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A Programmable Window Comparator for Analog Online Testing

Amit Laknaur, Rui Xiao, and Haibo Wang

Department of Electrical and Computer Engineering
Southern Illinois University, Carbondale, IL 62901

Abstract

This paper discusses the challenge of designing win-
dow comparators for analog online testing applications.
A programmable window comparator with adaptive error
threshold is presented. Experimental results demonstrate
that improved fault detection capability is achieved by us-
ing the proposed design. Measurement results of the fab-
ricated comparator circuit are also presented.

1 Introduction

Online testing has been widely used in mission-critical
applications to improve the fidelity of electronic systems.
Various techniques have been developed to perform online
testing for analog circuits [1, 2, 3, 4, 5, 6, 7]. Among those
techniques, an useful approach is to duplicate a portion
of the circuit under test and compare the outputs of the
original circuit and its replication [1, 8, 9] (redundancy
based approach). Analog window comparators are nor-
mally used for such purposes. An analog window com-
parator contains two analog inputs and a digital output. Its
output switches from one logic value to the other when the
difference between window comparator inputs exceeds the
range of [−Vε, Vε], where Vε is referred to as the window
comparator error threshold.

There are three types of window comparator error
thresholds, namely constant, relative, and adaptive er-
ror thresholds. In the first category [10, 11, 12, 13, 14,
15, 16, 17, 18], the error threshold of a window com-
parator is constant regardless of its input signal levels.
This type of window comparators quickly lose their fault-
detection capabilities when signals being monitored be-
come small. While window comparators with relative er-
ror thresholds [14, 19] overcome such problems by mak-
ing their error thresholds proportional to input signal lev-
els, the drawback associated with such circuits is that er-
ror thresholds become too small when window compara-
tor inputs are close to the signal ground level. Thus, small
differences caused by tolerable circuit mismatches may
be incorrectly identified as faults. Analog checkers with

†This work is partially supported by National Science Foundation
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adaptive error thresholds are presented in [19, 20, 21].
These circuits use pairs of inverters to digitize the am-
plified input difference. The adaptive error threshold is
implemented by dynamically adjusting the impedance of
the pull-up paths of the inverters according to input signal
levels. Improved concurrent error detection capabilities
have been reported with using these comparators.

In this paper, we demonstrate the need for pro-
grammable adaptive window comparators in online test-
ing analog reconfigurable circuits. We also present a com-
parator design that can automatically adjust its threshold
according to the input signal magnitude. More interest-
ingly, the comparator’s error threshold adapting scheme
can be digitally programmed. This makes it possible to
attune the window comparator for more effectively testing
different circuits with distinctive characteristics. Experi-
mental results demonstrate that improved fault detection
capability is achieved by using the proposed design. The
proposed comparator is fabricated using a 0.18µ CMOS
technology. Measurement results of the fabricated com-
parator are also presented.

The rest of the paper is organized as follows. Sec-
tion 2 reviews redundancy-based online testing techniques
on analog reconfigurable platforms. It also discusses the
need for programmable adaptive error threshold and intro-
duces parameters for characterizing the comparator adap-
tive error threshold. Section 3 describes the proposed
comparator design. Experimental results are presented in
Section 4, and the paper is concluded in Section 5.

2 Preliminaries

2.1 Analog online testing on reconfigurable
hardware platforms.

The redundancy-based online testing scheme is illus-
trated in Figure 1. In order to reduce testing-hardware
overhead, reconfigurable hardware has been used to im-
plement the redundant testing module. By exploiting the
reconfigurability, the same hardware can be used to test
different sections of the circuit [1, 8, 9, 22].

Recently Field Programmable Analog Arrays (FPAAs)
have emerged as a promising platform to implement ana-
log circuits with fault recovery capability [23]. To cost-
effectively detect faults occurred in an FPAA circuit, a set
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Figure 1. Redundancy based On-line testing.

of configurable resources can be periodically programmed
to replicate different sections of the circuit under test
(CUT). The output of the original circuit and the repli-
cation are monitored by a window comparator to detect
the occurrence of faults. By taking advantage of dynamic
reconfiguration capability of modern FPAAs, testing oper-
ations can be carried out without interrupting the normal
operation of the circuit. When a circuit fault is detected,
FPAAs can be reconfigured to replace the fault component
with unused resources. Since different sections of a cir-
cuit may have distinctive characteristics, they may require
custom designed comparator error threshold in order to
achieve high fault detection capability. This is elaborated
in the following section.

2.2 Optimal comparator error threshold

In the testing setup shown in Figure 1, the output of
the original circuit and its replication should be identical
in the ideal case. However, due to device mismatches and
circuit parasitics, normally there is a small difference be-
tween the outputs of the two circuits even in the fault free
scenario. Consequently, the error threshold of the window
comparator should be selected slightly larger than this dif-
ference in order to detect faulty circuits and ignore the
variations caused by the above circuit non-ideal effects.
Assume the CUT is a linear circuit. For given tolerable cir-
cuit mismatches, the difference between the original and
its replication (here after referred to as ∆V ) is propor-
tional to the magnitude of the signal under scrutiny. To
more effectively detect circuit faults, relative and adap-
tive error thresholds are presented in [19, 20, 21, 14, 13].
Their error threshold can be written as:

Vε = k · Vsig + Vgb (1)

where k is the proportionality constant between Vε and
original circuit output Vsig . And Vgb is the guardband as
discussed in [24, 25]. As mentioned early, the window
comparator is time-shared to test different sections of the
circuit. To enhance fault detection capabilities, the pro-
portionality constant k used to determine comparator error
threshold may need to be attuned to the different charac-
teristics of the sub circuits under tested. Hence, window
comparators with programmable adaptive error thresholds

are preferred in online testing reconfigurable analog cir-
cuits.

2.3 Programmable Adaptive threshold

The proposed adaptive error threshold is shown in Fig-
ure 2. When its input signals are large, the window com-
parator uses the relative error threshold scheme. If the
window comparator experiences small input signals, it
switches to the constant error threshold method. By adap-
tively selecting error thresholds, the proposed window
comparator will efficiently detect circuit faults no matter
input signals being large or small.

For the convenience of discussion, we assume input
signals are centered at the signal ground level Vsg and the
maximum peak-to-peak value of the input is 2 ·VA, where
VA is the maximum magnitude of the signal. We refer to
the region that the comparator has a constant error thresh-
old as the flat band region. The voltage, VF , at which the
window comparator leaves the flat band region is called
flat band voltage. The ratio of VF to VA is called flat band
ratio and denoted by symbol R. In addition, the com-
parator error threshold in the constant threshold region is
defined as the minimum error threshold V min

ε . The slope
of the error threshold curve in the relative error threshold
region is k. To meet the programmability requirement dis-
cussed in Section 2.2, parameters R, V min

ε and k, which
characterize the comparator threshold adapting schemes,
should be digitally programmed. A comparator design
that implements the proposed programmable adaptive er-
ror threshold is discussed in the next section.

VinV   -Vsg F V   +Vsg F

Vε

Figure 2. Adaptive threshold.

3 Proposed Window Comparator

The proposed design consists of an adaptive biasing
circuit and a checker circuit whose error threshold can be
programmed through its biasing current and device ratios.

3.1 Checker circuit

The checker circuit, as shown in Figure 3, is comprised
of a differential input pair and four current mirrors. Tran-
sistors N1 and N2 constitute the differential pair. PMOS
devices P1 ∼ P6, which have the same size, implement
two sets of PMOS current mirrors. Transistors N4 and
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N7, N5 and N6, realize two NMOS current mirrors with
a current gain of m (the size of N6 and N7 is m times
larger than that of N4 and N5). Assume the current flow-
ing through N3 is Ib. When both checker inputs are at the
same level, N1, N2, N4, N5, and P1 ∼ P6 are in their sat-
uration regions; and all the currents flowing through these
transistors are Ib

2 . N6 and N7, working in their linear re-
gions, pull voltages at nodes A and B close to ground,
driving the checker output to logic 1.

N1 N2

P1 P2

N3N4

P3 P4

N5N6

P5

N7

P6

OUTA
B

Vin1 Vin2

25/1 25/1 25/1 25/1 25/1 25/1

12.5/1 12.5/1
12.5/1 12.5/1

25/1

60/160/1

Ib

N8
25/1

Figure 3. Proposed comparator sub-circuit.

Without losing generalities, assume checker input Vin1

becomes larger than input Vin2. Consequently, currents
flowing through N1 and N2 become Ib

2 + i and Ib

2 − i,
where i is the current variation caused by the input differ-
ence. When Ib

2 + i > m · ( Ib

2 − i), the voltage at node
A is pushed close to VDD and, hence, the checker output
switches to logic 0. Assuming that IDS and VGS relations
of N1 and N2 follow the perfect square-law, the checker
error threshold can be derived as:

Vε =

√
2 · Ib

µn · Cox · (W/L)N1,2
·
√

1 −
√

1 − (
m − 1
m + 1

)2

(2)
where µn is the carrier mobility; Cox is the transistor gate
unit capacitance; and (W/L)N1,2 is the size of N1 and
N2.

The above equation shows that the comparator thresh-
old can be adjusted by varying the value of m. A mod-
ified comparator circuit with programmable m values is
shown in Figure 4. In the modified design, programmable
current mirror (PCM) circuits replace the simple current
mirrors (N4 ∼ N7) used in the original design. The out-
put branch of a PCM circuit consists of five current sink
paths. Three of them can be turned on or off depending
on digital signals Q1,Q2,Q3, which represent a 3-bit ther-
mometer code. The other two paths are always on to keep
the minimum value of m as 2. A binary to thermometer
code encoder converts two digital programming inputs to
thermometer code Q1,Q2,Q3. Assume all the transistors
in PCM circuits have the same size, m can be programmed
from 2 to 5. Consequently, the comparator error threshold
can be scaled by factors ranging from 0.24 to 0.5.

N1 N2

P1 P2

N3N4

P3 P4

N5

P5 P6

OUTA
B

Vin1 Vin2

25/1 25/1 25/1 25/1 25/1 25/1

12.5/1 12.5/1
12.5/1 12.5/1

25/1

Ib

N8
25/1

N17

N18

N19

N20

Q1 Q2 Q3

N21

N22

N13

N14

N15

N16

Q1 Q2 Q3

N11

N12

VDD
N9

N10

N27

N28

VDD N23

N24

VDDN25

N26

VDD

Figure 4. Modified comparator sub-circuit.

3.2 Programmable adaptive biasing circuit

Equation (2) also indicates that the checker error
threshold is proportional to the square root of its biasing
current. To achieve the adaptive error threshold shown
in Figure 1, the biasing current should be proportional to
the square of the input magnitude when the input is in the
relative error threshold region. When the input is in the
constant threshold region, the biasing current should be a
constant. The proposed biasing circuit is given in Figure 5.
It includes three current-generating blocks, labeled as U1,
U2, and U3. Transistors M16-M30 generate the output bi-
asing current according to the following equation.

Ib =




Imin for Vsg − Vf < Vin < Vsg + Vf

w · Ip for Vin < Vsg − Vf

w · In for Vin > Vsg + Vf

(3)
where Ip and In are output currents of U1 and U2, re-
spectively. w is the scaling factor that is controlled by
programmable inputs a and b. When checker input Vin is
within the flat band region, w · Ip (or w · In) are smaller
than Imin. In this case, transistor M15 will drain current to
make sure Ib = Imin. Hence, the checker has a constant
error threshold.

If Vin is greater than signal ground level Vsg , M8 in U2

is off and M1 in U1 conducts current. After Vin leaves the
flat band region, w · In becomes larger than Imin. Subse-
quently, M15 is off and Ib = w · In. In the design, IQ is
very small and all the transistors in U1 are in their satura-
tion regions. Thus, Ib, which is the same as IDS1, can be
derived as:

Ib =
µn · Cox

2
· w · (W/L)M1

1 + 1
A ·

√
(W/L)M1
(W/L)M2

· (Vin − Vsg − Vt

A
)2

(4)

25th IEEE VLSI Test Symmposium (VTS'07)
0-7695-2812-0/07 $20.00  © 2007

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 29, 2009 at 11:50 from IEEE Xplore.  Restrictions apply.



M10

M11

U

M9

M12

M8

A

Vsg Vin

IQ

2
M17

M16

VDD

Ib

M13

M14

U

M15

Imin

3

Z

M22

M23

M24

M25

M26

M27

M28

M29 M30

M18

M19

M20

M21

P1 P2 P3 P1 P2 P3

U

Vsg M3

M5
M6

M7

Vin
M1

Vx

M4

M2

A

Vy

Vg
IQ

1

Thermo
encoder

a

b

P1

P2

P3

Figure 5. Proposed adaptive biasing circuit.

where Vt is the threshold of MOS devices and A is the gain
of the amplifier used in U1. Ignoring the term of Vt

A in the
above equation, the biasing current becomes proportional
to the square of the input magnitude (Vin − Vsg). As a
result, the checker has relative error thresholds. When Vin

is smaller than Vsg and out of the flat band region, the
biasing current Ib, which will be generated by U2, is also
proportional to the square of the input signal magnitude to
implement relative error thresholds.

The programmability of the biasing circuit is realized
by controlling the scaling factor w. A binary to thermome-
ter code encoder circuit converts 2-bit programming in-
puts a and b to 3-bit thermometer code P1,P2, P3, which
control the status of the current sinking paths in the PCM
circuits. When a=0 and b=0, all three programmable cur-
rent sinking paths are off. The biasing current becomes
independent of U1 and U2 outputs. Thus the comparator
circuit has a constant error threshold. Note that varying
w values changes both comparator threshold gain and flat
band ratio, because a large w value will cause w · In, or
w · Ip exceeds Imin early, and resulting a small flat band
ratio.

4 Experiment Results

4.1 Simulation results

Circuit simulation has been conducted to study how the
optimal comparator error thresholds should be adjusted
for different sections of the CUT. An experiment circuit
used in this study is a third-order chebyshev low pass fil-

ter circuit, whose schematic is shown in Figure 6. The
passband of the filter is 10kHz. We also partition the cir-
cuit into four different sections, and assume that a recon-
figurable testing module sequentially tests the partitioned
sections.

+

-

+

-

+
-

+

-

C1 C2

C3R1

R2

R3

R4

R5
R6

R7

R8

R9

Vin

Vout

CAB CAB

CAB

CAB

Figure 6. Leapfrog filter.

To determine the optimal comparator error threshold
for a given circuit section, circuit simulation (e.g. Monte
Carlo simulation) can be performed to find the maximum
difference between the outputs of the original circuit and
its duplication due to parasitics and circuit mismatches.
For the reason of simplicity we assume each component
in the circuit can vary by 0.5% of its ideal value due to
process imperfections. Then, we identify the worst-case
component values that lead to the maximum signal dif-
ference. To reduce simulation time, we use an amplifier
macromodel in the simulation. The key parameters as-
signed to the amplifier model are summarised in Table 1.

Table 1. Opamp macromodel parameters.
Opamp parameters Values
Low frequency gain 80dB
Unit-gain frequency 10MHz
Common mode rejection ratio 70dB
Input offset voltage 4mV
Slew Rate 20V/µs
Settling time (0.1%) 0.5µs
Power supply 3.3V
Output swing range 0.18V ∼ 3.1V

With allowed component value variations, the maxi-
mum signal difference ∆V s for the second and the fourth
sections of the filter circuit are plotted in Figure 7. In the
simulation, we vary the magnitude of the filter input such
that the signal magnitude at the output of the sub circuits
(sections) are also changed. Figure 7 clearly shows that
the signal difference ∆V s are proportional to the magni-
tude of the signals under scrutiny. This justifies the need
for the adaptive error threshold scheme. The plot also
shows that the relations between ∆V and the magnitudes
of the signal under scrutiny for the second and the fourth
sections are different. It explains the need for programma-
bility in window comparator circuits.

With using the leapfrog filter as an example circuit, we
also compared the fault detection capabilities when using
the proposed comparator and a conventional one with con-
stant error threshold. The constant error threshold value is
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Figure 7. Difference between the outputs of
the CUT and its replication.

selected according to the maximum ∆V value. The pro-
posed comparator used in the experiment has an adaptive
error threshold that fits the ∆V behavior for the CUT. In
the experiment, we inject parametric faults at component
C1 in the first section of the filter circuit. Figure 8 shows
how the detectable faults vary with different filter input
levels. The reported detectable faults are described by
their variations from the normal component value, which
is 255 unit capacitances. Thus a smaller value indicates
a less severe fault. It shows fault detection capability de-
grades for both the comparators when the filter circuit has
a smaller input. This is mainly due to adding the guard-
band component in the error threshold. Nevertheless, the
experiment results clearly show an improved fault detec-
tion capability is achieved by using the proposed compara-
tor.
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Figure 8. Minimum detectable fault at C1 with
different filter input levels.

4.2 Measurement results of the fabricated com-
parator

The proposed comparator has been implemented using
a 0.18µ CMOS technology. Transistor sizes used in the
checker circuit are given in Figure 3. Single-stage differ-

ential amplifiers [26] are used in the adaptive biasing cir-
cuit. The design requires a single 3.3V power supply and
the signal ground level is 1.65V. Figure 9 shows a testing
result of the fabricated chip. The inputs of the checker
are two sinusoidal signals Vin1 and Vin2 with the same
magnitude, frequency, and phase. Vin1 is centered at the
signal ground level, while Vin2 is shifted down by 160
mV. Input Vin1 is also connected to the biasing circuit (as
is V in shown in Figure 5) to control the biasing current.
The square-like wave in Figure 9 shows that this differ-
ence is detected by the checker (checker output is logic 0)
when the signal values are close to the signal ground level.
When the inputs are close to their peak values, the same
difference is ignored by the checker due to its increased
error threshold.

Figure 9. Captured oscilloscope display.

The programmability of the proposed design is also
verified by our testing results. Figure 10 shows measured
comparator thresholds at different input levels. The four
curves in the figure correspond to the realized comparator
error thresholds with different digital values applied to the
programmable inputs a and b of the biasing circuit (de-
picted in Figure 5). When both a and b are logic 0, a con-
stant error threshold is realized seen as a flat straight line
over the entire input range. With other digital ab values,
the proposed adaptive error threshold scheme is observed.

5 Concluding Remarks

This paper discusses the optimal error threshold for
window comparators used in analog online testing. A win-
dow comparator with programmable adaptive error thresh-
old is presented. Experiment results demonstrated that im-
proved fault detection capabilities can be achieved by us-
ing the proposed comparator. The proposed comparator
has been designed and fabricated using a 0.18µ CMOS
technology. Measurement results of the fabricated chip
are also presented.

Although the proposed design is more complex com-
pared to previous designs, its programmabilty will allow a
single comparator to be time-shared to test different sec-
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Figure 10. Programmable adaptive error
thresholds.

tions of the CUT with a better fault detection capabil-
ity. The comparator itself can also be tested using simple
built-in-self-testing (BIST) circuits. A simple approach is
to feed the comparator inputs with ramp signals and use
counters to monitor when the comparator output switches.
Combining this BIST feature, the comparator will be suit-
able for implementing online testing circuits on analog re-
configurable platforms.
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