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Double Arrays, Triple Arrays, and
Balanced Grids with v = r + c − 1

John P. McSorley,

Department of Mathematics,
Southern Illinois University,

Carbondale. IL 62901-4408.

mcsorley60@hotmail.com

Abstract

In Theorem 6.1 of [3] it was shown that, when v = r + c− 1, every
triple array TA(v, k, λrr, λcc, k : r × c) is a balanced grid BG(v, k, k :
r×c). Here we prove the converse of this Theorem. Our final result is:
Let v = r + c− 1. Then every triple array is a TA(v, k, c− k, r− k, k :
r × c) and every balanced grid is a BG(v, k, k : r × c), and they are
equivalent.
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1 Introduction, Main Result

We briefly introduce the main players: arrays, double arrays, triple arrays,
and balanced grids. See [3] for more details.

Consider a rectangle with r rows and c columns, in which each cell con-
tains exactly one element from the set V = {1, 2, . . . , v}. Suppose that
the rectangle is binary, i.e., every row contains distinct elements and every
column contains distinct elements. Further, suppose that the rectangle is
equireplicate, i.e., every element of V occurs exactly k times in the rectangle
for some k ≥ 1. Call such a rectangle a r × c array based on the set V , and
denote it by A = A(v, k : r × c).

An array A is a double array if it satisfies the following two properties:

(P1) any two distinct rows have the same number, λrr, of common elements;

(P2) any two distinct columns have the same number, λcc, of common ele-
ments.

Such an array is denoted by DA(v, k, λrr, λcc : r × c). Suppose further that
A satisfies the third property:

(P3) any row and any column have the same number, λrc, of common ele-
ments,

then A is called a triple array, a TA(v, k, λrr, λcc, λrc : r × c).
Now consider a pair of distinct elements x ∈ V and y ∈ V . If both occur

in the same row of A then we say that the pair {x, y} occurs in this row,
similarly for columns. Suppose that {x, y} occurs in r1 rows of A and in c1

columns of A, then we say that it occurs µ{x,y} = r1 + c1 times in the grid
A. We call A a balanced grid if there is a constant µ such that µ = µ{x,y} for
every x and y. We denote such a balanced grid by BG(v, k, µ : r × c).

In Theorem 6.1 of [3] it was shown that, when v = r + c− 1, every triple
array TA(v, k, λrr, λcc, k : r × c) is a balanced grid BG(v, k, k : r × c). It
was then stated that examples to the converse of this Theorem had been
found. In Theorem 2.5 of this paper we prove the converse of Theorem 6.1
of [3]. Our main result (Theorem 2.6) is: Let v = r + c − 1. Then every
triple array is a TA(v, k, c− k, r − k, k : r × c) and every balanced grid is a
BG(v, k, k : r × c), and they are equivalent.

Finally, we restate a conjecture of Agrawal [1] concerning symmetric bal-
anced incomplete block designs and triple arrays.
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2 For v=r+c-1, TA and BG are equivalent

We work mainly with the variables r, c, and k; writing other variables in
terms of these three variables, see Theorems 2.2, 3.1, and 4.1 of [3].

v =
rc

k
, λrr =

c(k − 1)

r − 1
, λcc =

r(k − 1)

c − 1
, λrc = k, µ =

k2(r + c − 2)

rc − k
. (1)

When v = r + c−1 if values of the two parameters r and c are given then
all parameters in (1) can be expressed in terms of them, and so are ‘forced’.
But we prefer to keep k in our formulae:

Lemma 2.1

(i) In a triple array TA(v, k, λrr, λcc, k : r×c) the following are equivalent:
v = r + c − 1 and λrr = c − k and λcc = r − k.

(ii) In a balanced grid BG(v, k, µ : r× c) we have v = r + c−1 if and only
if µ = k.

Proof. (i) If v = r + c− 1 then c = v − r + 1. Then ck = vk− rk + k =
rc− rk + k, and so ck − c = rc− rk − c + k = (r − 1)(c− k). But, from (1),

λrr = c(k−1)
r−1

, and so λrr = c−k. The converse is given by working backwards.
Hence v = r + c − 1 if and only if λrr = c − k. Similarly we can prove that
v = r + c − 1 if and only if λcc = r − k.
(ii) Suppose that v = r + c − 1. Then, from (1), v = rc

k
= r + c − 1. So

rc
k
− 1 = rc−k

k
= r + c − 2. Now (1) gives µ = k. The converse is given by

working backwards.

The following Corollary was not explicitly stated in [3].

Corollary 2.2 When v = r + c − 1 every triple array is a TA(v, k, c −
k, r − k, k : r × c), and every balanced grid is a BG(v, k, k : r × c).
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Matching BIBD’s
Let D1 be a (v1, b, r1, κ, λ1) − BIBD based on a v1-set V1, and D2 a

(v2, b, r2, κ, λ2) − BIBD based on a v2-set V2, with v1v2 = bκ. Let the b
blocks of D1 be arranged in any fixed order, and let the κ elements in each
block be arranged in any fixed order. Then D1 and D2 are matching if the
b blocks of D2, and the κ elements within each block, can be arranged so
that when D2 is superimposed onto D1 then each of the v1v2 pairs from
V1 × V2 appears exactly once amongst the bκ pairs covered. See Preece [4]
Section 6, definition (b), for an equivalent definition of matching BIBD’s.
Such superimpositions are generally known as Graeco-Latin designs.

Example 1 Two matching BIBD’s: a (5, 10, 6, 3, 3) − BIBD based on
{R1, R2, R3, R4, R5} and a (6, 10, 5, 3, 2)−BIBD based on {C1, C2, C3, C4, C5, C6},
and their superimposition.

R1 R2 R3 C1 C4 C5 R1C1 R2C4 R3C5

R1 R3 R5 C2 C3 C5 R1C2 R3C3 R5C5

R1 R3 R4 C3 C5 C6 R1C3 R3C6 R4C5

R1 R4 R5 C1 C3 C4 R1C4 R4C3 R5C1

R1 R2 R5 C1 C5 C6 R1C5 R2C1 R5C6

R1 R2 R4 C2 C4 C6 R1C6 R2C2 R4C4

R2 R4 R5 C3 C4 C6 R2C3 R4C6 R5C4

R2 R3 R4 C2 C4 C5 R2C5 R3C4 R4C2

R2 R3 R5 C1 C2 C6 R2C6 R3C1 R5C2

R3 R4 R5 C1 C2 C3 R3C2 R4C1 R5C3

Block structures R⊥, C⊥, and S
Let A be an arbitrary array A(v, k : r × c). Label the r rows of A with

R1, R2, . . . , Rr, and the c columns with C1, C2, . . . , Cc.
Let R = {R1, R2, . . . , Rr} be the block structure composed of the r rows

of A. Similarly, let C = {C1, C2, . . . , Cc} be the block structure composed of
the c columns of A.

For any x ∈ V let R⊥
x = {Ri |x ∈ Ri}. Then R⊥ = {R⊥

x |x ∈ V } is the
dual of R and is a block structure based on the set {R1, R2, . . . , Rr} with v
blocks each of size k. Similarly, for any x ∈ V let C⊥

x = {Cj |x ∈ Cj}. Then
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C⊥ = {C⊥
x |x ∈ V } is the dual of C and is a block structure based on the set

{C1, C2, . . . , Cc} with v blocks each of size k.
Define Sx = R⊥

x ∪ C⊥
x for every x ∈ V , and let S be the block structure

{Sx |x ∈ V }.
By definition of a double array and matching BIBD’s we have (compare

Lemma 2.1 of [3]):

Lemma 2.3 Let A be an arbitrary array A(v, k : r × c). Then A is a
double array DA(v, k, λrr, λcc : r × c) if and only if R⊥ is a (r, v, c, k, λrr) −
BIBD and C⊥ is a (c, v, r, k, λcc)−BIBD, and R⊥ and C⊥ are matching.

When A is a double array we call R⊥ its BIBDR and C⊥ its BIBDC.

Example 2 A double array DA(10, 3, 3, 2 : 5×6) whose matching BIBDR

and BIBDC were given above in Example 1.

C1 C2 C3 C4 C5 C6

R1 1 2 3 4 5 6
R2 5 6 7 1 8 9
R3 9 10 2 8 1 3
R4 10 8 4 6 3 7
R5 4 9 10 7 2 5

Before the next Theorem, we need the following result of Ryser [6], Chap-
ter 8, Theorem 2.2:

Let B be an incidence structure based on a v-set with v blocks each of
size k, in which any two distinct blocks intersect in the same number λ of
elements. Then B is a (v, k, λ)− SBIBD.

Compare the following Theorem with Theorem 5.2 of [3].

Theorem 2.4 Let G be a BG(v, k, µ : r × c) with v = r + c − 1. Then
there exists a (v + 1, r, r − k)-SBIBD.

Proof. Recall the definitions of the block structures R⊥ and C⊥ above.

Let B0 = {R1, R2, . . . , Rr}. For each x ∈ V put R
⊥
x = B0\R⊥

x , then |R⊥
x | =

r − k.
Let Bx = R

⊥
x ∪ C⊥

x for each x ∈ V . Then |Bx| = (r − k) + k = r.
Now consider the block structure B = {Bx|x ∈ V } ∪ {B0}. It is based on
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the r + c = v + 1 elements from R ∪ C = {R1, R2, . . . , Rr, C1, C2, . . . , Cc}
and has v + 1 blocks each of size r. We now show that B is the required
(v + 1, r, r − k) − SBIBD.

Now G is a BG in which every pair {x, y} occurs µ = k (Lemma 2.1(ii))
times, so |S⊥

x ∩ S⊥
y | = |R⊥

x ∩ R⊥
y | + |C⊥

x ∩ C⊥
y | = k. We have:

|Bx ∩ By| = |R⊥
x ∩ R

⊥
y | + |C⊥

x ∩ C⊥
y |

= |R⊥
x | + |R⊥

y | − |R⊥
x ∪ R

⊥
y | + |C⊥

x ∩ C⊥
y |

= (r − k) + (r − k) − |R⊥
x ∩ R⊥

y |+ |C⊥
x ∩ C⊥

y |
= 2r − 2k − (r − |R⊥

x ∩ R⊥
y |) + |C⊥

x ∩ C⊥
y |

= r − 2k + (|R⊥
x ∩ R⊥

y | + |C⊥
x ∩ C⊥

y |)
= r − 2k + k = r − k.

Also, for all x ∈ V , we have |Bx ∩ B0| = r − k. Thus any two distinct
blocks of B intersect in r − k elements. So, from Ryser’s result above, B is a
(v + 1, r, r − k) − SBIBD.

Next is the converse to Theorem 6.1 of [3]:

Theorem 2.5 Let v = r+c−1. Every BG(v, k, k : r×c) is a TA(v, k, c−
k, r − k, k : r × c).

Proof. Let G be a BG(v, k, k : r×c). Recall from Theorem 2.4 above that
B is a (v+1, r, r−k)−SBIBD. The construction of B from R⊥ and C⊥ gives:
Firstly, R⊥ is the complement of the derived design of B with respect to block
B0, hence R⊥ is a (r, v, c, k, c − k) − BIBD. Secondly, C⊥ is the residual
design of B with respect to B0, hence C⊥ is a (c, v, r, k, r−k)−BIBD. Since
R⊥ and C⊥ are also constructed from an array, they are matching. Hence,
via Lemma 2.3, G is a double array, a DA(v, k, c − k, r − k : r × c).

Consider any pair {Ri, Cj}. Then Cj occurs r times in the first v blocks
of B, and pair {Ri, Cj} occurs r − k times in these blocks. So, amongst
the first v blocks of B, there are r − (r − k) = k blocks which do not con-
tain Ri but do contain Cj. Hence, in S, there are k blocks containing pair
{Ri, Cj}. Thus |Ri ∩ Cj| = k for every i and j, and so G is a triple array, a
TA(v, k, c− k, r − k, k : r × c).

Using Theorem 6.1 from [3] and Corollary 2.2 above, we have:
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Theorem 2.6 Let v = r+ c−1. Then every triple array is a TA(v, k, c−
k, r − k, k : r × c) and every balanced grid is a BG(v, k, k : r × c), and they
are equivalent.

Example 3 An array A, a A(10, 3 : 5× 6), which is both a balanced grid
BG(10, 3, 3 : 5 × 6) and a triple array TA(10, 3, 3, 2, 3 : 5 × 6). The three
block structures shown are its BIBDR, a (5, 10, 6, 3, 3)−BIBD; its BIBDC,
a (6, 10, 5, 3, 2) − BIBD; and B, a (11, 5, 2) − SBIBD.

C1 C2 C3 C4 C5 C6

R1 1 2 3 4 5 6
R2 4 7 1 3 8 9
R3 2 5 10 8 9 3
R4 10 8 7 6 1 2
R5 9 4 5 10 6 7

R1 R2 R4 C1 C3 C5 R3 R5 C1 C3 C5

R1 R3 R4 C1 C2 C6 R2 R5 C1 C2 C6

R1 R2 R3 C3 C4 C6 R4 R5 C3 C4 C6

R1 R2 R5 C1 C2 C4 R3 R4 C1 C2 C4

R1 R3 R5 C2 C3 C5 R2 R4 C2 C3 C5

R1 R4 R5 C4 C5 C6 R2 R3 C4 C5 C6

R2 R4 R5 C2 C3 C6 R1 R3 C2 C3 C6

R2 R3 R4 C2 C4 C5 R1 R5 C2 C4 C5

R2 R3 R5 C1 C5 C6 R1 R4 C1 C5 C6

R3 R4 R5 C1 C3 C4 R1 R2 C1 C3 C4

R1 R2 R3 R4 R5

Agrawal’s Conjecture
The second paragraph in the proof of Theorem 2.5 above is essentially

Agrawal’s method of constructing a triple array TA(v, k, c−k, r−k, k : r×c)
with v = r+c−1 from a (v+1, r, r−k)−SBIBD with k > 2, see Agrawal [1].
It seems worthwhile to restate his conjecture in terms of matching BIBD’s:

Let S be a (vs, ks, λs)− SBIBD with ks − λs > 2. For any fixed block S0

let Sder denote the derived design of S with respect to S0, and let Sres denote
the residual design of S with respect to S0.

Then the complement of Sder and Sres are matching.
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An incorrect proof of this conjecture appeared in Raghavarao and Nages-
wararao [5], as was pointed out in Bailey and Heidtmann [2], and Wallis and
Yucas [7]. It appears that this conjecture is still open.

If Agrawal’s conjecture is correct then any (vs, ks, λs) − SBIBD with
ks − λs > 2 gives rise to a TA(vs − 1, ks − λs, vs − 2ks + λs, λs, ks − λs :
ks × (vs − ks)), a triple array with ‘v = r + c − 1’.
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