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Stochastic Dynamical Systems in Infinite Dimensions†

Salah-Eldin A. Mohammed∗

April 11, 2008

Abstract

We study the local behavior of infinite-dimensional stochastic semiflows near hy-
perbolic equilibria. The semiflows are generated by stochastic differential systems with
finite memory, stochastic evolution equations and semilinear stochastic partial differ-
ential equations.

1 Introduction

In this article, we summarize some results on the existence and qualitative behavior of
stochastic dynamical systems in infinite dimensions. The three main examples covered are
stochastic systems with finite memory (stochastic functional differential equations-sfde’s),
semilinear stochastic evolution equations (see’s) and stochastic partial differential equations
(spde’s). Due to limitations of space, our summary is by no means intended to be exhaus-
tive: The emphasis will be mainly on the local behavior of infinite-dimensional stochastic
dynamical systems near hyperbolic equilibria (or stationary solutions).

The main highlights of the article are:

• Infinite-dimensional cocycles

• Ruelle’s spectral theory for compact linear cocycles in Hilbert space

• Stationary points (equilibria). Hyperbolicity

• Existence of stable/unstable manifolds near equilibria

• Cocycles generated by regular sfde’s. Singular sfde’s

• Cocycles generated by semilinear see’s and spde’s

• Solutions of anticipating semilinear sfde’s and see’s.

∗The research of the author is supported in part by NSF Grants DMS-9703852, DMS-9975462, DMS-
0203368, DMS-0705970, Alexander von Humboldt-Stiftung (Germany), and Institut Mittag-Leffler (Royal
Swedish Academy of Sciences).
†This article is dedicated to Heinrich von Weizsäcker on his sixtieth birthday celebration.
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2 What is a stochastic dynamical system?

We begin by formulating the idea of a stochastic semiflow or an infinite-dimensional cocycle
which is central to the analysis in this work.

First, we establish some notation.

Let (Ω,F , P ) be a probability space. Denote by F̄ the P -completion of F , and let
(Ω, F̄ , (Ft)t≥0, P ) be a complete filtered probability space satisfying the usual conditions
([32]).

If E is a topological space, we denote by B(E) its Borel σ-algebra. If E is a Banach space,
we may give the space L(E) of all bounded linear operators on E the strong topology, viz. the
smallest topology with respect to which all evaluations L(E) 3 T 7→ T (x) ∈ E, x ∈ E, are
continuous. Denote by Bs(L(E)) the σ-algebra generated by the strong topology on L(E).
Let R denote the set of all reals, and R+ := [0,∞). We say that a process T : R+×Ω → L(E)
is strongly measurable if it is (B(R+) ⊗ F ,Bs(L(E)))-measurable.

Let k be a positive integer and 0 < ε ≤ 1. If E and N are real Banach spaces with
norms | · |, we will denote by L(k)(E,N) the Banach space of all continuous k-multilinear
maps A : Ek → N with the uniform norm ‖A‖ := sup{|A(v1, v2, · · · , vk)| : vi ∈ E, |vi| ≤
1, i = 1, · · · , k}. We let L(k)(E) stand for L(k)(E,E). Suppose U ⊆ E is an open set. A map
f : U → N is said to be of class Ck,ε if it is Ck and if D(k)f : U → L(k)(E,N) is ε-Hölder
continuous on bounded sets in U . A Ck,ε map f : U → N is said to be of class Ck,ε

b if all its
derivatives D(j)f, 1 ≤ j ≤ k, are globally bounded on U , and D(k)f is ε-Hölder continuous
on U . If U ⊂ E is open and bounded, denote by Ck,ε(U,N) the Banach space of all Ck,ε

maps f : U → N given the norm:

‖f‖k,ε := sup
x∈U

0≤j≤k

‖Djf(x)‖ + sup
x1,x2∈U

x1 6=x2

|Dkf(x1) −Dkf(x2)|

|x1 − x2|ε
.

We now define a cocycle on Hilbert space.

Definition 2.1 (Cocycle). Let θ : R × Ω → Ω be a (B(R) ⊗ F ,F)-measurable group of
P -preserving transformations on the probability space (Ω,F , P ), H a real separable Hilbert
space, k a non-negative integer and ε ∈ (0, 1]. A Ck,ε perfect cocycle (U, θ) on H is a
(B(R+) ⊗ B(H) ⊗ F ,B(H))-measurable random field U : R+ × H × Ω → H with the
following properties:

(i) For each ω ∈ Ω, the map R+ × H 3 (t, x) 7→ U(t, x, ω) ∈ H is continuous; and for
fixed (t, ω) ∈ R+ × Ω, the map H 3 x 7→ U(t, x, ω) ∈ H is Ck,ε.

(ii) U(t + s, ·, ω) = U(t, ·, θ(s, ω)) ◦ U(s, ·, ω) for all s, t ∈ R+ and all ω ∈ Ω.

(iii) U(0, x, ω) = x for all x ∈ H,ω ∈ Ω.

Using Definition 2.1, it is easy to check that a cocycle (U, θ) corresponds to a one-
parameter semigroup on H × Ω.

Throughout this article we will assume that each P -preserving transformation θ(t, ·) :
Ω → Ω is ergodic.
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3 Spectral theory of linear cocycles: Hyperbolicity

The question of hyperbolicity is central to many studies of finite and infinite-dimensional
(stochastic) dynamical systems. This question focuses on the characterization of almost-
sure “saddle-like behavior” of the nonlinear stochastic dynamical system when linearized
at a given statistical equilibrium. Statistical equilibria are viewed as random points in the
infinite-dimensional state space called stationary points of the non-linear cocycle. For the
underlying stochastic differential equation, the stationary points correspond to stationary
solutions.

The main results in this section are the spectral theorem for a compact linear infinite-
dimensional cocycle (Theorem 3.1) and the saddle-point property in the hyperbolic case
(Theorem 3.2). A discrete version of the spectral theorem was established in the fundamental
work of D. Ruelle ([34]), using multiplicative ergodic theory techniques. A continuous version
of the spectral theorem is developed in [19] within the context of linear stochastic systems
with finite memory. See also work by the author and M. Scheutzow on regular stochastic
systems with finite memory ([22]), and joint work with T.S. Zhang and H. Zhao ([27]).
The spectral theorem gives a deterministic discrete Lyapunov spectrum or set of exponential
growth rates for the linear cocycle. The proof of the spectral theorem uses infinite-dimensional
discrete multiplicative ergodic theory techniques and interpolation arguments in order to
control the excursions of the cocycle between discrete times. A linear cocycle is hyperbolic if
its Lyapunov spectrum does not contain zero.

For a nonlinear cocycle, a stationary point is defined to be hyperbolic if the linearized
cocycle (at the stationary point) is hyperbolic. Under such a hyperbolicity condition, one
may obtain a local stable manifold theorem for the non-linear cocycle near the stationary
point (Theorem 4.1).

Throughout the article we will use the following convention:

Definition 3.1 (Perfection). A family of propositions {P (ω) : ω ∈ Ω} is said to hold
perfectly in ω if there is a sure event Ω∗ ∈ F such that θ(t, ·)(Ω∗) = Ω∗ for all t ∈ R and
P (ω) is true for every ω ∈ Ω∗.

We now define a stationary point for a cocycle (U, θ) in Hilbert space H.

Definition 3.2 (Stationary Point). An F -measurable random variable Y : Ω → H is said
be a stationary random point for the cocycle (U, θ) if it satisfies the following identity:

U(t, Y (ω), ω) = Y (θ(t, ω)) (3.1)

for all t ∈ R+, perfectly in ω ∈ Ω.

The reader may note that the above definition is an infinite-dimensional analogue of a
corresponding concept of cocycle-invariance that was used by the author in joint work with
M. Scheutzow to give a proof of the stable manifold theorem for stochastic ordinary differ-
ential equations (sode’s) (Definition 3.1, [21]). Definition 3.2 above essentially gives a useful
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realization of the idea of an invariant measure for a stochastic dynamical system generated by
an sode, a stochastic functional differential equation (sfde), a stochastic evolution equation
(see) or an spde. Such a realization allows us to analyze the local almost sure stability prop-
erties of the stochastic semiflow in the neighborhood of the stationary point. The existence
(and uniqueness/ergodicity) of a stationary random point for various classes of spde’s and
see’s has been studied by many researchers; see for example [7] and the references therein.

The following spectral theorem gives a fixed discrete set of Lyapunov exponents for
a compact linear cocycle (T, θ) on H. The discreteness of the Lyapunov spectrum is a
consequence of the compactness of the cocycle, while the ergodicity of the shift θ guarantees
that the spectrum is deterministic. This fact allows us to define hyperbolicity of the linear
cocycle (T, θ) and hence that of the stationary point Y of a nonlinear cocycle (U, θ).

Theorem 3.1 (Oseledec-Ruelle). Let H be a real separable Hilbert space. Suppose (T, θ)
is an L(H)-valued strongly measurable cocycle such that there exists t0 > 0 with T (t, ω)
compact for all t ≥ t0. Assume that T : R+ × Ω → L(H) strongly measurable and

E sup
0≤t≤1

log+ ‖T (t, ·)‖L(H) + E sup
0≤t≤1

log+ ‖T (1 − t, θ(t, ·))‖L(H) <∞.

Then there is a sure event Ω0 ∈ F such that θ(t, ·)(Ω0) ⊆ Ω0 for all t ∈ R+, and for each
ω ∈ Ω0, the limit

Λ(ω) := lim
t→∞

[T (t, ω)∗ ◦ T (t, ω)]1/(2t)

exists in the uniform operator norm. Each linear operator Λ(ω) is compact, non-negative
and self-adjoint with a discrete spectrum

eλ1 > eλ2 > eλ3 > · · ·

where the Lyapunov exponents λi’s are distinct and non-random. Each eigenvalue eλi > 0
has a fixed finite non-random multiplicity mi and a corresponding eigen-space Fi(ω), with
mi := dim Fi(ω). Set i = ∞ when λi = −∞. Define

E1(ω) := H, Ei(ω) :=
[

⊕i−1
j=1Fj(ω)

]⊥
, i > 1, E∞ := kerΛ(ω).

Then
E∞ ⊂ · · · ⊂ · · · ⊂ Ei+1(ω) ⊂ Ei(ω) · · · ⊂ E2(ω) ⊂ E1(ω) = H,

lim
t→∞

1

t
log |T (t, ω)x| =

{

λi if x ∈ Ei(ω)\Ei+1(ω),
−∞ if x ∈ E∞(ω),

and
T (t, ω)(Ei(ω)) ⊆ Ei(θ(t, ω))

for all t ≥ 0, i ≥ 1.

The following figure illustrates the Oseledec-Ruelle theorem.
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The Spectral Theorem

0 0

ω θ(t, ω)
Ω

T (t, ω)

θ(t, ·)

E1 = H

E2(ω)

E3(ω)

H

E2(θ(t, ω))

E3(θ(t, ω))

Proof of Theorem 3.1.

The proof is based on a discrete version of Oseledec’s multiplicative ergodic theorem
and the perfect ergodic theorem ([33], pp. 303-304; cf. [31], [19], Lemma 5). Details of
the extension to continuous time are given in [19] within the context of linear stochastic
functional differential equations with finite memory. The arguments in [19] extend directly
to general linear cocycles in a separable Hilbert space. Cf. [10].

Definition 3.3. Let (T, θ) be a linear cocycle on a Hilbert space H satisfying all the con-
ditions of Theorem 3.1. The cocycle (T, θ) is said to be hyperbolic if its Lyapunov spectrum
{· · · < λi+1 < λi < · · · < λ2 < λ1} does not vanish, in the sense that λi 6= 0 for all i ≥ 1.

The following result is a “random saddle point property” for hyperbolic linear cocycles.
A proof is given in ([19], Theorem 4, Corollary 2; [24], Theorem 5.3) within the context
of stochastic differential systems with finite memory; but the arguments therein extend
immediately to linear cocycles in a separable Hilbert space.

Theorem 3.2 (The saddle point property). Let (T, θ) be a hyperbolic linear cocycle on
a Hilbert space H. Assume that

E log+ sup
0≤t1,t2≤1

‖T (t2, θ(t1, ·))‖L(H) <∞;

5



and denote by {· · · < λi+1 < λi < · · · < λ2 < λ1} the non-vanishing Lyapunov spectrum of
(T, θ).

Pick i0 > 1 such that λi0 < 0 < λi0−1. Then the following assertions hold perfectly in
ω ∈ Ω:

There exist stable and unstable subspaces {S(ω), U(ω)}, F-measurable (into the Grass-
mannian), such that

(i) H = U(ω) ⊕ S(ω). The unstable subspace U(ω) is finite-dimensional with a fixed non-
random dimension, and the stable subspace S(ω) is closed with a finite non-random
codimension. In fact, S(ω) := Ei0 .

(ii) (Invariance)

T (t, ω)(U(ω)) = U(θ(t, ω)), T (t, ω)(S(ω)) ⊆ S(θ(t, ω)),

for all t ≥ 0,

(iii) (Exponential dichotomies)

|T (t, ω)(x)| ≥ |x|eδ1t for all t ≥ τ ∗1 , x ∈ U(ω),

|T (t, ω)(x)| ≤ |x|e−δ2t for all t ≥ τ ∗2 , x ∈ S(ω),

where τ ∗i = τ ∗i (x, ω) > 0, i = 1, 2, are random times and δi > 0, i = 1, 2, are fixed.

ω
θ(t, ω)

Ω

T (t, ω)

θ(t, ·)

S(ω)

U(ω)

S(θ(t, ω))

U(θ(t, ω))

H H

0 0
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We are now in a position to define the concept of hyperbolicity for a stationary point Y
of the nonlinear cocycle (U, θ):

Definition 3.4. Let (U, θ) be a Ck,ε (k ≥ 1, ε ∈ (0, 1]) perfect cocycle on a separable Hilbert
space H and there exists t0 > 0 such that U(t, ·, ω) : H → H takes bounded sets into
relatively compact sets for each (t, ω) ∈ (t0,∞) × Ω. A stationary point Y : Ω → H of the
cocycle (U, θ) is said to be hyperbolic if

(a) For any a ∈ (t0,∞),
∫

Ω

log+ sup
0≤t1,t2≤a

‖DU(t2, Y (θ(t1, ω)), θ(t1, ω))‖L(H) dP (ω) <∞.

(b) The linearized cocycle (DU(t, Y (ω), ω), θ(t, ω)) has a non-vanishing Lyapunov spec-
trum {· · · < λi+1 < λi < · · · < λ2 < λ1}, viz. λi 6= 0 for all i ≥ 1.

Note that, in Definition 3.4, the linearized cocycle (DU(t, Y (ω), ω), θ(t, ω)) has a dis-
crete non-random Lyapunov spectrum because of the compactness hypothesis on (U, θ) and
the integrability condition (a). This follows immediately from the Oseledec-Ruelle spectral
theorem (Theorem 3.1).

4 The local stable manifold theorem

In this section, we will show that, within a stationary random neighborhood of a hyperbolic
stationary point, the long-time asymptotics of the cocycle are characterized by local stable
and unstable manifolds. The stable/unstable manifolds are smooth, random and asymp-
totically forward/backward invariant (viz. stationary) under the non-linear cocycle. Unlike
the issue of ergodicity, the quest for hyperbolic behavior is driven by the need to identify
generic classes of stochastic dynamical systems. Indeed, our approach is philosophically
distinct from the search for uniquely ergodic statistical equilibria in stochastic differential
equations, or for globally asymptotically stable critical points for deterministic dynamical
systems. There is a considerable volume of current and recent research on the ergodicity of
stochastic partial differential equations. See [7], [14] and the references therein. However,
little is known regarding generic behavior of stochastic dynamical systems. It is hoped that
the results in this article would open the door for further research in this direction.

The main result in this section is the local stable manifold theorem (Theorem 4.1 below).
This result characterizes the asymptotic behavior of the cocycle (U, θ) in a random neighbor-
hood of a hyperbolic stationary point. The local stable manifold theorem is the main tool
that we use to analyze the almost sure stability of cocycles generated by stochastic systems
with memory, semilinear see’s and spde’s. The proof of the theorem is a non-trivial refine-
ment and extension to the continuous-time setting of discrete-time results due to D. Ruelle
([33], [34]). An outline of the main ideas in the proof of Theorem 4.1 is given after the
statement of the theorem. For further details the reader may consult ([21], [22] and [27]).
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In what follows, we denote by B(x, ρ) the open ball, radius ρ and center x ∈ H, and by
B̄(x, ρ) the corresponding closed ball.

Theorem 4.1 (The local stable manifold theorem). Let (U, θ) be a Ck,ε (k ≥ 1, ε ∈
(0, 1]) perfect cocycle on a separable Hilbert space H such that for each (t, ω) ∈ (0,∞) × Ω,
U(t, ·, ω) : H → H takes bounded sets into relatively compact sets. For any ρ ∈ (0,∞),
denote by ‖ · ‖k,ε the Ck,ε-norm on the Banach space Ck,ε(B̄(0, ρ), H). Let Y be a hyperbolic
stationary point of the cocycle (U, θ) satisfying the following integrability property:

∫

Ω

log+ sup
0≤t1,t2≤a

‖U(t2, Y (θ(t1, ω)) + (·), θ(t1, ω))‖k,ε dP (ω) <∞ (∗)

for any fixed 0 < ρ, a < ∞ and ε ∈ (0, 1]. Denote by {· · · < λi+1 < λi < · · · < λ2 <

λ1} the Lyapunov spectrum of the linearized cocycle (DU(t, Y (ω), ω), θ(t, ω), t ≥ 0). Define
λi0 := max{λi : λi < 0} if at least one λi < 0. If all finite λi are positive, set λi0 := −∞.
(Thus λi0−1 is the smallest positive Lyapunov exponent of the linearized cocycle, if at least
one λi > 0; when all the λi’s are negative, set λi0−1 := ∞.)

Fix ε1 ∈ (0,−λi0) and ε2 ∈ (0, λi0−1). Then there exist

(i) a sure event Ω∗ ∈ F with θ(t, ·)(Ω∗) = Ω∗ for all t ∈ R,

(ii) F̄-measurable random variables ρi, βi : Ω∗ → (0, 1), βi > ρi > 0, i = 1, 2, such that for
each ω ∈ Ω∗, the following is true:

There are Ck,ε (ε ∈ (0, 1]) submanifolds S̃(ω), Ũ(ω) of B̄(Y (ω), ρ1(ω)) and
B̄(Y (ω), ρ2(ω)) (resp.) with the following properties:

(a) For λi0 > −∞, S̃(ω) is the set of all x ∈ B̄(Y (ω), ρ1(ω)) such that

|U(n, x, ω) − Y (θ(n, ω))| ≤ β1(ω) e(λi0
+ε1)n

for all integers n ≥ 0. If λi0 = −∞, then S̃(ω) is the set of all x ∈ B̄(Y (ω), ρ1(ω))
such that

|U(n, x, ω) − Y (θ(n, ω))| ≤ β1(ω) eλn

for all integers n ≥ 0 and any λ ∈ (−∞, 0). Furthermore,

lim sup
t→∞

1

t
log |U(t, x, ω) − Y (θ(t, ω))| ≤ λi0 (4.1)

for all x ∈ S̃(ω). Each stable subspace S(ω) of the linearized cocycle
(DU(t, Y (·), ·), θ(t, ·)) is tangent at Y (ω) to the submanifold S̃(ω), viz. TY (ω)S̃(ω) =

S(ω). In particular, codim S̃(ω) = codim S(ω), is fixed and finite.

(b) lim sup
t→∞

1

t
log

[

sup

{

|U(t, x1, ω) − U(t, x2, ω)|

|x1 − x2|
: x1 6= x2, x1, x2 ∈ S̃(ω)

}]

≤ λi0 .
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(c) (Cocycle-invariance of the stable manifolds):

There exists τ1(ω) ≥ 0 such that

U(t, ·, ω)(S̃(ω)) ⊆ S̃(θ(t, ω)) (4.2)

for all t ≥ τ1(ω). Also

DU(t, Y (ω), ω)(S(ω)) ⊆ S(θ(t, ω)), t ≥ 0. (4.3)

(d) For λi0−1 < ∞, Ũ(ω) is the set of all x ∈ B̄(Y (ω), ρ2(ω)) with the property
that there is a discrete-time “history” process y(·, ω) : {−n : n ≥ 0} → H such
that y(0, ω) = x and for each integer n ≥ 1, one has U(1, y(−n, ω), θ(−n, ω)) =
y(−(n− 1), ω) and

|y(−n, ω)− Y (θ(−n, ω))| ≤ β2(ω)e−(λi0−1−ε2)n.

If λi0−1 = ∞, Ũ(ω) is the set of all x ∈ B̄(Y (ω), ρ2(ω)) with the property that
there is a discrete-time “history” process y(·, ω) : {−n : n ≥ 0} → H such that
y(0, ω) = x and for each integer n ≥ 1,

|y(−n, ω)− Y (θ(−n, ω))| ≤ β2(ω)e−λn,

for any λ ∈ (0,∞). Furthermore, for each x ∈ Ũ(ω), there is a unique continuous-
time “history” process also denoted by y(·, ω) : (−∞, 0] → H such that y(0, ω) =
x, U(t, y(s, ω), θ(s, ω)) = y(t+ s, ω) for all s ≤ 0, 0 ≤ t ≤ −s, and

lim sup
t→∞

1

t
log |y(−t, ω) − Y (θ(−t, ω))| ≤ −λi0−1.

Each unstable subspace U(ω) of the linearized cocycle (DU(t, Y (·), ·), θ(t, ·)) is
tangent at Y (ω) to Ũ(ω), viz. TY (ω)Ũ(ω) = U(ω). In particular, dim Ũ(ω) is
finite and non-random.

(e) Let y(·, xi, ω), i = 1, 2, be the history processes associated with
xi = y(0, xi, ω) ∈ Ũ(ω), i = 1, 2. Then

lim sup
t→∞

1

t
log

[

sup

{

|y(−t, x1, ω) − y(−t, x2, ω)|

|x1 − x2|
:x1 6= x2, xi ∈ Ũ(ω), i = 1, 2

}]

≤ −λi0−1.

(f) (Cocycle-invariance of the unstable manifolds):

There exists τ2(ω) ≥ 0 such that

Ũ(ω) ⊆ U(t, ·, θ(−t, ω))(Ũ(θ(−t, ω))) (4.4)
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for all t ≥ τ2(ω). Also

DU(t, ·, θ(−t, ω))(U(θ(−t, ω))) = U(ω), t ≥ 0;

and the restriction

DU(t, ·, θ(−t, ω))|U(θ(−t, ω)) : U(θ(−t, ω)) → U(ω), t ≥ 0,

is a linear homeomorphism onto.

(g) The submanifolds Ũ(ω) and S̃(ω) are transversal, viz.

H = TY (ω)Ũ(ω) ⊕ TY (ω)S̃(ω).

Assume, in addition, that the cocycle (U, θ) is C∞. Then the local stable and unstable
manifolds S̃(ω), Ũ(ω) are also C∞.

Below is an illustration of the local stable manifold theorem.

The Stable Manifold Theorem

ω θ(t, ω)
Ω

U(t, ·, ω)

θ(t, ·)

S(ω)

U(ω)

S̃(ω)

Ũ(ω)

U(θ(t,ω))

S̃(θ(t,ω))

S(θ(t,ω))

Ũ(θ(t,ω))

H H

Y (ω)
Y (θ(t,ω))

t > τ1(ω)
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Due to limitations of space, it is not possible to give a complete proof of the local stable
manifold theorem (Theorem 4.1). However, we will outline below its main ingredients. For
further details, the reader may consult ([21], [22], [27]).

An outline of the proof of Theorem 4.1:

• Develop perfect continuous-time versions of Kingman’s subadditive ergodic theorem
as well as the ergodic theorem ([27], Lemma 2.3.1 (ii), (iii)). The linearized cocycle
(DU(t, Y ), θ(t)) at the hyperbolic stationary point Y can be shown to satisfy the
hypotheses of these perfect ergodic theorems. As a consequence of the perfect ergodic
theorems one obtains stable/unstable subspaces for the linearized cocycle, which will
constitute tangent spaces to the local stable and unstable manifolds of the nonlinear
cocycle (U, θ).

• The non-linear cocycle (U, θ) may be “centered” around the hyperbolic equilibrium
Y (θ(t)) by using the auxiliary perfect cocycle (Z, θ):

Z(t, ·, ω) := U(t, (·) + Y (ω), ω) − Y (θ(t, ω)), t ∈ R+, ω ∈ Ω.

Hence 0 ∈ H becomes a fixed hyperbolic equilibrium for the auxiliary cocycle (Z, θ).
We then use hyperbolicity of Y , the continuous-time integrability condition (∗) on the
cocycle and perfect versions of the ergodic and subadditive ergodic theorems to show
the existence of local stable/unstable manifolds for the discrete auxiliary cocycle
(Z(n, ·, ω), θ(n, ω)) near 0 (cf. [34], Theorems 5.1 and 6.1). These manifolds are random
objects and are perfectly defined for ω ∈ Ω. Local stable/unstable manifolds for the
discrete cocycle U(n, ·, ω) near the equilibrium Y are then obtained via translating the
corresponding local manifolds for Z by the stationary point Y (ω). Using interpolation
between discrete times and the (continuous-time) integrability condition (∗), it can be
shown that the above manifolds for the discrete-time cocycle (U(n, ·, ω), θ(n, ω)), n ≥ 1,
also serve as perfectly defined local stable/unstable manifolds for the continuous-time
cocycle (U, θ) near Y (see [21], [22], [27], [34]).

• Using the integrability condition (∗) on the nonlinear cocycle and its Fréchet deriva-
tives, it is possible to control the excursions of the continuous-time cocycle (U, θ)
between discrete times. In view of the perfect subadditive ergodic theorem, these es-
timates show that the local stable manifolds are asymptotically invariant under the
non-linear cocycle. The asymptotic invariance of the unstable manifolds is obtained
via the concept of a stochastic history process for the cocycle. The existence of a
stochastic history process is needed because the cocycle is not invertible.

This completes the outline of the proof of Theorem 4.1.
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5 Stochastic systems with finite memory

In order to formulate the stochastic dynamics of systems with finite memory (sfde’s), we will
first describe the class of regular sfde’s which admit locally compact smooth cocycles.

It is important to note that not all sfde’s are regular: Indeed, consider the simple one-
dimensional linear stochastic delay differential equation (sdde):

dx(t) = x(t− 1) dW (t), t > 0,

(x(0), x0) = (v, η) ∈ R× L2([−1, 0],R),

}

(5.1)

with initial condition (v, η) ∈ R × L2([−1, 0],R). In (5.1), we use the symbol (v,η)xt ∈
L2([−1, 0],R) to represent the segment (or slice) of the solution path (v,η)x : [−1,∞) ×
Ω → R at time t ≥ 0, viz.: (v,η)xt(s) :=(v,η) x(t + s), s ∈ [−1, 0], t ≥ 0. The trajectory
{(v,η)xt : t ≥ 0, v ∈ R, η ∈ L2([−1, 0],R)} of (5.1) does not admit a measurable version
R+×R×L2([−1, 0],R)×Ω → L2([−1, 0],R) that is pathwise continuous (or even linear) in
η ∈ L2([−1, 0],R) ([17], pp. 144–149, [18]). Sfde’s such as (5.1) above, which do not admit
continuous stochastic semiflows, are called singular.

At this point, we should note that in spite of the easy estimate

E‖(0,η1)x1 −
(0,η2) x1‖

2p
2 ≤ C‖η1 − η2‖

2p
2 , η1, η2 ∈ L2([−1, 0],R), p ≥ 1,

Kolmogorov’s continuity theorem fails to yield a pathwise continuous version of the random
field {(0,η)x1 : η ∈ L2([−1, 0],R)}.

Due to the pathological behavior of infinite-dimensional stochastic dynamical systems such
as (5.1), it is imperative that one should address perfection issues for such systems with due
care.

The construction of the cocycle for regular sfde’s is based on the theory of stochastic flows
for stochastic ordinary differential equations (sode’s) in finite dimensions. Once the cocycle
is established, we then identify sufficient regularity and growth conditions on the coefficients
of the sfde that will allow us to apply the local stable manifold theorem (Theorem 4.1). This
yields the existence of local stable/unstable manifolds near hyperbolic stationary solutions
of the regular sfde.

Existence of cocycles for regular sfde’s:

Let (Ω,F , P ) be Wiener space where Ω := C(R,Rp; 0) is the space of all continuous
paths ω : R → Rp with ω(0) = 0, F is the Borel σ-field generated by the topology of
uniform convergence on compacta, and P is Wiener measure on C(R+,Rp; 0). Denote by
F̄ the P -completion of F , and by Ft the P -completion of the sub-σ-algebra of F generated
by all evaluations Ω 3 ω → ω(u) ∈ Rp, u ≤ t. Thus (Ω, F̄ , (Ft)t≥0, P ) is a complete filtered
probability space satisfying the usual conditions ([32]). Fix an arbitrary delay r > 0 and a
positive integer dimension d.

Consider the stochastic functional differential equation (sfde):

dx(t) = H(x(t), xt) dt+G(x(t)) dW (t), t ≥ 0

x(0) = v ∈ Rd, x0 = η ∈ L2([−r, 0],Rd).

}

(5.2)
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A solution of (5.2) is a process x : [−r,∞) × Ω → Rd whereby xt denotes the segment

xt(·, ω)(s) := x(t+ s, ω), s ∈ [−r, 0], ω ∈ Ω, t ≥ 0,

and (5.2) holds a.s. The state space for (5.2) is the Hilbert space M2 := Rd ×L2([−r, 0],Rd)
endowed with the norm

‖(v, η)‖M2 := (|v|2 + ‖η‖2
L2)1/2, v ∈ Rd, η ∈ L2([−r, 0],Rd).

The drift is a globally bounded Ck,δ functional H : M2 → Rd, the noise coefficient is a Ck+1,δ
b

mapping G : Rd → Rd×p, and W is p-dimensional Brownian motion on (Ω, F̄ , (Ft)t≥0, P ):

W (t, ω) := ω(t), t ∈ R+, ω ∈ Ω.

Denote by θ : R+ × Ω → Ω the P -preserving ergodic Brownian shift

θ(t, ω)(s) := ω(t+ s) − ω(t), t, s ∈ R, ω ∈ Ω.

It is known that the sfde (5.2) admits a unique family of trajectories {((v,η)x(t),(v,η) xt) :
t ≥ 0, (v, η) ∈ M2} ([17], [20]). In our next result, we will show that the ensemble of all
these trajectories can be viewed as a Ck,ε (0 < ε < δ) locally compact cocycle (U, θ) on M2

satisfying U(t, (v, η), ·) = ((v,η)x(t),(v,η) xt) for all (v, η) ∈M2 and t ≥ 0, a.s. (Definition 2.1).
The cocycle property is still maintained if H and G are allowed to be stationary, or if the
diffusion coefficient G(x(t)) is replaced by a smooth memory-dependent term of the form
G(x(t), g(xt)) where the path R+ 3 t 7→ g(xt) ∈ Rd is locally of bounded variation. More
general noise terms such as Kunita-type spatial semimartingales may also be allowed ([16]).
The construction of the cocycle uses the finite-dimensional stochastic flow for the diffusion
term coupled with a non-linear variational technique. The non-linear variational approach
reduces the sfde (5.2) to a random (pathwise) neutral functional integral equation.

Stability issues for linear versions of the sfde (5.2) are studied in [26], [19], [20], [23]-[25].
For general white-noise, an invariant measure on M2 for the one-point motion of the

sfde (5.2) gives a stationary point of the cocycle (U, θ) by enlarging the probability space.
On the other hand, if Y : Ω → M2 is a stationary random point for (U, θ) independent of
the Brownian motion W (t), t ≥ 0, then the distribution ρ := P ◦ Y −1 of Y is an invariant
measure for the one-point motion of (5.2). This is because Y and W are independent ([22],
Part II).

Theorem 5.1. Under the given assumptions on the coefficients H and G, the trajectories of
the sfde (5.2) induce a locally compact Ck,ε (0 < ε < δ) perfect cocycle (U, θ) on M2, where
U : R+ ×M2 × Ω →M2 satisfies the following conditions:

(i) For each ω ∈ Ω and t ≥ r the map U(t, ·, ω) : M2 → M2 carries bounded sets into
relatively compact sets. In particular, each Fréchet derivative, DU(t, (v, η), ω) : M2 →
M2, of U(t, ·, ω) with respect to (v, η) ∈M2, is a compact linear map for t ≥ r, ω ∈ Ω.
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(ii) The map DU : R+×M2×Ω → L(M2) is (B(R+)⊗B(M2)⊗F ,Bs(L(M2)))-measurable.
Furthermore, the function

R+ ×M2 × Ω 3 (t, (v, η), ω) 7→ ‖DU(t, (v, η), ω)‖L(M2) ∈ R+

is (B(R+) ⊗ B(M2) ⊗ F ,B(R+))-measurable.

(iii) If Y : Ω → M2 is a stationary point of (U, θ) such that E(‖Y ‖ε0
M2

) < ∞ for some
ε0 > 0, then the following integrability condition

∫

Ω

log+ sup
0≤t1,t2≤a

‖U(t2, Y (θ(t1, ω)) + (·), θ(t1, ω))‖k,ε dP (ω) <∞ (5.3)

holds for any fixed 0 < ρ, a <∞ and ε ∈ (0, δ).

Idea of proof

The construction and regularity of the cocycle (U, θ) is based on the following observation:
The sfde (5.2) is equivalent to the random neutral integral equation:

ζ(t, x(t, ω), ω) = v +

∫ t

0

F (u, ζ(u, x(u, ω), ω), x(u, ω), xu(·, ω), ω) du, (5.4)

t ≥ 0, (v, η) ∈M2. In the above integral equation, F : [0,∞) × Rd ×M2 × Ω → Rd is given
by

F (t, z, v, η, ω) := {Dψ(t, z, ω)}−1H(v, η)

t ≥ 0, z, (v, η) ∈ M2, ω ∈ Ω; and ζ : [0,∞) × Rd × Ω → Rd is the inverse flow defined by

ζ(t, x, ω) := ψ(t, ·, ω)−1(x), t ≥ 0, x ∈ Rd, ω ∈ Ω,

where ψ is the Ck+1,ε (0 < ε < δ) perfect cocycle of the sode

dψ(t) = G(ψ(t)) dW (t), t ≥ 0,

ψ(0) = x ∈ Rd.

}

([16], [15]). The existence, perfection and regularity properties of the cocycle (U, θ) may be
read from the integral equation (5.4). The integrability property (5.3) also follows from (5.4)
coupled with spatial estimates on the finite-dimensional flows ψ and ζ ([22]).

Example

Consider the affine linear sfde

dx(t) = H(x(t), xt) dt+GdW (t), t > 0

x(0) = v ∈ Rd, x0 = η ∈ L2([−r, 0],Rd)

}

(5.5)
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where H : M2 → Rd is a continuous linear map, G is a fixed (d × p)-matrix, and W is
p-dimensional Brownian motion. Assume that the linear deterministic (d×d)-matrix-valued
fde

dy(t) = H ◦ (y(t), yt) dt (5.6)

has a semiflow Tt : L(Rd) × L2([−r, 0], L(Rd)) → L(Rd) × L2([−r, 0], L(Rd)), t ≥ 0, which
is uniformly asymptotically stable ([13]). Set

Y :=

∫ 0

−∞

T−u(I, 0)GdW (u) (5.7)

where I is the identity (d×d)-matrix. It is easy to see that the trajectories of the affine sfde
(5.5) admit an affine linear cocycle U : R+ ×M2 × Ω → M2. Integration by parts and the
helix property

W (t2, θ(t1, ω)) = W (t2 + t1, ω) −W (t1, ω), t1, t2 ∈ R, ω ∈ Ω, (5.8)

imply that Y has a measurable version satisfying the perfect identity

U(t, Y (ω), ω) = Y (θ(t, ω)), t ∈ R+, ω ∈ Ω.

Note that the stationary point Y (as given by (5.7)) is Gaussian and thus has finite moments
of all orders. See ([17], Theorem 4.2, Corollary 4.2.1, pp. 208-217.) More generally, if the
semigroup generated by the linear fde (5.6) is hyperbolic, then the sfde (5.5) has a stationary
point ([17], [26]).

Theorem 5.2 ([22]) (The stable manifold theorem for sfde’s). Assume the given
regularity hypotheses on H and G in the sfde (5.2). Let Y : Ω → M2 be a hyperbolic
stationary point of the sfde (5.2) such that E(‖Y (·)‖ε0

M2
) < ∞ for some ε0 > 0. Then the

cocycle (U, θ) of (5.2) satisfies the conclusions of the stable manifold theorem (Theorem 4.1)
with H = M2. If, in addition, the coefficients H,G of (5.2) are C∞

b , then the local stable
and unstable manifolds S̃(ω), Ũ(ω) are C∞, perfectly in ω.

Outline of proof of theorem 5.2.

In view of the integrability property (5.3), the local compactness of U(t, ·, ω), t ≥ r, and
the ergodicity of the Brownian shift θ, it is possible to define hyperbolicity for the stationary
point Y : Ω →M2. The conditions of the local stable manifold theorem (Theorem 4.1) now
apply to the cocycle (U, θ). So Theorem 5.2 follows from Theorem 4.1 with H = M2 and
x = (v, η) ∈M2.

6 Semilinear see’s

In this section, we will first address the question of the existence of a regular cocycle for
semilinear stochastic evolution equations in Hilbert space. Using the cocycle together with
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suitable integrability estimates, we will establish a local stable manifold theorem near hy-
perbolic stationary points for these equations.

The existence of local stable/unstable manifolds for nonlinear stochastic evolution equa-
tions (see’s) and stochastic partial differential equations (spde’s) has been an open problem
since the early nineties ([10], [2], [3], [8], [9]). The analysis in this section will be carried
out in the spirit of Section 5, although the construction of the cocycle will require entirely
different techniques. Further details are made available in the forthcoming article by the
author with T.S. Zhang and H. Z. Zhao ([27]).

In [10], the existence of a random evolution operator and its Lyapunov spectrum is es-
tablished for a linear stochastic heat equation on a bounded Euclidean domain, driven by
finite-dimensional white noise. For linear see’s with finite-dimensional white noise, a stochas-
tic semi-flow (i.e. a random evolution operator) is obtained in [2]. A multiplicative ergodic
theorem for hyperbolic spde’s is developed in [11]. Subsequent work on the dynamics of
nonlinear spde’s has focused mainly on the question of existence of continuous semiflows and
the existence and uniqueness of invariant measures and/or stationary solutions. Existence
of global invariant, stable/unstable manifolds (through a fixed point) for semilinear see’s is
established in ([4], [5]), when the global Lipschitz constant is relatively small with respect
to the spectral gaps of the second-order term.

The main objectives in this section are to:

• construct a Fréchet differentiable, locally compact cocycle for mild/weak trajectories
of the semilinear see;

• derive appropriate estimates on the cocycle of the see so as to guarantee applicability
of the local stable manifold theorem (Theorem 4.1);

• show the existence of local stable/unstable manifolds near a hyperbolic stationary
point, in the spirit of Theorem 4.1.

Smooth cocycles for semilinear see’s and spde’s:

As was indicated at the beginning of Section 5, there are no general techniques which
give the existence of infinite-dimensional smooth cocycles. In this section we will use a
combination of lifting techniques, chaos-type expansion and variational methods in order to
construct smooth cocycles for semilinear see’s.

The problem of existence of semiflows for see’s (and spde’s) is a nontrivial one, mainly
due to the well-established fact that finite-dimensional methods for constructing (even con-
tinuous) stochastic flows break down in the infinite-dimensional setting of spde’s and see’s.
More specifically, for see’s in Hilbert space, our construction employs a “chaos-type” repre-
sentation in the Hilbert-Schmidt operators, using the linear terms of the see ([27], Theorems
1.2.1-1.2.4). This technique bypasses the need for Kolmogorov’s continuity theorem. A vari-
ational technique is then employed in order to handle the nonlinear terms. Applications to
specific classes of spde’s are given in Section 7.
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It should be noted that the case of nonlinear multiplicative noise is largely open: It is not
known to us if see’s driven by nonlinear multidimensional white noise admit perfect (smooth,
or even continuous) cocycles.

We now formulate the set-up for the class of semilinear see’s we wish to consider.

Denote by (Ω,F , (Ft)t≥0, P ) the complete filtered Wiener space of all continuous paths
ω : R → E, ω(0) = 0, where E is a real separable Hilbert space, Ω := C(R+, E; 0) has the
compact open topology, F is the Borel (completed) σ-field of Ω; Ft is the sub-σ-field of F
generated by all evaluations Ω 3 ω 7→ ω(u) ∈ E, u ≤ t; and P is Wiener measure on Ω.
Define the group of P -preserving ergodic Wiener shifts θ : R × Ω → Ω by

θ(t, ω)(s) := ω(t+ s) − ω(t), t, s ∈ R, ω ∈ Ω.

Let H be a real (separable) Hilbert space, with norm | · |H . Recall that B(H) is its Borel
σ-algebra, and L(H) the Banach space of all bounded linear operators H → H given the
uniform operator norm ‖ · ‖L(H).

Let W denote E-valued Brownian motion W : R × Ω → E with separable covariance
Hilbert space K ⊂ E, a Hilbert-Schmidt embedding. Write

W (t) :=
∞

∑

k=1

W k(t)fk, t ∈ R,

where {fk : k ≥ 1} is a complete orthonormal basis of K; W k, k ≥ 1, are standard indepen-

dent one-dimensional Wiener processes ([6], Chapter 4). The series
∞

∑

k=1

W k(t)fk converges

absolutely in E but not necessarily in K. Note that (W, θ) is a helix:

W (t1 + t2, ω) −W (t1, ω) = W (t2, θ(t1, ω)), t1, t2 ∈ R, ω ∈ Ω.

Denote by L2(K,H) the Hilbert space of all Hilbert-Schmidt operators S : K → H,
furnished with the norm

‖S‖2 :=

[ ∞
∑

k=1

|S(fk)|
2
H

]1/2

.

Consider the semilinear Itô stochastic evolution equation (see):

du(t, x) = −Au(t, x) dt+ F
(

u(t, x)
)

dt+Bu(t, x) dW (t), t > 0

u(0, x) = x ∈ H

}

(6.1)

in H.

In the above see, A : D(A) ⊂ H → H is a closed linear operator on H. Assume
A has a complete orthonormal system of eigenvectors {en : n ≥ 1} with corresponding
positive eigenvalues {µn : n ≥ 1}; i.e., Aen = µnen, n ≥ 1. Suppose −A generates a
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strongly continuous semigroup of bounded linear operators Tt : H → H, t ≥ 0. Assume
that F : H → H is (Fréchet) Ck,ε

b (k ≥ 1, ε ∈ (0, 1]); thus F has a continuous and globally
bounded Fréchet derivative F : H → L(H). Suppose B : H → L2(K,H) is a bounded linear
operator. The stochastic Itô integral in the see (6.1) is defined in the following sense ([6],
Chapter 4):

Let ψ : [0, a] × Ω → L2(K,H) be jointly measurable, (Ft)t≥0-adapted and
∫ a

0

E‖ψ(t)‖2
L2(K,H) dt <∞. Define the Itô integral

∫ a

0

ψ(t) dW (t) :=

∞
∑

k=1

∫ a

0

ψ(t)(fk) dW
k(t)

where theH-valued Itô integrals on the right hand side are with respect to the one-dimensional
Wiener processes W k, k ≥ 1. The above series converges in L2(Ω, H) because

∞
∑

k=1

E

∣

∣

∣

∣

∫ a

0

ψ(t)(fk) dW
k(t)

∣

∣

∣

∣

2

=

∫ a

0

E‖ψ(t)‖2
L2(K,H) dt <∞.

The following standing hypotheses will be invoked throughout this section.

Hypothesis (A):

∞
∑

n=1

µ−1
n ‖B(en)‖2

L2(K,H) <∞.

Hypothesis (B): Assume that B : H → L2(K,H) extends to a bounded linear operator

B ∈ L(H,L(E,H)) , and the series

∞
∑

k=1

‖Bk‖
2 converges, where Bk ∈ L(H) is defined by

Bk(x) := B(x)(fk), x ∈ H, k ≥ 1.

Observe that Hypothesis (A) is implied by the following two requirements:

(a) The operator B : H → L2(K,H) is Hilbert-Schmidt.

(b) lim inf
n→∞

µn > 0.

The requirement (b) above is satisfied if A = −∆, where ∆ is the Laplacian on a compact
smooth d-dimensional Riemannian manifold M with boundary, under Dirichlet boundary
conditions. Moreover, Hypothesis (A) does not place any restriction on the dimension of M .

A mild solution of the semilinear see (6.1) is a family of (B(R+)⊗F ,B(H))-measurable,
(Ft)t≥0-adapted processes u(·, x, ·) : R+ × Ω → H, x ∈ H, satisfying the following Itô
stochastic integral equation:

u(t, x, ·) = Ttx +

∫ t

0

Tt−sF (u(s, x, ·)) ds+

∫ t

0

Tt−sBu(s, x, ·) dW (s), t ≥ 0, (6.2)

([6], [7]).
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Theorem 6.1. Under Hypotheses (A) and (B), the see (6.1) admits a perfect (B(R+) ⊗
B(H) ⊗ F ,B(H))-measurable Ck,ε cocycle (U, θ) with U : R+ × H × Ω → H. Furthermore,
if Y : Ω → H is a stationary point of (U, θ) such that E|Y |ε0 < ∞ for some ε0 > 0, then
the integrability estimate (∗) of Theorem 4.1 holds. Indeed, the following (stronger) spatial
estimates hold

E

{

sup
0≤t1,t2≤a

x∈H

|U(t2, x, θ(t1, ·))|
2p

(1 + |x|2p)

}

<∞, p ≥ 1,

and
E sup

0≤t1,t2≤a

x∈H, 1≤j≤k

{

‖D(j)U(t2, x, θ(t1, ·))‖L(j)(H,H)

}

<∞.

Sketch of Proof of Theorem 6.1.

We will only sketch the proof of Theorem 6.1. For more details of the arguments involved
the reader may consult ([27], Theorem 1.2.6, [28]).

Step 1:

We first construct an L(H)-valued linear cocycle for mild solutions of the following asso-
ciated linear see (F ≡ 0 in (6.1)):

du(t, x, ·) = −Au(t, x, ·) dt+Bu(t, x, ·) dW (t), t > 0,

u(0, x, ω) = x ∈ H.

}

(6.3)

A mild solution of the above linear see is a family of jointly measurable, (Ft)t≥0-adapted
processes u(·, x, ·) : R+ × Ω → H, x ∈ H, such that

u(t, x, ·) = Ttx +

∫ t

0

Tt−sBu(s, x, ·) dW (s), t ≥ 0.

The above integral equation holds x-almost surely, for each x ∈ H. The crucial question
here is whether u(t, x, ω) is pathwise continuous linear in x perfectly in ω? In view of the
failure of Kolmogorov’s continuity theorem in infinite dimensions (as pointed out in Section
5), we will use a chaos-type expansion technique to show that u(t, ·, ω) ∈ L(H) perfectly in
ω ∈ Ω, for all t ≥ 0. In order to do this, we first lift the linear see (6.3) to the Hilbert space
L2(H) of all Hilbert-Schmidt operators H → H. This is achieved as follows:

• Lift the semigroup Tt : H → H, t ≥ 0, to a strongly continuous semigroup of bounded
linear operators T̃t : L2(K,H) → L2(K,H), t ≥ 0, defined by the composition T̃t(C) :=
Tt ◦ C, C ∈ L2(K,H), t ≥ 0.

• Lift the Itô stochastic integral

∫ t

0

T̃t−s({[B ◦ v(s)](x)}) dW (s), x ∈ H, t ≥ 0, to

L2(H) for adapted square-integrable v : R+ × Ω → L2(H). Denote the lifting by
∫ t

0

Tt−sBv(s) dW (s) ∈ L2(H). That is:
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[
∫ t

0

Tt−sBv(s) dW (s)

]

(x) =

∫ t

0

T̃t−s({[B ◦ v(s)](x)}) dW (s)

for all t ≥ 0, x-a.s.

Step 2:

Next we solve the “lifted” linear see using the following “chaos-type” series expansion in
L2(H) for its solution Φ(t, ω) ∈ L2(H), t > 0, ω ∈ Ω:

Φ(t, ·) = Tt +
∞

∑

n=1

∫ t

0

Tt−s1B

∫ s1

0

Ts1−s2B · · ·

∫ sn−1

0

Tsn−1−sn
BTsn

dW (sn) · · · dW (s2) dW (s1).

(6.4)
In the above expansion, the iterated Itô stochastic integrals are lifted integrals in L2(H).
More specifically, denote by Ψn(t) ∈ L2(H) the general term in the series (6.4), viz.

Ψn(t) :=

∫ t

0

Tt−s1B

∫ s1

0

Ts1−s2B · · ·

∫ sn−1

0

Tsn−1−sn
BTsn

dW (sn) · · ·dW (s2) dW (s1),

for t ≥ 0, n ≥ 1. Observe that

Ψn(t) =

∫ t

0

Tt−s1BΨn−1(s1) dW (s1), n ≥ 2,

Ψ1(t) =

∫ t

0

Tt−s1BTs1 dW (s1),















(6.5)

for t ≥ 0. Using Hypotheses (A) and (B) and induction on n ≥ 1, one may obtain the
following estimate from (6.5):

E sup
0≤s≤t

‖Ψn(s)‖2
L2(H) ≤ K1

(K2t)
n−1

(n− 1)!
, t ∈ [0, a],

for fixed a > 0 and for all integers n ≥ 1, where K1, K2 are positive constants depending only
on a. The above estimate implies that the series on the right-hand-side of (6.4) converges
absolutely in L2(Ω, L2(H)) for any fixed t > 0.

Step 3:

We now approximate the Brownian noise W in (6.3) by a sequence of smooth helices

Wn(t, ω) := n

∫ t

t−1/n

W (u, ω) du− n

∫ 0

−1/n

W (u, ω) du, t ≥ 0, ω ∈ Ω.

Thus we obtain a perfect linear cocycle Φ(t, ω) ∈ L2(H), t > 0, ω ∈ Ω, for (6.3):

Φ(t + s, ω) = Φ(t, θ(s, ω)) ◦ Φ(s, ω), s, t ≥ 0, ω ∈ Ω
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satisfying the estimate
sup

0≤s≤t≤a
‖Φ(t− s, θ(s, ω))‖L(H) <∞

for any ω ∈ Ω and any fixed a ∈ (0,∞).

Step 4:

Now we consider the semilinear Itô see (6.1). Since the linear cocycle (Φ, θ) is a mild
solution of (6.3), it is not hard to see that solutions of the random integral equation

U(t, x, ω) = Φ(t, ω)(x) +

∫ t

0

Φ(t− s, θ(s, ω))(F (U(s, x, ω))) ds, t ≥ 0, x ∈ H, (6.6)

give a version of the mild solution of the see (6.1). Using successive approximations on the
above integral equation together with the cocycle property for (Φ, θ), we obtain a Ck,ε perfect
cocycle (U, θ) for mild solutions of the semilinear see (6.1).

Step 5:

The integrability estimate (∗) of Theorem 4.1, as well as the two estimates in Theorem
6.1, follow from the random integral equation (6.6) and a “Gronwall-type” argument using
Lemma 2.1 in [28]. Cf. proof of Theorem 2.2 in [28].

We may now state the stable manifold theorem for the semilinear see (6.1). It is a direct
consequence of Theorems 4.1 and 6.1.

Theorem 6.2 ([27]) (The stable manifold theorem for semilinear see’s). In the see
(6.1) assume Hypotheses (A) and (B) and let F be Ck,ε

b . Let Y : Ω → H be a hyperbolic
stationary point of (6.1) such that E(‖Y (·)‖ε0

H) < ∞ for some ε0 > 0. Then the local stable
manifold theorem (4.1) holds for the cocycle (U, θ) of (6.1). If F is C∞

b , the local stable and
unstable manifolds S̃(ω), Ũ(ω) of (6.1) are C∞, perfectly in ω.

7 Examples: Semilinear spde’s

In this section, we will examine applications of the ideas in Section 6 to two classes
of semilinear spde’s: Semilinear parabolic spde’s with Lipschitz nonlinearity and stochastic
reaction diffusion equations with dissipative nonlinearity. In particular, we obtain smooth
globally defined stochastic semiflows for semilinear spde’s driven by cylindrical Brownian
motion. In constructing such semiflows, it turns out that in addition to smoothness of
the nonlinear terms, one requires some level of dissipativity or Lipschitz continuity of the
nonlinear terms. A discussion of the stochastic semiflow for Burgers equations with additive
infinite-dimensional noise is given in [27].

Consider the semilinear spde

du(t) =
1

2
∆u(t)dt+ f(u(t))dt+

∞
∑

i=1

σiu(t) dW
i(t), t > 0,

u(0) = ψ ∈ Hk
0 (D).











(7.1)
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In the above spde, ∆ is the Laplacian
1

2

d
∑

i,j=1

∂2

∂ξ2
i

on a bounded domain D in Rd, with a

smooth boundary ∂D and Dirichlet boundary conditions. The nonlinearity in (7.1) is given
by a C∞

b function f : R → R. We consider weak solutions of (7.1) with initial conditions ψ
in the Sobolev space Hk

0 (D), the completion of C∞
0 (D,R) under the Sobolev norm

||u||2Hk
0 (D) :=

∑

|α|≤k

∫

D

|Dαu(ξ)|2 dξ,

with dξ Lebesgue measure on Rd. The noise in (7.1) is given by a family W i, i ≥ 1, of
independent one-dimensional standard Brownian motions with W i(0) = 0 defined on the
canonical complete filtered Wiener space (Ω, F̄ , (Ft)t∈R, P ). The Brownian shift on Ω :=
C(R,R∞; 0) is denoted by θ. Furthermore, we assume that σi ∈ Hs

0(D) for all i ≥ 1, and

the series

∞
∑

i=1

‖σi‖
2
Hs

0
converges, where s > k +

d

2
> d. Note also that f induces the C∞

b

(Nemytskii) map F : Hk
0 (D) → Hk

0 (D), F (ψ) := f ◦ ψ, ψ ∈ Hk
0 (D).

Under these conditions and using similar ideas to those in Section 6, one can show that
the random field of weak solutions of the initial-value problem (7.1) yields a perfect smooth
cocycle (U, θ) on the Sobolev space Hk

0 (D) which satisfies the integrability estimate (∗) of
Theorem 4.1 with H := Hk

0 (D). Suppose Y : Ω → Hk
0 (D) is a hyperbolic stationary point

of the cocycle (U, θ) of (7.1) such that E log+ ‖Y ‖Hk
0
< ∞. Then the local stable manifold

theorem (Theorem 4.1) applies to the cocycle (U, θ) in a neighborhood of Y . Indeed, we
have:

Theorem 7.1. Assume the above hypotheses on the coefficients of the spde (7.1). Then
the weak solutions of (7.1) induce a C∞ perfect cocycle U : R+ × Hk

0 (D) × Ω → Hk
0 (D).

Suppose the cocycle (U, θ) of (7.1) has a hyperbolic stationary point Y : Ω → H k
0 (D) such

that E log+ ‖Y ‖Hk
0
< ∞. Then (U, θ) has a perfect family of C∞ local stable and unstable

manifolds in Hk
0 (D) satisfying all the assertions of Theorem (4.1) with H := Hk

0 (D).

For further details on the proof of Theorem (7.1), see [27].

We close this section by discussing the dynamics of the following stochastic reaction
diffusion equation with dissipative nonlinearity:

du = ν∆u dt+ u(1 − |u|α) dt+
∞

∑

i=1

σiu(t) dW
i(t), t > 0,

u(0) = ψ ∈ L2(D),











(7.2)

defined on a bounded domain D ⊂ Rd with a smooth boundary ∂D. In (7.2), D and the

W i, i ≥ 1 are as in (7.1), and the series

∞
∑

i=1

‖σi‖
2
Hs

0
converges for s > 2 + d

2
.
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For weak solutions of (7.2), one can construct a C1 cocycle (U, θ) on the Hilbert space
H := L2(D) ([27]).

Under appropriate choice of the diffusion parameter ν, a unique stationary solution of
(7.2) exists ([7]).

The following local stable manifold theorem holds for (7.2) ([27]).

Theorem 7.2. Assume the above hypotheses on the coefficients of the spde (7.2). Let α <
4

d
.

Then the weak solutions of (7.2) generate a C1 cocycle U : R+ × L2(D) × Ω → L2(D).
Suppose Y : Ω → L2(D) is a hyperbolic stationary point of the cocycle (U, θ) such that
E log+ ‖Y ‖L2 <∞. Then (U, θ) has a perfect family of C1 local stable and unstable manifolds
in L2(D) satisfying the assertions of Theorem 4.1 with H := L2(D).

A proof of Theorem (7.2) is given in [27].

8 Applications: anticipating semilinear systems

In this section we give dynamic representations of infinite-dimensional cocycles on their
stable/unstable manifolds at stationary points. This is done via substitution theorems which
provide pathwise solutions of semilinear sfde’s or see’s when the initial conditions are random,
anticipating and sufficiently regular in the Malliavin sense. The need for Malliavin regularity
of the substituting initial condition is dictated by the infinite-dimensionality of the stochastic
dynamics. Indeed, existing substitution theorems ([12], [1]) do not apply in our present
context because the substituting random variable may not take values in a relatively compact
or σ-compact space.

Anticipating semilinear sfde’s:

Consider the following Stratonovich version of the sfde (5.2) of Section 5

dx(t) = H(x(t), xt) dt−
1

2

p
∑

k=1

G2
k(x(t)) dt+G(x(t)) ◦ dW (t), t > 0,

(x(0), x0) = Y,











(8.1)

with anticipating random initial condition Y : Ω → M2 := Rd × L2([−r, 0],Rd) and with
linear noise coefficient G : Rd → Rd×p. Using a coordinate basis {fk}

p
k=1 of Rp, write

the p-dimensional Brownian motion W in the form W (t) =

p
∑

k=1

W k(t)fk, t ≥ 0, where the

W k, 1 ≤ k ≤ p, are independent standard one-dimensional Wiener processes. The linear
maps Gk ∈ L(Rd), 1 ≤ k ≤ p, are defined by Gk(v) := G(v)(fk), v ∈ Rd, 1 ≤ k ≤ p.
Assume the rest of the conditions in Section 5.

The following theorem establishes the existence of a solution to (8.1) when Y is sufficiently
regular in the Malliavin sense; that is Y ∈ D

1,4(Ω,M2), the Sobolev space of all F -measurable
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random variables Y : Ω → H which have fourth-order moments together with their Malliavin
derivatives DY ([29], [30]). Throughout this section, we will denote Fréchet derivatives by
D and Malliavin derivatives by D.

Theorem 8.1. In the semilinear sfde (8.1) assume that H is C1
b and Y ∈ D

1,4(Ω,M2). Then
(8.1) has a solution x ∈ L∞([0, a],D1,2(Ω,Rd)) satisfying

sup
t∈[0,a]

|x(t, ω)| ≤ K(ω)
[

1 + ‖Y (ω)‖M2

]

, a.a. ω ∈ Ω,

for any a ∈ (0,∞), where K is a positive random variable having moments of all orders.
When H is C2

b , a similar substitution result holds for the linearized version of (8.1).

Sketch of Proof of Theorem 8.1.

Denote by Ψ(t, ·, ω) ∈ L(Rd), t ∈ R+, ω ∈ Ω, the linear cocycle for the linear Itô sode

dΨ(t) = G ◦ Ψ(t) dW (t), t ≥ 0,

Ψ(0) = I ∈ L(Rd).

}

From the construction in Section 5, the semilinear sfde (8.1) has a perfect cocycle
U : R+ ×M2 × Ω →M2 satisfying the following random functional integral equation:

p1(U(t, (v, η), ω)) = Ψ(t, ω)(v) +

∫ t

0

Ψ(t− u, θ(u, ω))(H(U(u, (v, η), ω))) du,

p2(U(0, (v, η), ω)) = η ∈ L2([−r, 0],Rd),







(8.2)

for each ω ∈ Ω, t ≥ 0, (v, η) ∈ M2. In (8.2), p1 : M2 → Rd, p2 : M2 → L2([−r, 0],Rd)
denote the projections onto the first and second factors respectively.

We will show that U(t, Y ), t ≥ 0, is a solution of (8.1) satisfying the conclusion of the
theorem. To this aim, it is sufficient to show that Y can be substituted in place of the
parameter (v, η) in the semilinear Stratonovich integral equation

p1U(t, (v, η)) = v +

∫ t

0

H(U(u, (v, η))) du−
1

2

p
∑

k=1

∫ t

0

G2
k(p1U(u, (v, η))) du

+

∫ t

0

G(p1U(u, (v, η))) ◦ dW (u), t > 0,

U(0, (v, η)) = (v, η) ∈M2.































(8.3)

One can easily make the substitution (v, η) = Y in the two Lebesgue integrals on the right
hand side of (8.3). So it is sufficient to show that a similar substitution also works for the
Stratonovich integral; that is

∫ t

0

G(p1U(u, (v, η))) ◦ dW (u)

∣

∣

∣

∣

(v,η)=Y

=

∫ t

0

G(p1U(u, Y )) ◦ dW (u) (8.4)
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a.s. for all t ≥ 0. We will establish (8.4) in two steps: First, we show it holds if Y is replaced
by its finite-dimensional projections Yn : Ω → Hn, n ≥ 1, where Hn is the linear subspace
spanned by {ei : 1 ≤ i ≤ n} from a complete orthonormal basis {ej}

∞
j=1 of M2; secondly, we

pass to the limit as n goes to ∞ (in (8.5) below). Denote g(t, (v, η) := G(p1U(t, (v, η))), t ≥
0, (v, η) ∈ Hn. Using martingale estimates for p1U(t, (v, η)) it is easy to see that g satisfies
all requirements of Theorem 5.3.4 in [29]. Therefore,

∫ t

0

G(p1U(u, (v, η))) ◦ dW (u)

∣

∣

∣

∣

(v,η)=Yn

=

∫ t

0

G(p1U(u, Yn)) ◦ dW (u) (8.5)

a.s. for all n ≥ 1 and t ≥ 0. The next step is to establish the a.s. limit

lim
n→∞

∫ t

0

G(p1U(s, Yn)) ◦ dW (s) =

∫ t

0

G(p1U(s, Y )) ◦ dW (s), t ≥ 0. (8.6)

Set f(s) := G(p1U(s, Y )), fn(s) := G(p1U(s, Yn)), s ≥ 0, n ≥ 1. To prove (8.6), we will
show first that f and fn are sufficiently regular to allow for the following representations of
the Stratonovich integrals in terms of Skorohod integrals:

∫ t

0

f(s) ◦ dW (s) =

∫ t

0

f(s) dW (s) +
1

2

∫ t

0

∇f(s) ds (8.7)

and
∫ t

0

fn(s) ◦ dW (s) =

∫ t

0

fn(s) dW (s) +
1

2

∫ t

0

∇fn(s) ds, (8.8)

where

∇f(s) := (D+f)(s) + (D−f)(s), (D+f)(s) := lim
t→s+

Dsf(t), (D−f)(s) := lim
t→s−

Dsf(t), (8.9)

for any s ≥ 0. In view of the expression

Dsf(t) = Gp1DsU(t, Y ) +Gp1DU(t, Y )DsY, s, t ≥ 0, (8.10)

the integrability estimates (8.11) below, and the fact that Y ∈ D
1,4(Ω,M2), it can be shown

that
∫ a

0

∫ a

0

E|Dsf(t)|2 dt ds <∞.

This implies that f ∈ L
1,2, and so the Stratonovich integral in (8.7) is well-defined. Similarly

for fn ∈ L
1,2, n ≥ 1. The following integrability estimates on the cocycle U of the semilinear

sfde are obtained using the integral equation (8.2) and a Gronwall-type lemma in ([28],

25



Lemma 2.1; cf proofs of Theorems 2.2, 2.3):

E sup
0≤t≤a

(v,η)∈M2

|U(t, (v, η), ·)|2p

(1 + ‖(v, η)‖2p
M2

)
<∞, E sup

0≤t≤a

(v,η)∈M2

‖DU(t, x, ·)‖2p <∞,

E sup
0≤t≤a

(v,η)∈M2

‖D2U(t, (v, η), ·)‖2p <∞, E

[

sup
s,u≤t≤a

‖DsΨ(t− u, θ(u, ·))‖2p
L(Rd)

]

<∞,

E

[

sup
0≤t≤a

(v,η)∈H

|DU(t, (v, η), ·)|2p
M2

(1 + ‖(v, η)‖2p
M2

)

]

<∞,















































(8.11)

for any 0 < a <∞ and p ≥ 1.
Using the estimates (8.11) again, together with (8.10) and the integral equation (8.2), a

lengthy computation shows that

lim
l→∞

∫ a

0

sup
s<t≤s+(1/l)

E(|Dsf(t) − (D+f)(s)|) ds = 0 (8.12)

and

lim
l→∞

∫ a

0

sup
0∨[s−(1/l)]≤t<s

E(|Dsf(t) − (D−f)(s)|) ds = 0 (8.13)

Similar statements also hold for each fn, n ≥ 1. This justifies (8.7) and (8.8).
To complete the proof of (8.6), we take limits as n→ ∞ in (8.8) and note that

lim
n→∞

∫ a

0

∫ a

0

E|Dsfn(t) −Dsf(t)|2 dt ds = 0 (8.14)

and

lim
n→∞

∫ a

0

∇fn(s) ds =

∫ a

0

∇f(s) ds. (8.15)

Relations (8.14) and (8.15) follow from (8.10), the fact that Y ∈ D
1,4(Ω,M2), the estimates

(8.11) and the dominated convergence theorem. This completes the proof of the substitution
formula (8.4).

In the second part of this section, we describe a similar substitution formula for the
semilinear see of Section 6.

Anticipating semilinear see’s:

Here we adopt the setting and hypotheses of Section 6. Specifically, we consider the
following Stratonovich version of the see (6.1):

du(t, x) = −Au(t, x) dt+ F
(

u(t, x)
)

dt−
1

2

∞
∑

k=1

B2
ku(t, x) dt+Bu(t, x) ◦ dW (t), t > 0,

u(0, x) = x ∈ H.











(8.16)
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The following result is obtained using similar techniques to those used in the proof of
Theorem 8.1:

Theorem 8.2. Assume that the see (8.16) satisfies all the conditions of Section 6. Let
Y ∈ D

1,4(Ω, H) be a random variable, and U : R+×H ×Ω → H be the C1 cocycle generated
by all mild solutions of the Stratonovich see (8.16). Then U(t, Y ), t ≥ 0, is a mild solution
of the (anticipating) Stratonovich see

dU(t, Y ) = −AU(t, Y ) dt+ F
(

U(t, Y )
)

dt−
1

2

∞
∑

k=1

B2
kU(t, Y ) dt+BU(t, Y ) ◦ dW (t), t > 0,

U(0, Y ) = Y.











(8.17)
In particular, if Y ∈ D

1,4(Ω, H) is a stationary point of the see (8.16), then U(t, Y ) =
Y

(

θ(t)
)

, t ≥ 0, is a stationary solution of the (anticipating) Stratonovich see

dY (θ(t)) = −AY (θ(t)) dt+ F
(

Y (θ(t))
)

dt−
1

2

∞
∑

k=1

B2
kY (θ(t)) dt+BY (θ(t)) ◦ dW (t), t > 0,

Y (θ(0)) = Y.











(8.18)

Details of the proof of the above result are given in [28].
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