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REPRESENTATIONS OF FINITE GROUPS

JOSEPH HUNDLEY
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1. Basic Definitions

I’m following [F-H]. First let me fill in a little bit of background material.

Definition 1.0.1. (field) A field is a set F equipped with two binary operations + and · such that
(F,+) and (F \ {0}, ·) are abelian groups, and

x · (y + z) = x · y + x · z (∀x, y, z,∈ F ).

Examples 1.0.2. Q,R and C are fields, while Z is not.

Definition 1.0.3. (Vector space) Let F be a field. A vector space over F is an abelian group
V equipped with a function F × V → V called scalar multiplication and written

(α, v) ∈ F × V 7→ αv ∈ V,
such that

α(v + w) = αv + αw (∀α ∈ F, v, w,∈ V ),

(α+ β)v = αv + βv (∀α, β ∈ F, v ∈ V ),

(αβ)v = α(βv) (∀α, β ∈ F, v ∈ V ),

1v = v (∀v ∈ V ).

Examples 1.0.4. Row vectors, column vectors, matrices, polynomials, functions.

Definition 1.0.5. (linear function)Let F be a field and let V,W be vector spaces over F. A
function L : V →W is linear if

L(αv + w) = αL(v) + L(w) (∀α ∈ F, v, w ∈ V ).

Definition 1.0.6. ( GL(V ) )( GL(V ) )( GL(V ) ) Let F be a field and let V be a vector space over F. Then GL(V )GL(V )GL(V ) is
the set of bijective linear functions V → V, equipped with the binary operation ◦ (composition of
functions). It is a group.

Date: December 2, 2010.
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Definition 1.0.7. (GLnFGLnFGLnF ) Let F be a field and n be an integer. Then GLnFGLnFGLnF is the set of n× n
invertible matrices with entries in F, equipped with matrix multiplication. It is a group. Further,
the function A 7→(multiplication by A) is an isomorphism GLnF → GL(Fn), where Fn is realized
as column vectors.

Definition 1.0.8. (representation) Let G be a group. A representation of G is a homomorphism
ρ from G into GL(V ) for some vector space V, over some field F.

We shall work mostly with representations on vector spaces over C.
Examples 1.0.9. • The isomorphism GLnF → GL(Fn) described above,

• The map σ 7→M(σ), Sn → GLnF defined by M(σ)ei = eσ(i)

• One can use the homomorphism which maps everything to the identity.
• One can realize Fn as row vectors. Then right multiplication by A is an element of GL(Fn)

for each A. However the function A 7→(multiplication by A on the right) is not a homomor-
phism. But A 7→(multiplication by A−1 on the right) is.
• If we take G = Z then each representation of G will be determined by its value at 1. Each

is of the form n 7→ Ln for some L ∈ GL(V ), for some V.
• Write FG for the set of all function G→ F. For f ∈ FG and g ∈ G define ρ(g)f to be the

function
ρ(g)f(x) = f(xg).

Then ρ is a representation.
• same set-up as the previous. Define

λ(g)f(x) = f(g−1x).

Then λ is also a representation.
• Take V to be a vector space and ρ : G→ GL(V ) a representation. Suppose that there exists
W such that ρ(g)w ∈W for all w ∈W. Then we obtain a homomorphism ρ′ : G→ GL(W ).
Such a representation is called a subrepresentation of ρ. The subspace W is said to be
an invariant subspace.
• Suppose ρ is a representation of G on V and that W is an invariant subspace of V. Then

ρ′′(g) . (v +W ) = ρ(g) . v +W

defines a representation of G on the quotient space V/W, which we call the quotient repre-
sentation.
• Suppose ρ : G→ GL(V ) is a representation and let V ∗ denote the set of all linear functions
V → F. When V ∗ is equipped with addition and scalar multiplication defined pointwise

(`1 + `2)(v) := `1(v) + `2(v), (α`)(v) = α(`(v)), (`1, `2, ` ∈ V ∗, v ∈ V, α ∈ F ),

it becomes a vector space, called the dual space and

[ρ(g) . `](v) = `(ρ(g−1) . v) (` ∈ V ∗, v ∈ V, g ∈ G)

defines a representation ρ : G→ GL(V ∗) called the dual representation.

Exercise 1.0.10. Define a function T : V → (V ∗)∗ by

[T (v)](`) = `(v) (v ∈ V, ` ∈ V ∗).
Assume that V is finite dimensional. Check that T is an isomorphism of vector spaces. Then check
that

ρ∗∗(g)T (v) = T (ρ(g)v), (∀g ∈ G, v ∈ V ).
(This second thing you are checking amounts to saying that T is also an isomorphism of represen-
tations.) Now assume that V has a basis with the same cardinality as Z and show that V ∗ has a
basis with a properly larger cardinality.
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Exercise justifies the usage of the term “dual.” It also shows that in the finite dimensional case,
the relationship between V and V ∗ is actually quite symmetrical. For this reason, one will often
denote an element of V ∗ by v∗ rather than ` and write 〈v, v∗〉 rather than `(v). Finally, the last part
shows that in the case of infinite dimensional representations, V ∗ is not a dual. That observation
might be useful some day if you have occasion to consider infinite dimensional representations. It
won’t be of interest for us this semester, though.

1.1. GGG-Modules. There is an alternate language which is sometimes more convenient.

Definition 1.1.1. (GGG-module) Let G be a group. A GGG-module is a vector space V (over some
field F ) which is equipped with an action of G by linear transformations, i.e., with a function
G× V → V, written (g, v) 7→ g · v such that the function v 7→ g · v is linear for each g ∈ G.

Exercise 1.1.2. Let ρ : G→ GL(V ) be a representation. Define g ·v = ρ(g)v. Show that V is then
a G-module. Then assume that V is a G-module and define ρ : G → V V by ρ(g)(v) = g · v. Show
that the image of ρ is contained in GL(V ) and that ρ is a homomorphism. (Here V V denotes the
set of all functions V → V.)

(This amounts to verifying that “representation of G” and “G-module” are two ways of thinking
about the same basic thing. The only difference is the emphasis.)

Exercise 1.1.3. In an algebra textbook, look up the definition of a module over a ring R, as well
as the definition the group ring (or group algebra) F [G] of G over F. Prove that a G-module,
defined as above, is the same thing as a module over the ring F [G].

1.2. A digression. For each kind of structure you encounter in algebra, there is a corresponding
concept of structure-preserving map, or function.

Examples 1.2.1. • Group – group homomorphism
• Ring – ring homomorphism
• Vector space – linear function
• Topological space – continuous function

The corresponding notion for representations is the following.

Definition 1.2.2. (GGG-linear map) Let ρ : G→ GL(V ) and σ : G→ GL(W ) be representations,
with V and W being vector spaces over the same field F. A function T : V → W is GGG-linear if it
is linear

σ(g) . T (v) = T (ρ(g) . v) (∀g ∈ G, v ∈ V ).

“Map” is basically just a synonym for “function.” However, in Fulton & Harris, “vector space
map” means linear function, “group map” means group homomorphism. And, generally a “map”
which attached to some type of structure in that way is a structure-preserving function as discussed
above.

2. Direct sum and tensor product

If ρ : G→ GL(V ) and ρ′ : G→ GL(V ′) are representations, one defines

ρ⊕ ρ′ : G→ GL(V ⊕ V ′), ρ⊗ ρ′ : G→ GL(V ⊗ V ′), by

ρ⊕ ρ′(g) . (v, v′) = (ρ(g) . v, ρ′(g) . v′) ρ⊕ ρ′(g) . v ⊗ v′ = (ρ(g) . v)⊗ (ρ′(g) . v′).

The formula on the right only defines the action of ρ⊕ ρ′(g) on pure tensors. The action on other
elements of the tensor product is determined by linearity.
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Definition 2.0.3. Let V,W be vector spaces over some field F. The set of all linear maps V to
W will be denote Hom(V,W ) or HomF (V,W ). The space of all G-linear maps will be denoted
HomG(V,W ), HomG,F (V,W ), or HomF,G(V,W ),

Proposition 2.0.4. The function T : V ∗ ⊗W → Hom(V,W ) given on pure tensors by

T (v∗ ⊗ w)(v) = 〈v, v∗〉w, (v ∈ V, v∗ ∈ V ∗, w ∈W )

is an isomorphism, and identifies HomG(V,W ) with

(V ∗ ⊗W )G = {u ∈ V ∗ ⊗W : ρ′ ⊗ ρ′′(g) . u = u ∀g ∈ G}.

Proof. Exercise �

Exercise 2.0.5. Let X be a finite set and α : G→ SX a homomorphism. Let V be a vector space
with a basis {ex : x ∈ X} indexed by the elements of X and let FX = {f : X → F} (all functions).
Define ρ : G→ GL(V ) by

ρ(g) . ex = eα(g) . x (g ∈ G, x ∈ X)

(and by linearity),and define ρ′ : G→ GL(FX) by (ρ′(g) . f)(x) = f(α(g−1) . x). Define a function
T : FX → V by

T (f) =
∑
x∈X

f(x)ex.

Check that T is an isomorphism of G-modules, i.e., that it is an isomorphism of vector spaces and

T (ρ′(g) . f) = ρ(g) . [T (f)]. (∀f ∈ FX , g ∈ G)

3. Irreducibles and complete reducibility

Definition 3.0.6. (reducible/irreducible) A representation ρ : G → GL(V ) is reducible if it
has a proper nontrivial invariant subspace, and irreducible if not.

Obvious example: any one dimensional representation.

Exercise 3.0.7. Assume F = C. Show that no two dimensional representation of Z is reducible.
(Hint: Let A ∈ GL2C be the image of 1 ∈ Z. Let v be an eigenvector of A, and consider the span of
v. ) Show that there exist irreducible two dimensional representations of Z if F = R. (Hint: show
that a proper nontrivial invariant subspace would have to contain an eigenvector for A as above.)

Definition 3.0.8. (decomposable/indecomposable) A representation ρ : G → GL(V ) is de-
composable if there exist proper nontrivial invariant subspaces V, V ′ with V = V ⊕ V ′, and
indecomposable if not.

Clearly, decomposable =⇒ reducible.

Exercises 3.0.9. Assume F = C.
(1) Give a two dimensional representation ρ of Z which is reducible an indecomposable. (Hint:

arrange for ρ(1) to have only one one-dimensional space of eigenvectors.)
(2) Show that a two dimensional representation of Z/3Z is decomposable.
(3) Now assume F = R and show that a two dimensional representation of Z/3Z is either

irreducible or decomposable.

Theorem 3.0.10. Suppose that G is a finite group. Then every reducible representation is de-
composable. In fact, if ρ : G → GL(V ) is a finite dimensional representation and V ′ is a proper
nontrivial invariant subspace, then there exists another invariant subspace V ′′ with V = V ′ ⊕ V ′′.
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Proof. Take U any complement of V ′ in V. Define π0 : V → V ′ to be the projection corresponding
to the direct sum decomposition V = V ′ ⊕ U. Then define

π(v) =
∑
g∈G

g.π0(g−1.v).

Then π : V → V ′ is G−linear. Let V ′′ be its kernel. �

Lemma 3.0.11. (Schur’s Lemma) Assume F = C. Let V,W be nontrivial irreducible G-modules.
Then

HomG(V,W ) ∼=

{
{0}, V 6∼= W,

C, V ∼= W.

Proof. It T : V →W is G-linear then its image and kernel are invariant subspaces. It follows that
V 6∼= W =⇒ T ≡ 0.

Next assume V = W. Then T has an eigenvector, and the eigenspace is invariant and nontrivial,
whence everything.

Finally if V 6= W but V ∼= W then for any two isomorphism T1, T2 : V → W the map T−1
2 ◦ T1

is an isomorphism V → V, whence scalar, so that T1 = cT2 for some c. �

Exercise 3.0.12. Find an example with F = R where V is irreducible and HomG(V, V ) 6∼= R.

Corollary 3.0.13. (complete reducibility) Assume that F = C and G is finite. Then every
G-module is a direct sum of irreducible G-submodules.

4. Irreducible representations of finite abelian groups

From now on, we assume F = C and all representations are finite dimensional unless explicitly
otherwise stated.

Theorem 4.0.14. Let G be a finite abelian group and let V be an irreducible G-module. Then V
is one-dimensional.

Proof. Let ρ : G → GL(V ) be the corresponding representation. Fix g0 ∈ G. Put A = ρ(g0) ∈
GL(V ). Then A has an eigenvector v0 ∈ V. Let λ be the eigenvalue. Then the λ-eigenspace of A
on V is nontrivial and invariant. So it is V. This works for all g0 ∈ G, so there exists χ : G→ C×
such that ρ(g) . v = χ(g) · v for all g ∈ G. But then the span of any nonzero v ∈ V is nontrivial and
invariant. �

5. Irreducible Representations of S3

Let S3 be the symmetric group on 3 letters. We consider three representations of S3.

(1) The trivial representation defined as action on a one dimensional space by g · v = v.
(2) The representation σ · v = M(σ)v of S3 on C3.
(3) The representation σ.v = detM(σ) · v of S3 on C.

The first and third are one dimensional and hence irreducible. The second is not irreducible. Span
t[1, 1, 1] and {t[x, y, z] : x + y + z = 0} are invariant. The first subrepresentation is isomorphic to
the trivial representation. The second is irreducible.

Theorem 5.0.15. Every irreducible representation of S3 is isomorphic to one of the ones listed
above.

Proof. Let V be an irreducible S3-modules and decompose V into eigenspaces for (1, 2, 3). If (1, 2, 3)
acts trivially on V then the representation ρ : G → GL(V ) factors through σ 7→ detM(σ). If not,
then one can check by inspection that it is isomorphic to the two dimensional representation of S3

on {t[x, y, z] : x+ y + z = 0}. �
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6. Characters

Definition 6.0.16. (Character of a representation) Let ρ : G → GL(V ) be a representation.
The character of ρ (or equivalently of the G-module V ) is the function χρ(g) = Tr(ρ(g)). Here Tr
denotes the trace. The character is also denoted χV .

Examples 6.0.17. • Let M : S3 → GL3 be the homomorphism defined by M(σ)ei = eσ(i).
Then χM (e) = 3, χM ((1, 2)) = χM ((2, 3)) = χM ((1, 3)) = 1, χM ((1, 2, 3)) = χM ((1, 3, 2)) =
0.
• A one-dimensional representation is essentially equal to its character. (Since GL1(C) =

C× ⊂ C.) In particular, the character of the trivial representation of S3 (or any group) is
the constant function 1.
• If G acts on X and we define a representation of G on a vector space V with basis {ex :
x ∈ X} by g · ex = eg·x, then χV (g) = #{x ∈ X|g · x = x}.
• We saw above that the action of S3 on C3 is reducible. It is the direct sum of a subspace

isomorphic to the trivial representation, and a two dimensional nontrivial subspace. The
nontrivial component is spanned by

v1 = e1 + e2πi/3e2 + e4πi/3e3 and v2 = e1 + e4πi/3e2 + e2πi/3e3.

Using this bases, the representation ρ gives matrices

ρ(e) =
(

1
1

)
ρ((1, 2, 3)) =

(
e4πi

e2πi

)
ρ((1, 3, 2)) =

(
e2πi

e4πi

)

ρ((1, 2)) =
(

e2πi/3

e4πi/3

)
ρ((1, 3)) =

(
e4πi/3

e2πi/3

)
ρ((2, 3)) =

(
1

1

)
So

χρ(e) = 2, χρ((1, 2, 3)) = χρ((1, 3, 2)) = −1, χρ((1, 2)) = χρ((1, 3)) = χρ((2, 3)) = 0.

Theorem 6.0.18. (Properties of the character)

(1) The character of a representation depends only on the isomorphism class of that represen-
tation. That is, if V and W are isomorphic G-modules, then χV = χW .

(2) The character of a representation determines the isomorphism class of that representation.
That is, if V and W are G-modules and χV = χW , then V ∼= W.

(3) The character of any representation is a class function, i.e., it is constant on conjugacy
classes in G. In other words

χρ(ghg−1) = χρ(h) (∀g, h ∈ G),

for any representation ρ of any group G.
(4) χV⊕W = χV + χW
(5) χV⊗W = χV χW
(6) χV ∗ = χV

Proof. (1) To compute the trace of ρ(g) acting on V, we choose an ordered basisB = (v1, . . . vdimV )
for V and write a matrix [ρ(g)]B. If we have an isomorphism ι : V → V ′ we can push the
basis B through the isomorphism, obtaining an ordered basis B′ = (ι(v1), . . . ι(vdimV )) for
V ′. Now check that [ρ′(g)]B′ = [ρ(g)]B.

(2) We’ll prove this last.
(3) Follows from the fact that Tr(ABA−1) = Tr(B) for any matrices A and B.
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(4) Let BV = (v1, . . . , vdimV ) be an ordered basis for V and BW = (w1, . . . , wdimW ) and
ordered basis for W. Set BV⊕W = (v1, . . . , vdimV , w1, . . . , wdimW ), which is an ordered basis
for V ⊕W. Check that

[ρV⊕W (g)]BV⊕W
=
(

[ρ(g)]BV

[ρ′(g)]BW

)
( a block matrix )

for any g ∈ G, ρ : G→ GL(V ), ρ′ : G→ GL(W ).
(5) Similar to the previous.
(6) Let B = (v1, . . . vdimV ) be an ordered basis for V . The dual basis for V ∗ is the ordered

basis B∗ = (v∗1, . . . v
∗
dimV ) such that 〈vi, v∗j 〉 = δi,j (Kronecker δ). Check that

〈v, v∗〉 = [v]B · [v∗]B∗ (∀v ∈ V, v∗ ∈ V ∗).

Deduce that [ρ∗(g)]B∗ = t[ρ(g)]−1
B for all g ∈ G. Since ρ(g) is of finite order, its eigenvalues

are all complex roots of unity, so

Tr(t[ρ(g)]−1
B ) = Tr([ρ(g)]−1

B ) = Tr([ρ(g)]B).

Now to prove (2), recall that the set Hom(V,W ) of linear maps V → W can be identified with
V ∗ ⊗W and that then the set HomG(V,W ) of G-module homomorphisms V → W is identified
with (V ∗ ⊗W )G. (The subspace of G-invariant elements.)

Lemma 6.0.19. Take any G-module U and define π(u) =
∑

g∈G g . u. Then π maps U onto UG

and acts by identity on UG. Further, Trπ =
∑

g χU (g) = dimUG.

Proof. The first part is easy from the definitions. It’s also immediate from the defs that Trπ =∑
g χU (g). To get Trπ dimUG start with a basis of UG, enlarge it to a basis of U, and write the

matrix of π with respect to that basis. �

Applying the lemma when U = (V ∗ ⊗W ) we get∑
g

χV (g)χW (g) =

{
1, V ∼= W,

0 V 6∼= W.

Then (2) is immediate. �

Proposition 6.0.20. For f, h : G→ C define

(f, h) =
∑
g∈G

f(g)h(g).

Then
(1) For V,W irreducible G-modules

(χV , χW ) =

{
1, V ∼= W,

0, V 6∼= W.

(2) For general V,W write

V =
r⊕
i=1

Vi W =
s⊕
i=1

Vj(V1, . . . , Vr,W1, . . .Ws, irreducible).

Then
(χV , χW ) = the number of pairs i, j such that Vi ∼= Vj .

(3) If V =
⊕r

i=1 Vi is any representation and W is irreducible then (χV , χW ) is the number of
indices i such that Vi ∼= W.
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(4) If V =
⊕r

i=1 Vi is any representation and W is irreducible then

πW (v) :=
∑
g∈g

χW (g)g . v

defines a projection from V onto the sum of the subspaces Vi with Vi ∼= W.

Proof. We proved the first part in the course of the last proof. The second two parts follow from the
first. To prove the third part, take the trace of the operator π, acting on an irreducible component
Vi, and you get (χW , χVi). �

Theorem 6.0.21. Let V1, . . . Vr be a set of representatives for the isomorphism classes of irreducible
representations of G. Then the right regular representation of G is isomorphic to the sum of dimV1

copies of V1, dimV2 copies of V2, . . .dimVr copies of Vr.

Proof. Check that χR(g) = |G|δg,1G . So (χVi , χR) = χVi(1G) = dimVi. �

Theorem 6.0.22. The number of isomorphism classes of irreducible representations of a group G
is equal to the number of conjugacy classes in G.

Proof. The mapping V → χV sends G-modules to class functions G → C. Since χV depends only
on the isomorphism class of V , we have a mapping from isomorphism classes to class functions. If
V 6∼= W then (χV , χW ) = 0. It follows that χV and χW are linearly independent functions. So

#{ isomorphism classes of irreducible representations of G} = #{ distinct characters : G→ C}
≤ dim{ class functions } = #{ conjugacy classes}.

To prove equality, we will show that the characters actually form an orthonormal basis for the set
of all class functions.

To do this, we make the following definition.

Definition 6.0.23. Let G be a finite group and (ρ, V ) be a finite dimensional G-module. Take a
class function f : G→ C. We define the operator ρ(f) : V → V by

ρ(f) . v :=
∑
g∈G

f(g)ρ(g) . v.

Lemma 6.0.24. The operator ρ(f) is a G-module map. That is ρ(g) ◦ ρ(f) = ρ(f) ◦ ρ(g) for any
class function f and any g ∈ G.

Proof. For v ∈ V,

ρ(g)◦ρ(f)◦ρ(g−1) . v =
∑
g1∈G

f(g1)ρ(gg1g−1) . v =
∑
g1∈G

f(g−1g2g)ρ(g2) . v =
∑
g1∈G

f(g2)ρ(g2) . v = ρ(f) . v.

(The second to last equality is because f is a class function.) �

Lemma 6.0.25.

Tr(ρ(f)) = (χρ∗ , f)

Proof. Both sides equal ∑
g∈G

f(g) Tr(ρ(g)).

�
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Now suppose that f is a class function such that (χV , f) = 0 for all irreducible V. Since ρ(f)
is an G-module map, it follows from Schur’s lemma that ρ(f) is a scalar multiple of the identity
whenever V is irreducible. Since its trace is zero, evidently, the scalar is zero. It follows that ρ(f)
acts by zero on any representation– irreducible or reducible. So, it acts by zero on the regular
representation, i.e.

R(f) . F = 0 (the zero function ) (∀F : G→ C)

R(f) . F (x) = 0 (∀x ∈ G,F : G→ C)∑
g∈G

f(g)F (xg) = 0 (∀x ∈ G,F : G→ C).

Take F to be the chracteristic function of the {1G}, and you get f(x−1) = 0. And since that holds
for all x, the function f must be the zero function. �
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