proofs of the above properties see ([M-Z-Z], Theorem 1.2.6); cf. [F.1-2].

An F -measurable random variable Y : Ω → H is said be a stationary point for the cocycle

(U, θ) if

U(t, Y (ω), ω) = Y (θ(t, ω))

for all (t, ω) ∈ R+ × Ω.

For any integer p ≥ 2, denote by D
1,p(Ω,H) the Sobolev space of all F -measurable random

variables Y : Ω → H which are p-integrable together with their Malliavin derivatives DY ([Nu.1-2]).

We now state the main substitution theorem in this article.

Theorem 1.1. Assume that the see (1.1) satisfies Conditions (B) together with either (A1) or

(A2). Suppose F is C1
b . Let Y ∈ D

1,4(Ω,H) be a random variable, and U : R+ ×H × Ω → H be

the C1 cocycle generated by all mild solutions of the Stratonovich see (1.4). Then U(t, Y ), t ≥ 0,

is a mild solution of the (anticipating) Stratonovich see

dU(t, Y ) = −AU(t, Y ) dt+ F
(

U(t, Y )
)

dt−
1

2

∞
∑

k=1

B2
kU(t, Y ) dt+BU(t, Y ) ◦ dW (t), t > 0,

U(0, Y ) = Y.











(1.5)

In particular, if Y ∈ D
1,4(Ω,H) is a stationary point of the see (1.4), then U(t, Y ) = Y

(

θ(t)
)

, t ≥ 0,

is a stationary solution of the (anticipating) Stratonovich see

dY (θ(t)) = −AY (θ(t)) dt+ F
(

Y (θ(t))
)

dt−
1

2

∞
∑

k=1

B2
kY (θ(t)) dt+BY (θ(t)) ◦ dW (t), t > 0,

Y (θ(0)) = Y.











(1.6)

Furthermore, assume that F is C2
b . Then the linearized cocycle DU(t, Y ) is a mild solution of the

linearized anticipating see

dDU(t, Y ) = −ADU(t, Y ) dt+DF
(

U(t, Y )
)

DU(t, Y ) dt

−
1

2

∞
∑

k=1

B2
kDU(t, Y ) dt+

{

B ◦DU(t, Y )
}

◦ dW (t), t > 0,

DU(0, Y ) = idL(H).























(1.7)
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In the subsequent sections we will detail the proof of the above theorem. In Section 2, we

begin by offering a series of estimates on the cocycle U(t, x, ·), its Fréchet derivative DU(t, x, ·) and

its Malliavin derivative DU(t, x, ·). These estimates-interesting in their own right-will be used in

the proofs of the substitution theorem (Theorem 1.1) and its finite-dimensional version (Theorem

3.1). In Section 3, we prove a special case of Theorem 1.1 in case the random variable Y is finite-

dimensional (Theorem 3.1). This result is then used to give a detailed proof of Theorem 1.1 in

Section 4. Section 5 contains an alternative proof of one of the estimates in Section 2, using a

chaos-type expansion in the Hilbert space L2(H). In Section 6, we show existence and regularity

of solutions for semilinear spde’s with anticipating initial conditions.

2. Moment estimates of the cocycle.

In this section, we develop new estimates on the non-linear cocycle U : R+ ×H × Ω → H,

its spatial Fréchet derivative DU(t, x, ·) and its Malliavin derivatives DuU(t, x, ·) for u, t ∈ [0, a]

and x ∈ H. The derivations are based on results in [M.Z.Z], Gronwall’s lemma and the fact that

W has independent increments.

As before, assume the notation and hypotheses of Section 1.

Let Φ(t, ω), ω ∈ Ω, t ≥ 0, be the linear cocycle associated with the see (1.1). That is for

each x ∈ H, Φ(t, ·)(x), t ≥ 0, is a mild solution of the linear see

dΦ(t, ·)(x) = −AΦ(t, ·)(x) dt +BΦ(t, ·)(x) dW (t), t > 0

Φ(0, ·)(x) = x ∈ H.

}

(2.1)

Recall that (Ft)t≥0 is the filtration generated by Brownian motion W .

Define

V (t, ω) := Φ(t, ω) − Tt, t ≥ 0, ω ∈ Ω.

Then V (t, ·), t ≥ 0, is the continuous L2(H)-valued solution of the following stochastic integral

equation in L2(H):

V (t, ·) =

∫ t

0

Tt−sBV (s, ·) dW (s) +

∫ t

0

Tt−sBTs dW (s), t ≥ 0. (2.2)

Fix s ≥ 0, and denote

V̂ (t, ω) := V (t− s, θ(s, ω)), t ≥ s.

Then V̂ is a solution of the following integral equation:

V̂ (t, ·) =

∫ t

s

Tt−uBV̂ (u, ·) dW (u) +

∫ t

s

Tt−uBTu−s dW (u), t ≥ s. (2.3)

in L2(H). See the proof of Theorem 1.2.4 in [M-Z-Z].

We will need the following Gronwall-type lemma:
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Lemma 2.1.

Fix a ∈ (0,∞). Let f, g : [0, a]×Ω → R+ be non-negative (B([0, a])⊗F ,B(R+))-measurable

processes and h : [0, a]× [0, a]×Ω → R+ an (B([0, a]× [0, a])⊗F ,B(R+))-measurable random field

satisfying the following hypotheses:

(i) For a.a. ω ∈ Ω and all s ∈ [0, a], the paths f(·, ω), g(·, ω), h(·, s, ω) are continuous on [0, a].

(ii) The process f is (Ft)t∈[0,a]-adapted; and whenever 0 < s < t ≤ a, the random variables h(t−

s, s, ·) are measurable with respect to the σ-algebra generated by the Brownian increments

W (s2) −W (s1), s ≤ s1 ≤ s2 ≤ t.

(iii) E sup
0≤t≤a

g(t, ·) + sup
0≤s≤a

E sup
0≤t≤a

h(t, s, ·) <∞.

Suppose that

f(t, ·) ≤ g(t, ·) +

∫ t

0

h(t− s, s, ·)[1 + f(s, ·)] ds (2.4)

a.s. for all t ∈ [0, a]. Then sup
0≤t≤a

f(t, ·) is integrable and there exist positive constants K1,K2 such

that

E sup
0≤s≤t

f(s, ·) ≤ K1e
K2t (2.5)

for all t ∈ [0, a].

Proof.

Use Conditions (i), (iii), put t = t′ in (2.4), and take sup
0≤t′≤t

to obtain

sup
0≤t′≤t

x∈H

f(t′, ·) ≤ sup
0≤t′≤a

g(t′, ·) +

∫ t

0

sup
0≤u≤a

h(u, s, ·) ds +

∫ t

0

sup
0≤u≤a

h(u, s, ·) · sup
0≤s′≤s

f(s′, ·) ds
(2.6)

a.s. for all t ∈ [0, a].

For each integer N ≥ 1, and any s ∈ [0, a], define the events

Ωs,N :=

(

sup
0≤s′≤s

f(s′, ·) < N

)

.

Since f is is (Ft)t∈[0,a]-adapted, then Ωs,N ∈ Fs for all s ∈ [0, a], N ≥ 1. Furthermore,

Ωt,N ⊆ Ωs,N , s ≤ t, N ≥ 1,

and

1Ωt,N
≤ 1Ωs,N

, s ≤ t, N ≥ 1. (2.7)

Since f has a.a. sample-paths bounded on [0, a] (actually continuous), we have

⋃

N≥1

Ωs,N = Ω (2.8)
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for each s ∈ [0, a].

Define

fN (t, ·) := sup
0≤t′≤t

f(t′, ·) · 1Ωt,N
, 0 ≤ t ≤ a,N ≥ 1

Clearly |fN (t, ·)| ≤ N a.s. and EfN(t, ·)| ≤ N for all t ∈ [0, a] and all N ≥ 1.

Now multiply both sides of (2.6) by 1Ωt,N
, use (2.7), take expectations, use hypothesis (iii)

together with the independence of sup
0≤s′≤s

f(s′, ·) · 1Ωs,N
and sup

0≤u≤a
h(u, s, ·), to obtain

EfN (t, ·) ≤ K1 +K2

∫ t

0

EfN(s, ·) ds, 0 ≤ t ≤ a, (2.9)

for all N ≥ 1. The positive constants K1,K2 in (2.9) are independent of N . By Gronwall’s lemma,

(2.9) gives

EfN (t, ·) ≤ K1e
K2t, 0 ≤ t ≤ a, (2.10)

for all N ≥ 1. Letting N → ∞ in (2.10), using the fact that

lim
N→∞

fN(t, ·) = sup
0≤t′≤t

f(t′, ·)

a.s., and applying the Monotone Convergence Theorem, we get

E sup
0≤t′≤t

f(t′, ·) ≤ K1e
K2t

for all 0 ≤ t ≤ a. This proves (2.5). �

Now consider the random integral equation

U(t, x, ·) = Φ(t, ·)(x) +

∫ t

0

Φ(t− s, θ(s, ·))F
(

U(s, x, ·)
)

ds, t ≥ 0, x ∈ H, (2.11)

where F : H → H is C1
b (as in Section 1).

Theorem 2.2.

Adopt the set-up of Section 1. Assume Hypotheses (B) and (A1) or (A2). Let U : R+ ×

H × Ω → H be the cocycle generated by the mild solutions of the see (1.1). Fix any a ∈ (0,∞).

Then the following assertions hold:

(i) The estimate

E sup
0≤t≤a

x∈H

|U(t, x, ·)|2p

(1 + |x|2p
H )

<∞ (2.12)

holds for all p ≥ 1.

(ii) Let F be of class C1
b . Then

E sup
0≤t≤a

x∈H

‖DU(t, x, ·)‖2p <∞ (2.13)
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for all p ≥ 1. In the above estimate, D stands for the Fréchet derivative of U in the spatial

variable x.

(iii) Let F be C2
b . Then

E sup
0≤t≤a

x∈H

‖D2U(t, x, ·)‖2p <∞ (2.13′)

for all p ≥ 1.

Proof.

Assume Hypotheses (B) and (A1) or (A2).

We will first prove the estimate (2.12). Fix any p ≥ 1. By a simple application of Gronwall’s

lemma, (2.3) gives

E

[

sup
s≤t≤a

‖V (t− s, θ(s, ·))‖2p
L2(H)

]

<∞ (2.14)

for any fixed s ∈ [0, a]; and hence,

E

[

sup
0≤u≤a

‖Φ(u, θ(s, ·))‖2p
L(H)

]

<∞ (2.15)

for each s ∈ [0, a].

By (2.11) and the linear growth property of F , we get

|U(t, x, ·)|2p ≤ ‖Φ(t, ·)‖p
L(H)|x|

2p +C

∫ t

0

‖Φ(t− s, θ(s, ·))‖2p
L(H)

(

1 + |U(s, x, ·)|2p
)

ds

(2.16)

a.s. for 0 ≤ t ≤ a, x ∈ H, and C is a deterministic positive constant depending only on a. In

(2.16), divide both sides of the inequality by (1 + |x|2p
H ) and take sup

x∈H
to obtain

sup
x∈H

|U(t, x, ·)|2p

(1 + |x|2p
H )

≤‖Φ(t, ·)‖2p
L(H) + C

∫ t

0

‖Φ(t− s, θ(s, ·))‖2p
L(H) ds

+ C

∫ t

0

‖Φ(t− s, θ(s, ·))‖2p
L(H) · sup

x∈H

|U(s, x, ·)|2p

(1 + |x|2p
H )

ds (2.17)

a.s. for 0 ≤ t ≤ a. Now set

f(t, ·) := sup
x∈H

|U(t, x, ·)|2p

(1 + |x|2p
H )

, g(t, ·) := ‖Φ(t, ·)‖2p
L(H), h(t, s, ·) := ‖Φ(t, θ(s, ·))‖2p

L(H),

a.s. for 0 ≤ s ≤ t ≤ a. Then (2.17) becomes

f(t, ·) ≤ g(t, ·) +

∫ t

0

h(t− s, s, ·)[1 + f(s, ·)] ds (2.18)

a.s. for all t ∈ [0, a].
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We will now verify that the processes f, g, h satisfy all the conditions of Lemma 2.1. First,

note that f, g, h are finite a.s. ([M-Z-Z], Theorems 1.2.4, 1.2.6). Secondly, the processes f, g, h(·, s)

are sample-continuous for each s ∈ [0, a] ([M-Z-Z], Theorems 1.2.1, 1.2.2, 1.2.3, 1.2.6). Thirdly, the

process f is (Ft)t∈[0,a]-adapted. Fourthly, from (2.3), it follows that V̂ (t, ·) = V (t − s, θ(s, ·)) =

Φ(t − s, θ(s, ·)) − Tt−s is measurable with respect to the σ-algebra generated by the Brownian

increments W (s2) −W (s1), s ≤ s1 ≤ s2 ≤ t, and hence so is h(t, s, ·). Finally, Hypothesis (iii)

of Lemma 2.1 is satisfied because of (2.15) and the measure-preserving property of θ. Hence the

conditions of Lemma 2.1 are satisfied; thus (2.12) follows from (2.18). In fact, one gets

E sup
0≤t′≤t

x∈H

|U(t′, x, ·)|2p

(1 + |x|2p
H )

≤ K1e
K2t (2.19)

for all t ∈ [0, a] and some positive constants K1,K2 (depending possibly on a).

To prove part (ii) of the theorem, assume Hypotheses (B) and (A2) or (A1); and let F be

of class C1
b . Fix any p ≥ 1. Take Fréchet derivatives with respect to x ∈ H on both sides of the

random integral equation

U(t, x, ω) = Φ(t, ω)(x) +

∫ t

0

Φ(t− s, θ(s, ω))F
(

U(s, x, ω)
)

ds, t ≥ 0, x ∈ H, ω ∈ Ω.

This gives

DU(t, x, ·) = Φ(t, ·) +

∫ t

0

Φ(t− s, θ(s, ·))(DF (U(s, x, ·)))(DU(s, x, ·)) ds, t ≥ 0.

As in the proof of part (i), observe that Φ(t− s, θ(s, ·)) is measurable with respect to the σ-algebra

generated by the Brownian increments W (s2) − W (s1), s ≤ s1 ≤ s2 ≤ t, while DU(·, x, ·)) is

(Ft)t∈[0,a]-adapted (and DF is bounded). Using this observation together with the above equation

and Lemma 2.1, one obtains

E sup
0≤t≤a

x∈H

‖DU(t, x, ·)‖2p
L(H) <∞.

This proves the first assertion in (ii) for all p ≥ 1. The proof of the second assertion in (ii) follows

by a similar argument.

If F is C2
b , assertion (iii) of the theorem may be proved by an argument similar to the

above. �

The next theorem gives global spatial estimates on the Malliavin derivatives of the stochastic

semiflow U : R+ ×H × Ω → H and its linearization.



THE SUBSTITUTION THEOREM FOR SPDE’S 11

Theorem 2.3.

Assume the setting of Section 1. In the see (1.1), assume Hypotheses (B) and (A1) or (A2).

Then the following assertions hold:

(i) Let u, t ∈ [0, a]. Then V (t, ·) ∈ D
1,2p(Ω, L2(H)) and

E

[

sup
u≤t≤a

‖DuV (t, ·)‖2p
L2(H)

]

<∞. (2.20)

for all p ≥ 1.

(ii) Suppose F is C1
b . Then for all p ≥ 1, we have

E

[

sup
0≤t≤a

x∈H

|DU(t, x, ·)|2p
H

(1 + |x|2p
H )

]

<∞, (2.21)

where D stands for the Malliavin derivative.

(iii) Let F be C2
b . Then

E

[

sup
0<u,t≤a

x∈H

‖DuDU(t, x, ·)‖2p
L2(H)

(1 + |x|2p
H )

]

<∞ (2.21′)

for all p ≥ 1.

Proof.

Assume Hypotheses (B) and (A1) or (A2) throughout this proof.

We prove the first assertion in part (i) of the theorem. Let p ≥ 1. Fix u ∈ [0, a] and take

Malliavin derivatives in (2.2) to get the following stochastic integral equation in L2(H):

DuV (t, ·) = Tt−uBV (u, ·) + Tt−uBTu +

∫ t

u

Tt−sBDuV (s, ·)dW (s), t ≥ u. (2.22)

Define the sequence of events

Ω̃s,N :=

(

sup
u≤s′≤s

‖DuV (s′, ·)‖2p
L2(H) < N

)

for u ≤ s ≤ a,N ≥ 1. Now, from (2.22) and Proposition 7.3 in [D-Z.1], we obtain

E

[

sup
u≤t′≤t

‖DuV (t′, ·)‖2p
L2(H) · 1Ω̃t,N

]

≤ K1E‖V (u, ·)‖2p
L2(H) +K2

+K3

∫ t

u

E

[

sup
u≤s′≤s

‖DuV (s′, ·)‖2p
L2(H) · 1Ω̃s,N

]

ds

for all t ≥ u.

Using (2.14) together with Gronwall’s lemma and the Monotone Convergence Theorem, the

above inequality implies (2.20).
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To prove the first assertion in (ii) of the theorem, let F be C 1
b . Rewrite the random integral

equation

U(t, x, ω) = Φ(t, ω)(x) +

∫ t

0

Φ(t− s, θ(s, ω))F
(

U(s, x, ω)
)

ds, t ≥ 0, x ∈ H, ω ∈ Ω, (2.11)

in the form

U(t, x, ω) = V (t, ω)(x)+Tt(x)+

∫ t

0

[V (t−s, θ(s, ω))+Tt−s]F
(

U(s, x, ω)
)

ds, t ≥ 0, x ∈ H, ω ∈ Ω.

(2.23)

Taking the Malliavin derivative on both sides of (2.23), we get

DuU(t, x, ·) = DuV (t, ·)(x) +

∫ t

0

DuV (t− s, θ(s, ·))(F (U(s, x, ·))) ds

+

∫ t

0

[V (t− s, θ(s, ·)) + Tt−s](DF (U(s, x, ·)))(DuU(s, x, ·)) ds, t ≥ 0.
(2.24)

As in the proof of Theorem 2.2, observe that V (t−s, θ(s, ·)), DuV (t−s, θ(s, ·)) are measurable with

respect to the σ-algebra generated by the Brownian increments W (s2) −W (s1), s ≤ s1 ≤ s2 ≤ t,

while U(·, x, ·),DuU(·, x, ·) are (Ft)t∈[0,a]-adapted. Using this observation together with (2.24) and

Lemma 2.1, one obtains

E

[

sup
0≤t≤a

x∈H

|DuU(t, x, ·)|2p
H

(1 + |x|2p
H )

]

<∞, (2.25)

for all u ∈ [0, a] and all p ≥ 1. This implies (2.21).

Let F be C2
b . Then assertion (iii) of the theorem follows by a similar argument to the

above. �

3. Finite-dimensional substitutions.

Assume the notation and hypotheses of Section 1.

In this section, we will prove assertion (1.5) of Theorem 1.1 in the special case when the

random variable Y ∈ D
1,4(Ω,H) is replaced by its finite-dimensional projections on H. The proof

of (1.7) (in this special case) is analogous to that of (1.5) and is left to the reader. Relation (1.6)

follows immediately from (1.5).

Recall that {en : n ≥ 1} is a complete orthonormal system of eigenvectors of A. For each

integer n ≥ 1, denote by Hn := L{ei : 1 ≤ i ≤ n}, the n-dimensional linear subspace of H spanned

by {ei : 1 ≤ i ≤ n}. Define the sequence of projections Pn : H → Hn, n ≥ 1, by

Pn(x) :=

n
∑

k=1

< x, ek, > ek, x ∈ H. (3.1)

Define Yn : Ω → Hn by

Yn := Pn ◦ Y, n ≥ 1. (3.2)
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Note that Yn → Y a.s..

The main result in this section is the following finite-dimensional substitution theorem

(Theorem 3.1). Note that the proof of this theorem still requires Malliavin calculus techniques,

largely due to the underlying infinite-dimensional semi-group dynamics in {Tt}t≥0.

Theorem 3.1. Assume all the conditions of Theorem 1.1. Then for each integer n ≥ 1, (1.5) and

(1.7) hold when Y ∈ D
1,4(Ω,H) is replaced by Yn. In particular,

dU(t, Yn) = −AU(t, Yn) dt+ F
(

U(t, Yn)
)

dt−
1

2

∞
∑

k=1

B2
kU(t, Yn) dt+BU(t, Yn) ◦ dW (t), t > 0,

U(0, Yn) = Yn.











(3.3)

for each n ≥ 1.

Proof.

In this proof, we denote by Ci, i = 1, 2, · · · , 19, positive dterministic constants.

Rewrite (1.4) in its mild form

U(t, x) = Tt(x) +

∫ t

0

Tt−sF
(

U(s, x)
)

ds−
1

2

∞
∑

k=1

∫ t

0

Tt−sB
2
kU(s, x) ds

+

∫ t

0

Tt−sBU(s, x) ◦ dW (s), t > 0. (3.4)

Using the fact that each Yn ∈ D
1,4(Ω,Hn) is a finite-dimensional random variable, we will

show that x in (3.4) can be replaced by Yn to get

U(t, Yn) = Tt(Yn) +

∫ t

0

Tt−sF
(

U(s, Yn)
)

ds−
1

2

∞
∑

k=1

∫ t

0

Tt−sB
2
kU(s, Yn) ds

+

∫ t

0

Tt−sBU(s, Yn) ◦ dW (s), t > 0, n ≥ 1, (3.5)

for each n ≥ 1 (cf. [Nu.1], Section 3.3.2, [M-S.2]). To justify (3.5), it is sufficient to prove that the

random field
∫ t

0

Tt−sBU(s, x) ◦ dW (s), x ∈ Hn,

has a version Hn × Ω → H satisfying

∫ t

0

Tt−sBU(s, x) ◦ dW (s)

∣

∣

∣

∣

x=Yn

=

∫ t

0

Tt−sBU(s, Yn) ◦ dW (s) (3.6)
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a.s. for fixed t > 0. To prove (3.6), we will first establish some estimates on U(t, x), t ≥ 0, x ∈ H .

Let x, x′ ∈ H and t ∈ [0, a]. Then (3.4) implies

E|U(t, x) − U(t, x′)|2p ≤ C1|Tt(x) − Tt(x
′)|2p

+C2E

∣

∣

∣

∣

∫ t

0

{

Tt−sF
(

U(s, x)
)

− Tt−sF
(

U(s, x′)
)}

ds

∣

∣

∣

∣

2p

+C3E

∣

∣

∣

∣

∫ t

0

Tt−sB
(

U(s, x) − U(s, x′)
)

dW (s)

∣

∣

∣

∣

2p

≤ C4|x− x′|2p + C5

∫ t

0

E|U(s, x) − U(s, x′)|2p ds

+C6

{
∫ t

0

E|U(s, x) − U(s, x′)|2 ds

}p

≤ C4|x− x′|2p + C7

∫ t

0

E|U(s, x) − U(s, x′)|2p ds.

Gronwall’s lemma implies

E|U(t, x) − U(t, x′)|2p ≤ C8|x− x′|2p, x, x′ ∈ H, t ∈ [0, a]. (3.7)

Fix 0 ≤ t ≤ a <∞, and define

Sm(x) : =

∫ t

0

Tt−sPmBU(s, x) ◦ dW (s)

=

∫ t

0

Tt−sPmBU(s, x) dW (s) +
1

2

∞
∑

k=1

∫ t

0

Tt−s(PmBk)2U(s, x) ds (3.8)

for all x ∈ H. Since each Hm is invariant under Tt, t ∈ [0, a], then Sm(x) ∈ Hm for all x ∈ H.

Claim. Assume Condition (B) of Section 1. Fix t ∈ [0, a] in (3.8). Then there is a constant

C9 > 0 independent of m and t ∈ [0, a] such that

E|Sm(x) − Sm(x′)|2p ≤ C9|x− x′|2p (3.9)

for all x, x′ ∈ H and all m ≥ 1.

Proof of Claim. Let x, x′ ∈ H and fix t ∈ [0, a]. Assume Condition (B) of Section 1. Then

E

∣

∣

∣

∣

∫ t

0

Tt−sPmBU(s, x) dW (s) −

∫ t

0

Tt−sPmBU(s, x′) dW (s)

∣

∣

∣

∣

2p

≤ E

∣

∣

∣

∣

∫ t

0

Tt−sPmB
[

U(s, x) − U(s, x′)
]

dW (s)

∣

∣

∣

∣

2p

≤ C10

∫ t

0

‖Tt−sPmB‖E|U(s, x) − U(s, x′)|2p ds

≤ C11

∫ t

0

E|U(s, x) − U(s, x′)|2p ds ≤ C12|x− x′|2p.

(3.10)
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The series on the right-hand-side of (3.8) is absolutely convergent (uniformly in m) because of

Condition (B) and the a.s. estimates

∞
∑

k=1

∫ t

0

‖Tt−s(PmBk)2U(s, x)‖ ds ≤ C13

∞
∑

k=1

‖PmBk‖
2

∫ t

0

‖U(s, x)‖ ds

≤ C13

∫ t

0

‖U(s, x)‖ ds ·
∞
∑

k=1

‖Bk‖
2

<∞.

Furthermore,

E

∣

∣

∣

∣

∞
∑

k=1

∫ t

0

Tt−s(PmBk)2U(s, x) ds−

∞
∑

k=1

∫ t

0

Tt−s(PmBk)2U(s, x′) ds

∣

∣

∣

∣

2p

≤

{ ∞
∑

k=1

∫ t

0

{

E
∣

∣Tt−s(PmBk)2
[

U(s, x) − U(s, x′)
]∣

∣

2p
}1/2p

ds

}2p

≤ C14

{ ∞
∑

k=1

∫ t

0

‖Bk‖
2
{

E
∣

∣U(s, x) − U(s, x′)
∣

∣

2p
}1/2p

ds

}2p

≤ C14 · C8

{ ∞
∑

k=1

‖Bk‖
2

}

|x− x′|2p = C15|x− x′|2p. (3.11)

Therefore (3.10) and (3.11) imply (3.9). This proves our claim. �

We next show that in (3.6), one can replace B by PmB:

∫ t

0

Tt−sPmBU(s, x) ◦ dW (s)

∣

∣

∣

∣

x=Yn

=

∫ t

0

Tt−sPmBU(s, Yn) ◦ dW (s) (3.12)

a.s. for all m,n ≥ 1.

To prove (3.12), write

∫ t

0

Tt−sPmBU(s, x) ◦ dW (s) =
∞
∑

k=1

∫ t

0

Tt−sPmBkU(s, x) ◦ dW k(s), x ∈ H. (3.13)

Let

RN (x) :=
N

∑

k=1

∫ t

0

Tt−sPmBkU(s, x) ◦ dW k(s), N ≥ 1, x ∈ Hn (3.14)

(for fixed m ≥ 1). Then

lim
N→∞

RN (x) =

∞
∑

k=1

∫ t

0

Tt−sPmBkU(s, x) ◦ dW k(s) (3.15)
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in L2, because the series on the right-hand-side of (3.15) converges absolutely in L2(Ω,Hm). Also

for x, x′ ∈ H,

E|RN (x) −RN (x′)|2p ≤

( N
∑

k=1

{

E

∣

∣

∣

∣

∫ t

0

Tt−sPmBk

[

U(s, x) − U(s, x′)
]

◦ dW k(s)

∣

∣

∣

∣

2p}1/2p)2p

≤ C15|x− x′|2p

were C15 is independent of m,N (by the proof of the Claim and Condition (B)).

Now apply Lemma 4.1 ([M.S-2], or [Nu.2], Lemma 5.3.1) to the sequence of random fields

{RN (x) : x ∈ Hn}, N ≥ 1. This implies the following limit in probability:

lim
N→∞

{

RN (x)
∣

∣

x=Yn

}

=

( ∞
∑

k=1

∫ t

0

Tt−sPmBkU(s, x) ◦ dW k(s)

)∣

∣

∣

∣

x=Yn

=

∫ t

0

Tt−sPmBU(s, x) ◦ dW (s)

∣

∣

∣

∣

x=Yn

. (3.16)

We next show that, for each k ≥ 1, the following substitution rule holds:

∫ t

0

Tt−sPmBkU(s, x) ◦ dW k(s)

∣

∣

∣

∣

x=Yn

=

∫ t

0

Tt−sPmBkU(s, Yn) ◦ dW k(s) (3.17)

a.s. ([Nu.2], Theorem 5.3.3).

From (3.14), (3.15), (3.16), (3.17), and the finite-dimensional substitution theorem for

Stratonovich integrals (Theorem (5.3.4) in [Nu.2]), we get the following limits in probability:

∫ t

0

Tt−sPmBU(s, x) ◦ dW (s)

∣

∣

∣

∣

x=Yn

= lim
N→∞

{

RN (x)
∣

∣

x=Yn

}

= lim
N→∞

N
∑

k=1

∫ t

0

Tt−sPmBkU(s, x) ◦ dW k(s)
∣

∣

x=Yn

= lim
N→∞

N
∑

k=1

∫ t

0

Tt−sPmBkU(s, Yn) ◦ dW k(s)

=

∞
∑

k=1

∫ t

0

Tt−sPmBkU(s, Yn) ◦ dW k(s)

=

∫ t

0

Tt−sPmBU(s, Yn) ◦ dW (s). (3.18)

The last equality in (3.18) follows from the definition of the Stratonovich integral in infinite-

dimensions. This proves (3.12). Recall that

Sm(x) :=

∫ t

0

Tt−sPmBU(s, x) dW (s) +
1

2

∞
∑

k=1

∫ t

0

Tt−s(PmBk)2U(s, x) ds. (3.19)
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Define

S(x) :=

∫ t

0

Tt−sBU(s, x) ◦ dW (s)

=

∫ t

0

Tt−sBU(s, x)dW (s) +
1

2

∞
∑

k=1

∫ t

0

Tt−sB
2
kU(s, x) ds. (3.20)

We will show that

lim
m→∞

Sm(x) = S(x) (3.21)

in probability for all x ∈ H. Now, for every x ∈ H,

lim
m→∞

PmB
(

U(s, x)
)

= B
(

U(s, x)
)

,

a.s.,

∣

∣PmB
(

U(s, x)
)
∣

∣ ≤
∣

∣B
(

U(s, x)
)
∣

∣,

and

E

∣

∣

∣

∣

∫ t

0

Tt−sPmBU(s, x)dW (s) −

∫ t

0

Tt−sBU(s, x)dW (s)

∣

∣

∣

∣

2p

= E

∣

∣

∣

∣

∫ t

0

Tt−s(PmB −B)U(s, x)dW (s)

∣

∣

∣

∣

2p

= E

∣

∣

∣

∣

∫ t

0

Tt−s

{

PmB
(

U(s, x)
)

−B
(

U(s, x)
)}

dW (s)

∣

∣

∣

∣

2p

≤ C16

∫ t

0

E
∣

∣PmB
(

U(s, x)
)

−B
(

U(s, x)
)∣

∣

2p
ds (3.22)

a.s. for all m ≥ 1 and all x ∈ H. Then by the dominated convergence theorem, it follows that

lim
m→∞

E

∣

∣

∣

∣

∫ t

0

Tt−sPmBU(s, x)dW (s) −

∫ t

0

Tt−sBU(s, x)dW (s)

∣

∣

∣

∣

2p

= 0, x ∈ H.

Also, for each m ≥ 1 and any x ∈ H, we have

E
∣

∣Tt−s(Pm ◦Bk)2U(s, x) − Tt−sB
2
kU(s, x)

∣

∣

2p

= E
∣

∣Tt−s

{

(Pm ◦ Bk)2
(

U(s, x)
)

−B2
k

(

U(s, x)
)}

∣

∣

2p

≤ C17E
∣

∣(Pm ◦ Bk ◦ Pm ◦Bk)
(

U(s, x)
)

− (Pm ◦ Bk ◦ Bk)
(

U(s, x)
)∣

∣

2p

+ C18E
∣

∣(Pm ◦Bk ◦ Bk)
(

U(s, x)
)

−B2
k

(

U(s, x)
)
∣

∣

2p

≤ C17‖Bk‖E
∣

∣Pm

(

Bk

(

U(s, x)
))

−Bk

(

U(s, x)
)
∣

∣

2p

+ C18E
∣

∣Pm

(

B2
k

(

U(s, x)
))

−B2
k

(

U(s, x)
)
∣

∣

2p
(3.23)
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and

∣

∣Tt−s(Pm ◦Bk)2U(s, x) − Tt−sB
2
kU(s, x)

∣

∣

≤ C19

[

‖Pm ◦ Bk‖
2 + ‖Bk‖

2
]
∣

∣U(s, x)
∣

∣

≤ 2C19‖Bk‖
2
∣

∣U(s, x)
∣

∣ (3.24)

a.s.. The right-hand side of (3.23) converges to 0 a.s. as m→ ∞ (for each fixed k ≥ 1). Hence, by

(3.24), Theorem 2.2, the convergence of

∞
∑

k=1

‖Bk‖
2 and the dominated convergence theorem, we

obtain

lim
m→∞

∞
∑

k=1

∫ t

0

Tt−s(Pm ◦Bk)2U(s, x) ds =

∞
∑

k=1

∫ t

0

Tt−sB
2
kU(s, x) ds (3.25)

in L2p for all x ∈ H.

Using (3.19), (3.20), (3.22), and (3.25), we get (3.21). By (3.21), we may apply Lemma

5.3.1 in [Nu.2] (Lemma 4.1, [M-S.2]) to get

lim
m→∞

Sm(Yn) = S(Yn) in probability (3.26)

for each n ≥ 1.

Using (3.26), we may let m→ ∞ in (3.18) to get

lim
m→∞

∫ t

0

Tt−sPmBU(s, x) ◦ dW (s)

∣

∣

∣

∣

x=Yn

= lim
m→∞

∫ t

0

Tt−sPmBU(s, Yn) ◦ dW (s)

=

∫ t

0

Tt−sBU(s, x) ◦ dW (s)

∣

∣

∣

∣

x=Yn

. (3.27)

Observe that

lim
m→∞

Tt−sPmBU(s, Yn) = Tt−sBU(s, Yn)

in L2
(

[0, T ] × Ω
)

.

Using a truncation argument, one can show that the process [0, t] 3 s 7→ Tt−sBU(s, Yn) ∈

L2(K,H) is Stratonovich integrable, and

lim
m→∞

∫ t

0

Tt−sPmBU(s, Yn) ◦ dW (s) =

∫ t

0

Tt−sBU(s, Yn) ◦ dW (s). (3.28)

Details of the truncation argument are given in Section 3 (replacing B by PmB). (Note that this

truncation argument does not depend on (3.28)). Combining (3.27) and (3.28) gives

∫ t

0

Tt−sBU(s, x) ◦ dW (s)

∣

∣

∣

∣

x=Yn

=

∫ t

0

Tt−sBU(s, Yn) ◦ dW (s). (3.29)

This proves (3.6) and hence (3.5) holds.
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4. Proof of the substitution theorem.

In this section, we will complete the proof of the main substitution theorem (Theorem 1.1) in

Section 1. Our argument will appeal to the estimates in Section 2 on the cocycle U(t, x), t ≥, x ∈ H,

its Frèchet and Malliavin derivatives DU(t, x), DU(t, x), respectively

Proof of Theorem 1.1. Assume that Y ∈ D
1,4(Ω,H), and the see (1.1) satisfies Hypothesis (B)

together with either (A1) or (A2). We will prove the equality (1.5) in Section 1. Equality (1.6) is

a special case of (1.5). The proof of (1.7) is similar to that of (1.5), and is left to the reader.

Fix t > 0 throughout this proof.

To prove (1.5) in Section 1, we will show that the anticipating process U(t, Y ) satisfies the

Stratonovich integral equation

U(t, Y ) = Tt(Y ) +

∫ t

0

Tt−sF
(

U(s, Y )
)

ds−
1

2

∞
∑

k=1

∫ t

0

Tt−sB
2
kU(s, Y ) ds

+

∫ t

0

Tt−sBU(s, Y ) ◦ dW (s). (4.1)

We start with the mild Stratonovich form of the see (1.1):

U(t, x) = Tt(x) +

∫ t

0

Tt−sF
(

U(s, x)
)

ds−
1

2

∞
∑

k=1

∫ t

0

Tt−sB
2
kU(s, x) ds

+

∫ t

0

Tt−sBU(s, x) ◦ dW (s). (4.2)

Denote by L
1,2 the class of all processes v : [0, t] × Ω → H such that v ∈ L2([0, t] × Ω,H),

v(s, ·) ∈ D
1,2(Ω,H) for almost all s ∈ [0, t] and E[

∫ t

0

∫ t

0
‖Duv(s, ·)‖

2
H du ds] < ∞. We say that v

belongs to L
1,2
loc if there exists a sequence (Ωm, v

m) ∈ F × L
1,2 with the following properties:

(i) Ωm ↑ Ω as m→ ∞,

(ii) v = vm on Ωm.

We first show that the Stratonovich integral in (4.1) is well-defined. To prove this, it is sufficient

to verify that the process v(s) := Tt−sBU(s, Y ), s ≤ t, belongs to L
1,2
loc ([Nu.2], Theorem 5.2.3).

For any integer m ≥ 1, let φm ∈ C2
b (R,R) be a bump function such that φm(z) = 1 for |z| ≤ m

and φm(z) = 0 for |z| > m + 1. Define vm(s) := v(s)φm(|Y |H), s ≤ t. Clearly, v = vm on

Ωm := {ω : |Y (ω)|H ≤ m} for each m ≥ 1. Thus v is Stratonovich integrable if we can show that

vm ∈ L
1,2 for every m ≥ 1. To see this, note first that the estimate

|vm(s)|H ≤ C · sup
x∈H

|x|H≤m+1

|U(s, x)|H , s ≤ t,

together with Theorem 2.2 (i) imply that vm ∈ L2([0, t] × Ω) for each m ≥ 1. On the other hand,

Duv
m(s) = Tt−sB[DuU(s, Y ) +DU(s, Y )DuY ]φm(|Y |H) + Tt−sBU(s, Y )φ′

m(|Y |H)Du|Y |H
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for all u, s ∈ [0, t]. Therefore,

|Duv
m(s)|H ≤ Cm · sup

|x|H≤m+1

|DuU(s, x)|H + Cm · sup
|x|H≤m+1

||DU(s, x)||L(H)|DuY |H

+ Cm · sup
|x|H≤m+1

|U(s, x)|HDu|Y |H , u, s ∈ [0, t]. (4.3)

Using the fact that Y ∈ D
1,4(Ω,H), Theorem 2.3 (ii) and Theorem 2.2 (i),(ii), it follows from (4.3)

that

E

[
∫ t

0

∫ t

0

|Duv
m(s)|2H ds du

]

<∞.

Hence, vm ∈ L
1,2 for each m ≥ 1.

Next we prove that U(t, Y ) satisfies the equation (4.1). For any integer n ≥ 1, define

Yn := Pn ◦ Y as in (3.2). Then by Theorem 3.1, we know that for every n ≥ 1,

U(t, Yn) = Tt(Yn) +

∫ t

0

Tt−sF
(

U(s, Yn)
)

ds−
1

2

∞
∑

k=1

∫ t

0

Tt−sB
2
kU(s, Yn) ds

+

∫ t

0

Tt−sBU(s, Yn) ◦ dW (s), t > 0. (4.4)

We wish to pass to the limit a.s. as n → ∞ in (4.4). To do this, first note the following easy a.s.

limits:

lim
n→∞

U(t, Yn) = U(t, Y )

lim
n→∞

Tt(Yn) = Tt(Y )

lim
n→∞

∫ t

0

Tt−sF
(

U(s, Yn)
)

ds =

∫ t

0

Tt−sF
(

U(s, Y )
)

ds

lim
n→∞

1

2

∞
∑

k=1

∫ t

0

Tt−sB
2
kU(s, Yn) ds =

1

2

∞
∑

k=1

∫ t

0

Tt−sB
2
kU(s, Y ) ds.

Therefore, (4.1) will hold provided we show that

lim
n→∞

∫ t

0

Tt−sBU(s, Yn) ◦ dW (s) =

∫ t

0

Tt−sBU(s, Y ) ◦ dW (s) (4.5)

in probability.

To prove (4.5), we use the following truncation argument:

By the local property of the Stratonovich integral ([Nu.1]), we have

∫ t

0

Tt−sBU(s, Yn) ◦ dW (s) =

∫ t

0

Tt−sBU(s, Yn)φm(|Y |H) ◦ dW (s),

on Ωm := {ω : |Y (ω)|H ≤ m}, and

∫ t

0

Tt−sBU(s, Y ) ◦ dW (s) =

∫ t

0

Tt−sBU(s, Y )φm(|Y |H) ◦ dW (s),
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on Ωm for any fixed m ≥ 1. So, to establish (4.5), it is enough to prove that

lim
n→∞

∫ t

0

Tt−sBU(s, Yn)φm(|Y |H) ◦ dW (s) =

∫ t

0

Tt−sBU(s, Y )φm(|Y |H) ◦ dW (s) (4.6)

in probability for each m ≥ 1. To see this, fix m ≥ 1 and let

gn(s) := Tt−sBU(s, Yn)φm(|Y |H), g(s) := Tt−sBU(s, Y )φm(|Y |H)

for all s ∈ [0, t]. We first show that g = lim
n→∞

gn in L
1,2. Since both gn(s) and g(s) are bounded by

C sup
|x|H≤m+1

|U(s, x)|H , then by Theorem 2.2 and the Dominated Convergence Theorem, it follows

that the sequence {gn}
∞
n=1 converges to g in L2([0, a] × Ω, L2(K,H)) for each a ∈ (0,∞). Notice

that

Dugn(s) = Tt−sB[DuU(s, Yn) +DU(s, Yn)DuYn]φm(|Y |H)

+ Tt−sBU(s, Yn)φ′m(|Y |H)Du|Y |H , (4.7)

for all s ∈ [0, t]. Since |Yn|H ≤ |Y |H and |DuYn|H ≤ |DuY |H , we have

|Dugn(s)|H ≤ Cm · sup
|x|H≤m+1

|DuU(s, x)|H + Cm · sup
|x|H≤m+1

|‖DU(s, x)‖L(H)|DuY |H

+ Cm · sup
|x|H≤m+1

|U(s, x)|HDu|Y |H (4.8)

Applying Theorem 2.2 (i), (ii), Theorem 2.3 (ii) and the Dominated Convergence Theorem again,

we conclude that

lim
n→∞

E

[
∫ T

0

∫ T

0

|Dugn(s) −Dug(s)‖
2
L2(K,H) du ds

]

= 0. (4.9)

For a given process v, recall the following notations from [O-P]:

(D+v)u = lim
s→u+

Duv(s),

(D−v)u = lim
s→u−

Duv(s)

(∇v)u = (D+v)u + (D−v)u

We now find the expressions (∇gn)u and (∇g)u. Replacing x by Yn in (2.24), we obtain

DuU(s, Yn) = DuV (s, ·)(Yn) +

∫ s

0

DuV (s− l, θ(l, ·))(F (U(l, Yn, ·))) dl

+

∫ s

0

(

V (s− l, θ(l, ·)) + Ts−l

)

(DF (U(l, Yn, ·)))(DuU(l, Yn, ·)) dl
(4.10)

By (2.22), we have

(D+V )u = lim
s→u+

DuV (s, ·) = BV (u, ·) +BTu
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a.s.. Similarly, we obtain

(D+V·−l(θ(l, ω)))u = lim
s→u+

DuV (s− l, θ(l, ω))

= BV (u− l, θ(l, ω)) +BTu−l

for a.a. ω ∈ Ω. Thus, it follows from (4.10) that

(D+U)u(Yn) = [BVu +BTu](Yn) +

∫ u

0

[BV (u− l, θ(l, ·)) +BTu−l](F (U(l, Yn, ·))) dl

+

∫ u

0

(

V (u− l, θ(l, ·)) + Tu−l

)

(DF (U(l, Yn, ·)))(DuU(l, Yn, ·)) dl
(4.11)

a.s.. Now taking limits as s→ u+ in (4.7), we get

(D+gn)u = Tt−uB[(D+U)u(Yn) +DU(u, Yn)DuYn]φm(|Y |H)

+ Tt−uBU(u, Yn)φ′m(|Y |H)Du|Y |H . (4.12)

Note that DuU(s, Yn) = 0 when u > s. Therefore, letting s→ u− in (4.7) gives

(D−gn)u = Tt−uB[DU(u, Yn)DuYn]φm(|Y |H) + Tt−uBU(u, Yn)φ′m(|Y |H)Du|Y |H . (4.13)

Because of the continuity of the functions involved, it is easy to see from (4.12) and (4.13) that

lim
n→∞

(∇gn)u = lim
n→∞

[(D+gn)u + (D−gn)u]

= (∇g)u = (D+g)u + (D−g)u, (4.14)

where (D+g)u and (D−g)u are given by

(D+g)u = Tt−uB[(D+U)u(Y ) +DU(u, Y )DuY ]φm(|Y |H)

+ Tt−uBU(u, Y )φ′
m(|Y |H)Du|Y |H ,

and

(D−g)u = Tt−uB[DU(u, Y )DuY ]φm(|Y |H) + Tt−uBU(u, Y )φ′
m(|Y |H)Du|Y |H .

Now, (4.9) implies that

lim
n→∞

∫ t

0

gn(s)dW (s) =

∫ t

0

g(s) dW (s)

in probability, where the stochastic integral is the Skorohod integral. Therefore, (4.6) (and (4.5))

will hold, and hence the theorem, if we can show that

∫ t

0

gn(s) ◦ dW (s) =

∫ t

0

gn(s)dW (s) +
1

2

∫ t

0

(∇gn)s ds, n ≥ 1, (4.15′)
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and
∫ t

0

g(s) ◦ dW (s) =

∫ t

0

g(s)dW (s) +
1

2

∫ t

0

(∇g)s ds (4.15)

a.s.. We will prove (4.15). The proof of (4.15)′ is very similar. It seems difficult to verify the

known sufficient conditions in the literature for proving (4.15) (cf. [Nu.1] and [Nu.2]). Instead, we

will prove (4.15) from first principles, using approximations by Riemann sums. Following [Nu.1],

choose any partition π = {t0 = 0 < t1 < ... < tn−1 < tn = t} of [0, t], with mesh |π|, and introduce

the following step process:

gπ(r) =
n−1
∑

i=0

1

ti+1 − ti

(
∫ ti+1

ti

g(s)ds

)

I(ti,ti+1](r), r ∈ [0, t].

Consider the Riemann sums:

Sπ :=
n−1
∑

i=0

1

ti+1 − ti

(
∫ ti+1

ti

g(s) ds

)

(W (ti+1) −W (ti)).

From the definition of the Stratonovich integral, it follows that

lim
|π|→0

Sπ =

∫ t

0

g(s) ◦ dW (s)

whenever the above limit in probability exists. On the other hand, by (3.4) in [Nu.1], we have

Sπ =

∫ t

0

gπ(s)dW (s) +

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

∫ ti+1

ti

Dug(s) du ds

Since lim
|π|→0

gπ = g in L
1,2 (see [Nu.1]), then

lim
|π|→0

∫ t

0

gπ(s) dW (s) =

∫ t

0

g(s) dW (s)

in probability. So, to complete the proof of (4.15), it remains to show that

lim
|π|→0

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

∫ ti+1

ti

Dug(s) du ds =

∫ t

0

(∇g)s ds.

To simplify the notation, set

Iπ :=

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

∫ ti+1

ti

Dug(s) du ds

Split Iπ into two integrals,

Iπ =

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ u

ti

Dug(s) ds+

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ ti+1

u

Dug(s) ds.
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Denote the first and second term on the right-hand-side of the above equality by II π and IIIπ,

respectively. Write,

IIπ =

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ u

ti

Tt−sB[DU(s, Y )DuY ]φm(|Y |H) ds

+
n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ u

ti

Tt−sBU(s, Y )φ′
m(|Y |H)Du|Y |H ds.

We will prove that

lim
|π|→0

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ u

ti

Tt−sB[DU(s, Y )DuY ]φm(|Y |H) ds

=
1

2

∫ t

0

Tt−uB[DU(u, Y )DuY ]φm(|Y |H) du (4.17)

and

lim
|π|→0

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ u

ti

Tt−sBU(s, Y )φ′
m(|Y |H)Du|Y |H ds

=
1

2

∫ t

0

Tt−uBU(u, Y )φ′
m(|Y |H)Du|Y |H du. (4.18)

We will prove (4.17). The proof of (4.18) is very similar. Rewrite the left-hand-side of (4.17) in the

form

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ u

ti

Tt−sB[DU(s, Y )DuY ]φm(|Y |H) ds

=
n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ u

ti

{Tt−sB[DU(s, Y )DuY ]φm(|Y |H) − Tt−uB[DU(u, Y )DuY ]φm(|Y |H)} ds

+

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

(u− ti)Tt−uB[DU(u, Y )DuY ]φm(|Y |H) du. (4.19)

Since the sequence of functions

[0, t] 3 u 7→
n−1
∑

i=0

1

ti+1 − ti
(u− ti)I(ti,ti+1](u) ∈ R, n ≥ 1,

converges weakly to the constant function 1
2

in L2([0, t],R), then

lim
|π|→0

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

(u− ti)Tt−uB[DU(u, Y )DuY ]φm(|Y |H) du

=
1

2

∫ t

0

Tt−uB[DU(u, Y )DuY ]φm(|Y |H) du. (4.20)
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For a given partition π := {t0 = 0 < t1 < ... < tn−1 < tn = t} of [0, t] , and any u ∈ (ti, ti+1],

denote

uπ− := ti, uπ+ := ti+1.

We now estimate the first term of (4.19) as follows

n−1
∑

i=0

1

ti+1 − ti

∣

∣

∣

∣

∫ ti+1

ti

du

∫ u

ti

{Tt−sB[DU(s, Y )DuY ]φm(|Y |H) − Tt−uB[DU(u, Y )DuY ]φm(|Y |H)}ds

∣

∣

∣

∣

≤

n−1
∑

i=0

∫ ti+1

ti

sup
uπ−≤s≤u

{|Tt−sB[DU(s, Y )DuY ]φm(|Y |H) − Tt−uB[DU(u, Y )DuY ]φm(|Y |H)|} du

=

∫ t

0

sup
uπ−≤s≤u

{|Tt−sB[DU(s, Y )DuY ]φm(|Y |H) − Tt−uB[DU(u, Y )DuY ]φm(|Y |H)|} du.
(4.21)

By the continuity of Tt−sBDU(s, Y ) in s ∈ [0, t], we see that

lim
|π|→0

sup
uπ−≤s≤u

{|Tt−sB[DU(s, Y )DuY ]φm(|Y |H) − Tt−uB[DU(u, Y )DuY ]φm(|Y |H)|} = 0

for any fixed u ∈ (ti, ti+1], 0 ≤ i ≤ n− 1. On the other hand,

sup
uπ−≤s≤u

{|Tt−sB[DU(s, Y )DuY ]φm(|Y |H) − Tt−uB[DU(u, Y )DuY ]φm(|Y |H)|}

≤ 2 sup
0≤s≤t

||Tt−sB[DU(s, Y )|||DuY |φm(|Y |H)

a.s. for all u ∈ [0, t]. Applying the Dominated Convergence Theorem, we see that the right side of

(4.21) tends to zero as |π| tends to 0. Thus, (4.17) follows from (4.19) and (4.20). This gives the

a.s. limit

lim
|π|→0

IIπ =
1

2

∫ t

0

Tt−uBDU(u, Y )φ′
m(|Y |H)Du|Y |H du

+
1

2

∫ t

0

Tt−uBU(u, Y )φ′
m(|Y |H)Du|Y |Hdu. (4.22)

To treat IIIπ, write it in the form

IIIπ =
n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ ti+1

u

Tt−sB[DuU(s, Y ) +DU(s, Y )DuY ]φm(|Y |H) ds

+

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ ti+1

u

Tt−sBU(s, Y )φ′
m(|Y |H)Du|Y |H ds. (4.23)

We will prove that

lim
|π|→0

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ ti+1

u

Tt−sB[DuU(s, Y ) +DU(s, Y )DuY ]φm(|Y |H) ds

=
1

2

∫ t

0

Tt−uB[(D+U)u(Y ) +DU(u, Y )DuY ]φm(|Y |H)du (4.24)
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and

lim
|π|→0

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ ti+1

u

Tt−sBU(s, Y )φ′
m(|Y |H)Du|Y |H ds

=
1

2

∫ t

0

Tt−uBU(u, Y )φ′
m(|Y |H)Du|Y |H du. (4.25)

The proof of (4.25) is similar to that of (4.24). We will complete the proof of the theorem by

proving (4.24). To do this, consider

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

∫ ti+1

u

Tt−sB[DuU(s, Y ) +DU(s, Y )DuY ]φm(|Y |H) ds

= Jπ
1 + Jπ

2 ,

where

Jπ
1 :=

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

du

[
∫ ti+1

u

{Tt−sB[DuU(s, Y ) +DU(s, Y )DuY ]φm(|Y |H)

− Tt−uB[(D+U)u(Y ) +DU(u, Y )DuY ]φm(|Y |H)}ds

]

and

Jπ
2 :=

n−1
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

(ti+1 − u)Tt−uB[(D+U)u(Y ) +DU(u, Y )DuY ]φm(|Y |H) du.

As noted before, the sequence of functions

[0, t] 3 u 7→
n−1
∑

i=0

1

ti+1 − ti
(ti+1 − u)I(ti,ti+1](u) ∈ R

converges weakly to the constant function 1
2 in L2([0, t],R). Therefore,

lim
|π|→0

Jπ
2 =

1

2

∫ t

0

Tt−uB[(D+U)u(Y ) +DU(u, Y )DuY ]φm(|Y |H)du. (4.26)

Now we show that Jπ
1 tends to zero as |π| → 0. First note that

|Jπ
1 | ≤

∫ t

0

(

sup
u≤s≤uπ+

{|Tt−sB[DuU(s, Y ) +DU(s, Y )DuY ]φm(|Y |H)

− Tt−uB[(D+U)u(Y ) +DU(u, Y )DuY ]φm(|Y |H)|}

)

du.

(4.27)
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Furthermore, there is a positive random constant C such that

sup
u≤s≤uπ+

{|Tt−sB[DuU(s, Y ) +DU(s, Y )DuY ]φm(|Y |H)

− Tt−uB[(D+U)u(Y ) +DU(u, Y )DuY ]φm(|Y |H)|}

≤ 2 sup
u≤s≤t

{|Tt−sB[DuU(s, Y ) +DU(s, Y )DuY ]φm(|Y |H)|}

≤ C[ sup
u≤s≤t

|DuU(s, Y )| + |DuY |] (4.28)

a.s.. Let ĥ(u, a) := sup
u≤s≤a

|DuU(s, Y )|. Replacing x by Y (ω) in (2.24), there is a positive random

constant c such that

ĥ(u, a) ≤ c|Y |

(

sup
u≤s≤t

||DuV (s, ·)||+

∫ t

0

sup
u≤s≤t

||DuV (s− l, θ(l, ·))|| dl

)

+ c

∫ a

0

sup
l≤s≤a

{||V (s− l, θ(l, ·))|| + ||Ts−l||}ĥ(u, l) dl

a.s. for all a ∈ [0, t]. By Gronwall’s inequality, the above inequality implies

ĥ(u, t) ≤ c|Y |

(

sup
u≤s≤t

||DuV (s, ·)|| +

∫ t

0

sup
u≤s≤t

||DuV (s− l, θ(l, ·))||dl

)

×

× exp

(
∫ t

0

sup
l≤s≤t

{||V (s− l, θ(l, ·))|| + ||Ts−l||} dl

)

.

Using the above estimate and Theorem 2.3 (i), it is easy to see that

∫ t

0

(ĥ(u, t))2 du <∞. (4.29)

By the definition of (D+U), the integrand in (4.27) approaches zero as |π| → 0 for any fixed u.

Applying the Dominated Convergence Theorem, it follows from (4.28) and (4.29) that

lim
|π|→0

Jπ
1 = 0. (4.30)

This together with (4.26) implies (4.24). The proof of equality (4.15) is now complete. �

5. Alternative proof of Theorem 2.3 (ii).

In this section we give an alternative proof of the estimate in Theorem 2.3 (ii). This proof

is based on a chaos-type expansion in the Hilbert space L2(H). The argument we present is of

independent interest.

Proof of Theorem 2.3 (ii).

In the see (1.1), assume Hypotheses (B) and (A1) or (A2). Suppose F is C1
b . In this proof,

C will denote a generic positive constant which may change from line to line.
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Recall the equation

DuU(t, x, ·) = DuV (t, ·)(x) +

∫ t

0

DuV (t− s, θ(s, ·))(F (U(s, x, ·))) ds

+

∫ t

0

[V (t− s, θ(s, ·)) + Tt−s](DF (U(s, x, ·)))(DuU(s, x, ·)) ds, (2.24)

for u ∈ [0, a], a ∈ [0, t], t ≥ 0.

Fix any p ≥ 1. Set

h(u, t) := sup
x∈H

|DuU(t, x)|H
(1 + |x|H)

, t ≥ 0.

From (2.24) it follows that there are positive constants M, C such that

h(u, t) ≤M‖DuV (t, ·)‖L2(H) + C

∫ t

0

‖DuV (t− s, θ(s, ·))‖L2(H)ds

+ C

∫ t

0

(

‖V (t− s, θ(s, ·))‖L2(H) + 1

)

h(u, s)ds, t ≥ 0. (5.1)

Define

g(u, t) := M‖DuV (t, ·)‖L2(H) + C

∫ t

0

‖DuV (t− s, θ(s, ·))‖L2(H)ds

and

L(s, t) := ‖V (t− s, θ(s, ·))‖L2(H) + 1 0 ≤ s ≤ t.

Iterating the inequality (5.1) n times, we obtain

h(u, t) ≤ g(u, t) +
n

∑

k=1

Ck

∫ t

0

L(s1, t) ds1

∫ s1

0

L(s2, s1) ds2 · · ·

∫ sk−1

0

L(sk, sk−1)g(u, sk) dsk +Rn+1,

where

Rn+1 := Cn+1

∫ t

0

L(s1, t)ds1

∫ s1

0

L(s2, s1)ds2 · · ·

∫ sn

0

L(sn+1, sn)h(u, sn+1) dsn+1

≤
1

(n+ 1)!
Cn+1

(

sup
0≤u2≤u1≤t

L(u2, u1)

)n+1

· sup
0≤u≤s≤t

h(u, s) → 0

almost surely as n→ ∞. This implies that

h(u, t) ≤ g(u, t) +
∞
∑

k=1

Ck

∫ t

0

L(s1, t)ds1

∫ s1

0

L(s2, s1)ds2 · · ·

∫ sk−1

0

L(sk, sk−1)g(u, sk)dsk (5.2)

Next we estimate E[(h(u, t)2p ]. First observe that

E

[(
∫ t

0

L(s1, t) ds1

∫ s1

0

L(s2, s1) ds2 · · ·

∫ sk−1

0

L(sk, sk−1)g(u, sk)dsk

)2p]

≤

(
∫

0<sk<...<s1<t

dsk...ds1

)2p−1

×

×

∫

0<sk<...<s1<t

E[L(s1, t)
2pL(s2, s1)

2p · · · L(sk, sk−1)
2pg(u, sk)2p] dsk · · · ds1.

(5.3)
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Since L(si, si−1) is measurable with respect to the σ-algebra Fsi,si−1
:= σ{W (l) − W (si) : l ∈

[si, si−1]} and W has independent increments, it follows that the random variables

L(s1, t)
2p, L(s2, s1)

2p, · · · , L(sk, sk−1)
2p, g(u, sk)2p

are independent for 0 < sk < ... < s1 < t. Hence,

E[L(s1, t)
2pL(s2, s1)

2p · · · L(sk, sk−1)
2pg(u, sk)2p]

= E[L(s1, t)
2p]E[L(s2, s1)

2p] · · ·E[L(sk, sk−1)
2p]E[g(u, sk)2p].

Therefore, (5.3) gives

E

(
∫ t

0

L(s1, t)ds1

∫ s1

0

L(s2, s1)ds2 · · ·

∫ sk−1

0

L(sk, sk−1)g(u, sk)dsk

)2p

≤
tk

k!

tk−1Mk
t

(k − 1)!

∫ t

0

E[g(u, s)2p]ds, (5.4)

where

Mt := sup
0≤u2≤u1≤t

E[L(u2, u1)
2p].

Combining (5.2) with (5.4), we arrive at

(E[(h(u, t)2p ])
1
2p ≤ (E[(g(u, t)2p ])

1
2p +

∞
∑

k=1

Ck

(

tk

k!

tk−1Mk
t

(k − 1)!

)
1
2p

(
∫ t

0

E[g(u, s)2p] ds

)
1
2p

, t ≥ 0.

Hence,

E

[

sup
x∈H

|DU(t, x)|2p
H

(1 + |x|2p
H )

]

≤ C

∫ t

0

E[h(u, t)2p] du

≤ C

{
∫ t

0

E[g(u, t)2p] du+

∫ t

0

∫ t

0

E[g(u, s)2p ] du ds

}

, t ≥ 0.
(5.5)

We show now that the right side of (5.5) is finite. It is easy to see that

V (t− s, θ(s, ·)) =

∫ t

s

Tt−lBV (l − s, θ(s, ·)) dW (l) +

∫ t

s

Tt−lBTl−s dW (l).

Thus DuV (t− s, θ(s, ·)) = 0 for u 6∈ [s, t]; and for u ∈ [s, t],

DuV (t− s, θ(s, ·)) =

∫ t

s

Tt−lBDuV (l − s, θ(s, ·)) dW (l)

+ Tt−uBV (u− s, θ(s, ·)) + Tt−uBTu−s.
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By the Itô isometry we get

∫ t

s

E[‖DuVt−s(θ(s, ·))‖
2p
L2(H)]du ≤ C

∫ t

s

∫ l

s

E[‖Tt−lBDuV (l − s, θ(s, ·))‖2p
L2(H)] du dl

+C

∫ t

s

E[‖Tt−uBV (u− s, θ(s, ·))‖2p
L2(H)] du

+ C

∫ t

s

E[‖Tt−uBTu−s‖
2p
L2(H)] du.

This implies that, for any T > 0,

∫ t

s

E[‖DuV (t− s, θ(s, ·))‖2p
L2(H)]du ≤ C + C

∫ t

s

∫ l

s

E[‖DuV (l − s, θ(s, ·))‖2p
L2(H)] du dl

and all t ∈ [0, T ]. By Grownwall’s inequality, we have

∫ t

s

E[‖DuV (t− s, θ(s, ·))‖2p
L2(H)] ≤ C (5.6)

for all t ∈ [0, T ]. Now,

∫ t

0

E[g(u, t)2p] du ≤ C

∫ t

0

E[‖DuV (t, ·)‖2p
L2(H)]du+ C

∫ t

0

∫ t

0

E[‖DuV (t− s, θ(s, ·))‖2p
L2(H)] ds du.

So it follows from Theorem 2.3(i) and (5.6) that the right side of (5.5) is finite, which completes

the proof of (2.21). �

6. Anticipating semilinear spde’s.

As a corollary of Theorem 1.1, we show existence and regularity of solutions to a semilinear

Stratonovich see with anticipating initial conditions. The proof is essentially a reformulation of the

corresponding argument for Theorem 1.1. It is not clear whether the solution of (6.1) is unique.

Corollary 6.1. Assume that Conditions (B) together with either (A1) or (A2). Suppose F is C1
b

and let Y ∈ D
1,4(Ω,H) be a random variable. Consider the following anticipating semilinear see

dv(t) = −Av(t) dt+ F
(

v(t)
)

dt+Bv(t) ◦ dW (t), t > 0,

v(0) = Y.

}

(6.1)

Then the anticipating semilinear see (6.1) has a pathwise continuous (B(R+)⊗F ,B(H))-measurable

mild solution v : R+ × Ω → H with the following properties:

(i) v(t) ∈ D1,2(Ω,H) for all t ≥ 0.

(ii) sup
t∈[0,a]

E|Dv(t)|2H <∞ for all a ∈ (0,∞).

(iii) sup
t∈[0,a]

|v(t, ω)|H ≤ K(ω)[1 + |Y (ω)|H ] for a.a. ω ∈ Ω,

where K is a random positive constant such that K ∈ L2p(Ω,R+) for all integers p ≥ 1.
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Proof.

Assume all the conditions of the corollary.

In (6.1), replace the initial condition Y by a deterministic vector x ∈ H. Then with this

replacement, (6.1) is equivalent to the semilinear Itô see

du(t, x) = −Au(t, x) dt+ F
(

u(t, x)
)

dt+
1

2

∞
∑

k=1

B2
kU(t, x) dt+Bu(t, x)dW (t), t > 0,

u(0, x) = x.











(6.2)

Set

F0(u) := F (u) + +
1

2

∞
∑

k=1

B2
ku

for all u ∈ H. By Condition (B), it is easy to see that F0 : H → H is C1
b . Therefore the (adapted)

see (6.2) satisfies all the requirements of Theorem 1.1. In particular, its mild solutions generate a

C1 cocycle U0 : R+ ×H × Ω → H. Moreover, the cocycle U0 satisfies all the estimates in Section

2 (Theorem 2.2 (i),(ii), Theorem 2.3 (ii)). Now set v(t, ω) := U0(t, Y (ω), ω) for all t ≥ 0, ω ∈ Ω.

Using the substitution theorem it is not hard to check that v is a mild solution of (6.1) which

satisfies all the estimates in Corollary 6.1. �

Remark.

A similar result for anticipating stochastic ordinary differential equations in a Hilbert space

H is given in ([G-Nu-S], Theorem 4.4) under the restriction that the initial random variable takes

values in some relatively compact set in H. Cf. also [A-I] where the substituting random variable

takes values in a σ-compact space.
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