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Explicit Feedback Linearization of Control Systems

Issa Amadou Tall

Abstract— This paper addresses the problem of feedback
linearization of nonlinear control systems via state and feedback
transformations. Necessary and sufficient geometric conditions
were provided in the early eighties but finding the feedback
linearizing coordinates is subject to solving a system of partial
differential equations and had remained open since then. We
will provide in this paper a complete solution to the problem
(see the companion paper where the state linearization has been
addressed) by defining an algorithm that allows to compute
explicitly the linearizing state coordinates and feedback for any
nonlinear control system that is truly feedback linearizable.
Each algorithm is performed using a maximum of n− 1 steps
(n being the dimension of the system) and they are made
possible by explicitly solving the Flow-box or straightening
theorem. A possible implementation via software like math-
ematica/matlab/maple using simple integrations, derivations of
functions might be considered.

I. INTRODUCTION AND PRELIMINARIES

IN the late seventies and early eighties the problem of
transforming a nonlinear control system, via change of co-

ordinates and feedback, into a linear one, has been introduced
and is known today as feedback linearization. The feedback
classification was applied first to linear systems for which a
complete picture has been made possible. The controllability,
observability, reachability, and realization of linear systems
have been expressed in very simple algebraic terms. A
crucial property of linear controllable systems is that they
can be stabilized by linear feedback controllers. Because of
the simplicity of their analysis and design; because several
physical systems can be modeled using linear dynamics,
and due to the observation that some nonlinear phenomena
are just hidden linear systems, it is thus not surprising that
the linearization problems were (and still are) of paramount
importance and have attracted much attention. Uncovering
the hidden linear properties of nonlinear control systems
turns out to be useful in analyzing the latter systems though
some global properties might be lost during the operation. To
give a brief description of the linearization problems we will
start first by recalling some basic facts about linear systems.

A. Linear Systems

We consider linear systems of the form

Λ :

 ẋ = Fx+Gu = Fx+
m∑
i=1

Giui,

y = Hx

where x ∈ Rn, Fx and G1, . . . , Gm are, respectively, linear
and constant vector fields on Rn, Hx a linear vector field on
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Rp, and u = (u1, . . . , um)> ∈ Rm. To any linear system Λ
we attach two geometric objects: (a) the controllability space

Cn = span [GFG · · · Fn−1G]

as a n×(nm) matrix whose columns are those of the matrices
F k−1G, k = 1, . . . , n, and (b) the observability space

On = span [H> (HF )> · · · (HFn−1)>]>,

as a (np) × n matrix whose rows are those of the matrices
HF k−1, k = 1, . . . , n. The system Λ is controllable (resp.
observable) if and only if dim Cn = n (resp. rankOn = n).

By a linear change of coordinates x̃ = Tx and a linear
feedback u = Kx+Lv, where T , K, and L are matrices of
appropriate sizes, T and L being invertible, the system Λ is
transformed into a linear equivalent one

Λ̃ :
{ ˙̃x = F̃ x̃+ G̃v,

ỹ = H̃x̃

with F̃ x̃ = T (F +GK)T−1, G̃ = TGL and H̃ = HT−1.
It is shown in the literature [1], [6] that the dimension of

Cn and the rank of On, (hence the controllability and ob-
servability), are two invariants of the feedback classification
of linear systems. The problem of feedback classification
for linear systems Λ is to find linear state coordinates
w = Tx and linear feedback u = Kx+Lv that map Λ into
a simpler linear system Λ̃. It is a classical result of the linear
control theory (see, e.g., [1], [6]) that any linear controllable
system is feedback equivalent to the following Brunovský
canonical form (single-input case):

ΛBr : ẇ = Aw + bv, w ∈ Rn, v ∈ R,

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 1
0 0 0 · · · 0

 b =


0
0
...
0
1


In the case of multi-input linear control systems we can find

positive integers ρ1 ≥ · · · ≥ ρm,
m∑
i=1

ρi = n (called control-

lability, Brunovský or Kronecker indices) such that ΛBr is
a cascade of single-input linear systems Λ1

Br, . . . ,Λ
m
Br :

ΛiBr : ẇi = Aiwi + bivi, wi ∈ Rρi , vi ∈ R,

with A = diag {A1, . . . , Am} and b = diag {b1, . . . , bm} .
For a complete description and geometric interpretation

of the Brunovský controllability indices we refer to the
literature [1], [3], [4] , [5], [6], [10] and references therein.
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B. Nonlinear Systems and Feedback Linearization Problem.

Consider a smooth (resp. analytic) control-affine system

Σ : ẋ = f(x) + g(x)u = f(x) +
m∑
i=1

gi(x)ui, x ∈ Rn

around an equilibrium (xe, ue), that is, f(xe)+g(xe)ue = 0.
We assume that f, g1, . . . , gm are smooth (resp. analytic) and
(xe, ue) = (0, 0) ∈ Rn × Rm or simply f(0) = 0. Let

Σ̃ : ˙̃x = f̃(x̃) + g̃(x̃)v = f̃(x̃) +
m∑
i=1

g̃i(x̃)vi, x̃ ∈ Rn

be another smooth (resp. analytic) control-affine system. The
systems Σ and Σ̃ are called feedback equivalent if there exist

Γ :
{
x̃ = φ(x)
u = α(x) + β(x)v

a transformation that maps Σ into Σ̃, that is, such that

(PDEs)
{

dφ(x) · (f(x) + g(x)α(x)) = f̃(φ(x))
dφ(x) · (g(x)β(x)) = g̃(φ(x)).

We will briefly write Γ = (φ, α, β) and put Γ∗Σ = Σ̃. When
Σ and Σ̃ are state equivalent we simply write φ∗Σ = Σ̃.

The following two problems were considered in the late
seventies and early eighties by Krener [7], and Brockett [2].
Problem 1. When does there exist a local diffeomorphism
w = φ(x) defining new coordinates w = (w1, . . . , wn)> in
which the transformed system φ∗Σ takes the linear form

Λ : ẇ = Fw +Gu = Fw +
m∑
i=1

Giui, w ∈ Rn, u ∈ Rm ?

Problem 2. When did there exist a (local)feedback transfor-
mation Γ = (φ, α, β) that takes Σ into a linear system

Λ : ẇ = Aw +Bv = Aw +
m∑
i=1

bivi, w ∈ Rn, v ∈ Rm ?

When Problem 1 (resp. Problem 2) is solvable, then the
system Σ is called state linearizable, shortly S-linearizable
(resp. feedback linearizable, shortly, F-linearizable). Prob-
lem 1 was completely solved by Krener [7] and Problem 2
partially by Brockett [2] for m = 1 and β constant. A gen-
eralization was obtained independently by Hunt and Su [3],
Jakubczyk and Respondek [5], who gave necessary and suffi-
cient geometric conditions in terms of Lie brackets of vector
fields defining the system. Indeed, attach to Σ the sequence
of nested distributions D1 ⊂ D2 ⊂ · · · ⊂ Dn, where

Dk =
{
adqfgi, 0 ≤ q ≤ k − 1, 1 ≤ i ≤ m

}
, k = 1, . . . , n

with ad0
fgi = gi and adlfgi = [f, adl−1

f gi] for all l ≥ 1.

Theorem I.1 A control system Σ : ẋ = f(x) + g(x)u is
locally equivalent, via change of coordinates w = φ(x) and
feedback v = α(x) + β(x)u, to a linear controllable system
Λ : ẇ = Aw + bv if and only if
(F1) dim Dn(x) = n
(F2) Dn−1 is involutive, that is, [Dn−1,Dn−1] ⊆ Dn−1.

If the transformation Γ = (φ, α, β) linearizes Σ, then
(PDEs) should hold with f̃(φ(x)) = Aφ(x), g̃(φ(x)) = B.

Although the conditions (F1) and (F2) provide a way of
testing the feedback linearizability of a system, they offer
little on how to find the feedback linearizing group Γ except
by solving (PDEs) which is, in general, not straightforward.
Indeed, for the single-input case, the solvability of (PDEs)
is equivalent of finding a function h with h(0) = 0 such that

Lg(h)=0, LgLf (h)=0, . . . , LgLn−2
f (h)=0, LgLn−1

f (h)6=0,

where for any vector field ν and any function h, Lν(h)=
∂h
∂xv(x) is the Lie derivative of h along ν. We propose here
to give a complete solution to problem 2 without solving the
partial differential equations. We will provide an algorithm
giving explicit solutions in that case. Recall that we have
previously obtained explicit solutions for few subclasses
of control-affine systems, namely strict feedforward forms,
strict-feedforward nice and feedforward forms, for which
linearizing coordinates were found without solving the corre-
sponding PDEs (see [11], [12], [14]). Indeed, for those sub-
classes we exhibited algorithms that can be performed using
a maximum of n(n+1)

2 steps each involving composition and
integration of functions only (but not solving PDEs) followed
by a sequence of n + 1 derivations. What played a main
role in finding those algorithms were the strict feedforward
form structure, that is, the fact that each component of the
system depended only on higher variables. In this paper we
consider general control-affine systems for which we provide
a feedback linearizing algorithm that can be implemented
using a maximum of n steps. This algorithm is, in part,
based on the explicit solving of the flow-box theorem [15]
and differs completely from those outlined in [11], [14] (see
also [8], [9]). In what follows we will address only the single
input case. We first recall the following well-known result.

Theorem I.2 A control system Σ : ẋ = f(x) + g(x)u is
locally F-equivalent to a linear controllable system if and
only if it is S-equivalent to the feedback form

(FB)


ż1 = f̂1(z1, z2)
ż2 = f̂2(z1, z2, z3)
· · ·

żn−1 = f̂n−1(z1, . . . , zn)
żn = f̂n(z1, . . . , zn) + ĝn(z1, . . . , zn)u.

The proof of Theorem I.2 is straightforward and can be
found in the literature (e.g. [3], [4], [5], [10]). Let f̂ =
(f̂1, . . . , f̂n), ĝ = (0, . . . , 0, ĝn) and ĥ(z) = z1. It follows
that the feedback transformation Γ , (φ̂, α̂, β̂) defined by
w = φ̂(z), u = α̂(z) + β̂(z)v, where

φ̂1(z) = ĥ(z), φ̂2(z) = Lf̂ (ĥ), . . . , φ̂n(z) = Ln−1

f̂
(ĥ)

α̂(z) = −
Ln
f̂
(ĥ)

LĝL
n−1

f̂
(ĥ)

and β̂(z) = − 1

LĝL
n−1

f̂
(ĥ)

brings (FB) into the Brunovský canonical form ΛBr.
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II. MAIN RESULTS: F -LINEARIZABLE SYSTEMS

Below we give our main result, that is, an algorithm allow-
ing to construct explicitly feedback linearizing coordinates.

Consider Σ : ẋ = f(x) + g(x)u and let 1 ≤ k ≤ n − 1.
We say that Σ is in (FB)k-form, and we denote it ΣFB

k , if
in some coordinates xk = (xk1, . . . ,xkn), it takes the form

ΣFB
k :


ẋkj = Fkj(xk1, . . . ,xkk+1), if 1 ≤ j ≤ k

ẋkk+1 = Fkk+1(xk1, . . . ,xkk+2)
. . .

ẋkn−1 = Fkn−1(xk1, . . . ,xkn)
ẋkn = Fkn(xk1, . . . ,xkn) + u,

where k = k. For simplicity we chose the coefficient of the
control input u to be 1 but this is not a restriction. We have

Theorem II.1 Consider a linearly controllable system

Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R.

Assume it is F-linearizable (let Σ , ΣFBn and x , xn).
There exists a sequence of explicit coordinates changes

φn(xn), φn−1(xn−1), . . . , φ2(x2) that gives rise to a se-
quence of (FB)k-forms ΣFB

n−1,Σ
FB
n−2, . . . ,Σ

FB
1 such that for

any 2 ≤ k ≤ n we get ΣFB
k−1 = (φk)∗ΣFB

k .

Moreover, in the coordinates z , φ2(x2) the system Σ
(actually ΣFB

1 ) takes the feedback form (FB).

A direct consequence of this result is the following corollary.

Corollary II.2 Consider a linearly controllable system Σ
and assume it is F-linearizable. Then Σ is linearizable by
the feedback transformation w = φ̂ ◦ φ(x), u = α̂(φ(x)) +
β̂(φ(x))v, where z = φ(x) is the diffeomorphism taking
Σ into the feedback form (FB), and Γ = (φ̂, α̂, β̂) the
transformation taking (FB) into to the Brunovský form ΛBr.

The proof of Theorem II.1 follows from the algorithm below.

A. Feedback Linearizing Coordinates: (F£)-Algorithm.

Consider Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R and
assume it is F-linearizable. Applying a linear feedback z =
Tx, u = Kx+Lv, if necessary, we assume that ∂f

∂x (0) = A
and g(0) = b, where (A, b) is the Brunovský canonical pair.
The algorithm below consists of a maximum of n− 1 steps.
Step 1. Set Σ , ΣFB

n and x , xn = (xn1, . . . ,xnn)>.
Apply Theorem II.2 ([16]) with ν = g(x) to construct a
change of coordinates z = φ(x) such that φ∗(g)(z) = ∂zn .
If we denote xn−1 , z and φn , φ, it thus follows that the
change of coordinates xn−1 = φn(xn) takes ΣFB

n into

ΣFB
n−1 :


ẋn−11 = Fn−11(xn−11, . . . ,xn−1n)
ẋn−12 = Fn−12(xn−11, . . . ,xn−1n)

. . .
ẋn−1n−1 = Fn−1n−1(xn−11, . . . ,xn−1n)

ẋn−1n = Fn−1n(xn−11, . . . ,xn−1n) + u.

Remark that this first step is independent of whether Σ is
F-linearizable or not. It depends only on the fact that the
vector field g is nonsingular, and hence, can be rectified.

Step n− k. Assume that a sequence of explicit coordinates
changes φn, . . . , φk+1 were found whose composition xk =
φk+1 ◦ · · · ◦ φn(xn) takes ΣFB

n into the (FB)k-form

ΣFB
k : ẋk = Fk(xk) + bu, xk ∈ Rn,

where (recall that k = k)

Fkj(xk) =

 Fkj(xk1, . . . ,xkk+1), 1 ≤ j ≤ k
Fkj(xk1, . . . ,xkj+1), k + 1 ≤ j ≤ n− 1
Fkj(xk1, . . . ,xkn), j = n.

Once again reset the variable x , xk and denote ΣFB
k simply

by Σ : ẋ = f(x) + g(x)u with g(x) = b and

fj(x) =
{
fj(x1, . . . , xk+1), 1 ≤ j ≤ k
fj(x1, . . . , xj+1), k + 1 ≤ j ≤ n,

where the last component fn depends only on x1, . . . , xn.
We showed in Section IV (IV.1) that there exist smooth func-
tions Θ(x) = Θ(x1, . . . , xk+1), Fj(x) = Fj(x1, . . . , xk) and
νj(x) = νj(x1, . . . , xk) for 1 ≤ j ≤ k such that

fj(x1, . . . , xk+1) = Fj(x) + νj(x)Θ(x) 1 ≤ j ≤ k

with Θ(0) = 0 and ∂Θ
∂xk+1

(0) 6= 0. This and the fact that
∂fk

∂xk+1
(0) 6= 0 imply νk(0) 6= 0. Define the nonsingular

vector field

ν(x) = ν1(x)∂x1 + · · ·+ νk(x)∂xk
∈ Rk.

Apply Theorem II.2 ([16]) to construct a change of coordi-
nates z = φ(x1, . . . , xk) ∈ Rk such that φ∗(ν)(z) = ∂zk

.
Extend such change of coordinates in Rn (still called φ) by

z = φ(x) = (φ1(x), . . . , φk(x), xk+1, . . . , xn)>.

The inverse x = ψ(z) = φ−1(z) is also obtained by
Theorem II.2 ([16]). Clearly, the inverse is of the form

x = ψ(z) = (ψ1(z), . . . , ψk(z), zk+1, . . . , zn)>.

The change of coordinates transforms the system Σ into

Σ̃ : ż = f̃(z) + g̃(z)u = φ∗f(z) + φ∗g(z)u,

where φ∗g(z) = (0, . . . , 0, 1)> and

f̃(z) = φ∗f(z) =
k∑
j=1

φ∗

(
fj(x1, . . . , xk+1)∂xj

)
+

n∑
j=k+1

φ∗

(
fj(x1, . . . , xj+1)∂xj

)
.

It is easy to see that the second term is equivalent to
n∑

j=k+1

φ∗

(
fj(x1, . . . , xj+1)∂xj

)
=

n∑
j=k+1

fj(ψ(z))∂zj
. (II.1)

The first term rewrites
k∑
j=1

φ∗

(
fj(x)∂xj

)
=

k∑
j=1

φ∗

(
Fj(x1, . . . , xk)∂xj

)
+

k∑
j=1

φ∗

(
Θ(x)νj(x1, . . . , xk)∂xj

)
=

k∑
j=1

F̃j(z1, . . . , zk)∂zj
+ Θ(ψ(z))∂zk

(II.2)
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We deduce from (II.2) that the first k−1 components depend
only on the variables z1, . . . , zk and the kth component
depends on z1, . . . , zk+1. In the other hand (II.1) shows
that the jth component (j = k + 1, . . . , n) depends on the
variables z1, . . . , zj+1. We thus conclude that

f̃j(z) =
{
f̃j(z1, . . . , zk), 1 ≤ j ≤ k − 1
f̃j(z1, . . . , zj+1), k ≤ j ≤ n,

where the last component f̃n depends only on z1, . . . , zn.
Denote xk−1 , z and φk , φ. Thus the change of

coordinates xk−1 = φk(xk) brings the system ΣFB
k into

ΣFB
k−1 :



ẋk−1j = Fk−1j(xk−11, . . . ,xk−1k)
if 1 ≤ j ≤ k − 1

ẋk−1k = Fk−1k(xk−11, . . . ,xk−1k+1)
. . .

ẋk−1n−1 = Fk−1n−1(xk−11, . . . ,xk−1n)
ẋk−1n = Fk−1n(xk−11, . . . ,xk−1n) + u.

This completes the induction an the algortihm;
consequently, we can construct a sequence
φn(xn), φn−1(xn−1), . . . , φ2(x2) of explicit coordinates
changes whose composition z = φ2 ◦ · · · ◦ φn(xn) takes the
original system Σ into the (FB) form.
B. Summary of Algorithm. Start with a system

Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R.

Step 0. Normalize the vector field g 7−→ g = (0, . . . , 0, 1)>

and apply a linear feedback to put the linearization in
Brunovský form (not necessary but very recommended).
Step n− k. If the condition

(F£k+1) =⇒ ∂2fj
∂x2

k+1

= γn−k(x)
∂fj
∂xk+1

, 1 ≤ j ≤ k

fails (γn−k(x) not the same for first k components) then
system is not feedback linearizable and algorithm stops.

If (F£k+1) is satisfied, then decompose the first k com-
ponents f1, . . . , fk as following (see (IV.1))

fj(x1, . . . , xk+1) = Fj(x) + νj(x)Θ(x) 1 ≤ j ≤ k.

Apply Theorem II.2 ([16]) to construct a change of coordi-
nates z = φ(x) ∈ Rn to rectify the nonsingular vector field

ν(x) = ν1(x)∂x1 + · · ·+νk(x)∂xk
+0 ·∂xk+1 + · · ·+0 ·∂xn

,

that is, such that φ∗(ν)(z) = ∂zk
. Compute φ∗Σ the

transform of precedent system. Repeat Step n − k for k =
n−1, . . . , 2. End if system is in (FB) form or algorithm fails.

III. EXAMPLES

Example III.1 Consider a single-input control system

Σ : ẋ = f(x) + g(x)u ,

 ẋ1 = x2(1 + x3)
ẋ2 = x3(1 + x1)− x2u
ẋ3 = x1 + (1 + x3)u

with f(x) = (x2(1 + x3), x3(1 + x1), x1)> and

g(x) = (0,−x2, 1 + x3)>.

We first rectify the vector field g(x). Put ν(x) = g(x) and ap-
ply Theorem II.2 ([16]) with n = 3 and σ3(x) = 1

1+x3
, thus

σ3ν = − x2
1+x3

∂x2 + ∂x3 . Since ν1 = 0 and ν2(x) = −x2,
we have φ1(x) = x1 in one side, and

Lσ3ν(σ3ν2) =
2x2

(1 + x3)2
, L2

σ3ν(σ3ν2) = − 6x2

(1 + x3)3

in the other, and recurrently

Ls−1
σ3ν (σ3ν2) =

(−1)ss!x2

(1 + x3)s
.

It follows that

z2 = φ2(x)=x3 +
∞∑
s=1

(−1)sxs3
s!

Ls−1
σ3ν (σ3ν2)(x)=x2(1 + x3).

To calculate φ3(x), notice that

Lσ3ν(σ3) = − 1
(1 + x3)2

and L2
σ3ν(σ3) =

2
(1 + x3)3

.

Thus a simple recurrence shows that

Ls−1
σ3ν (σ3) =

(−1)s−1(s− 1)!
(1 + x3)s

, for s ≥ 1

which implies

z3 = φ3(x) =
∞∑
s=1

(−1)s+1xs3
s!

Ls−1
σ3ν (σ3)(x)

=
∞∑
s=1

1
s

(
x3

1 + x3

)s
=
∞∑
s=1

∫ (
x3

1 + x3

)s−1(
x3

1 + x3

)′
dx3

=
∫

1
1 + x3

dx3 = ln(1 + x3).

We apply the change of coordinates

z1 = x1, z2 = x2(1 + x3), z3 = ln(1 + x3)

to transform the original system into

ż = f̂(z)+ĝ(z)u ,

ż1 = z2

ż2 = (1 + z1)ez3(ez3 − 1) + z1z2e
−z3

ż3 = z1e
−z3 + u.

The system is in (FB)-form and can be put into the linear
Brunovský form ΛBr : ẇ1 = w2, ẇ2 = w3, ẇ3 = v via

w1 = ĥ(z) = z1

w2 = Lf̂ ĥ(z) = z2

w3 = L2
f̂
ĥ(z) = (1 + z1)ez3(ez3 − 1) + z1z2e

−z3

v = L3
f̂
ĥ(z) + LĝL

2
f̂
ĥ(z)u.

The composition of the two-step changes of coordinates and
feedback gives linearizing coordinates for the original system

w1 = x1

w2 = x2(1 + x3)
w3 = x3(1 + x1)(1 + x3) + x1x2

v = x2(1 + x3)(x2 + x3 + x2
3) + x1(1 + x1)(1 + 3x3)

+[(1 + x1)(1 + x3)(1 + 2x3)− x1x2]u
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Such linearizing coordinates and feedback could have been
obtained by other methods. We want to point out that the
method is applicable to all feedback linearizable systems.

Example III.2 Consider a single-input control system

Σ : ẋ = f(x) + g(x)u ,


ẋ1 = x2 − x2

4

ẋ2 = x4 + 2x2
1x4 + 2x4u

ẋ3 = x2
1

ẋ4 = x1 + x2
4 + u

with f(x) = (x2−x2
4, x4 +2x2

1x4, x
2
1, x1 +x2

4)> and g(x) =
(0, 2x4, 0, 1)>. This system is not feedback linearizable as it
can be checked that [g, adfg] /∈ span {g, adfg} . We want to
show that the algorithm provides such information without
having to compute the involutivity of the distributions.

We first start by rectifying the control vector field g.
Identify ν = g(x) with σ4 = 1. We calculate the component

φ2(x) = x2 +
∞∑
s=1

(−1)sxs4
s!

Ls−1
ν (ν2)(x)

= x2 +
∞∑
s=1

(−1)sxs4
s!

Ls−1
ν (2x4)(x) = x2 − x2

4.

Since ν1, ν3, ν4 are constants, then φ1(x) = x1, φ3(x) = x3,
and φ4(x) = x4. The change of coordinates z1 = x1, z2 =
x2 − x2

4, z3 = x3, z4 = x4 takes the system into

Σ̃ : ż = f̃(z)+g̃(z)u ,


ż1 = z2

ż2 = z4 − 2z1z4 + 2z2
1z4 − 2z3

4

ż3 = z2
1

ż4 = z1 + z2
4 + u

where g̃ = (0, 0, 0, 1)> and

f̃(z) = (z2, z4 − 2z1z4 + 2z2
1z4 − 2z3

4 , z
2
1 , z1 + z2

4)>.

Clearly,

∂f̃

∂z4
= (0, 1−2z1+2z2

1−6z2
4 , 0, 2z4)>,

∂2f̃

∂z2
4

= (0,−12z4, 0, 2)>

from which we deduce that ∂2f̃j

∂z24
= γ1

∂f̃j

∂z4
, 1 ≤ j ≤ 3 fails.

The algorithm ends: the system is not F-linearizable.

Example III.3 Consider the single-input control system [4]

Σ : ẋ = f(x) + g(x)u ,

 ẋ1 = ex2u
ẋ2 = x1 + x2

2 + ex2u
ẋ3 = x1 − x2

with f(x)=(0, x1 + x2
2, x1− x2)> and g(x)=(ex2 , ex2 , 0)>.

We first rectify the vector field g(x). Denote ν(x) = g(x)
and apply Theorem II.2 ([16]) with n = 3 and σ2(x) = e−x2 ,
hence σ2ν = ∂x1 + ∂x2 . Since ν3 = 0, then φ3(x) = x3.
Because Ls−1

σ2ν (σ2ν1) = 0 for all s ≥ 2, we obtain

z1 = φ1(x) = x1 +
∞∑
s=1

(−1)sxs2
s!

Ls−1
σ2ν (σ2ν1)(x)

= x1 − x2(σ2ν1)(x) = x1 − x2.

To compute φ2 notice that Ls−1
σ2ν (σ2) = (−1)s−1e−x2 for all

s ≥ 2. It thus follows that

z2 = φ2(x) =
∞∑
s=1

(−1)s+1xs2
s!

Ls−1
σ2ν (σ2)(x)

=
∞∑
s=1

xs2
s!
e−x2 = 1− e−x2 .

The change of coordinates

z = φ(x) = (x1 − x2, 1− e−x2 , x3)>

whose inverse x = ψ(z) = (z1−ln(1−z2),− ln(1−z2), z3)>

can be obtained directly or by applying Theorem II.2 (ii) (see
[16]), takes the original system into ż1 = −z1 + ln(1− z2

2)− (ln(1− z2))2

ż2 = (1− z2)[z1 − ln(1− z2
2) + (ln(1− z2))2] + u

ż3 = z1.

A permutation of the variables z̃1 = z3, z̃2 = z1, z̃3 = z2

yields a system in feedback form

(FB)


˙̃z1 = z̃2

˙̃z2 = −z̃2 + ln(1− z̃2
3)− (ln(1− z̃3))2

˙̃z3 = (1− z̃3)[z̃2 − ln(1− z̃2
3) + (ln(1− z̃3))2] + u

that can be linearized by

w1 = z̃1

w1 = z̃2

w3 = −z̃2 + ln(1− z̃2
3)− (ln(1− z̃3))2

v = ẇ3.

We thus deduce that the change of coordinates

w1 = x3

w2 = x1 − x2

w3 = −x1 − x2
2

v = −2x2(x1 + x2
2)− (1 + 2x2)ex2u

brings Σ into Brunovský ΛBr : ẇ1 = w2, ẇ2 = w3, ẇ3 = v.
Notice that such change of coordinates was given in [4].
However, the system was coupled with the given output y =
h(x) = x3 which made finding them straightforward.

IV. APPENDIX

Below we establish an equivalence between the involu-
tivity conditions of Theorem I.1 and a sequence of easily
computable conditions (F£n), . . . , (F£1) each stating the
fact that the second derivative of f with respect to some
variable is proportional to its first derivative with respect to
the same variable. This constitutes the core of the algorithm.

Simple Involutivity Conditions.

Consider the system Σ : ẋ = f(x) + g(x)u and assume
without loss of generality that g(x) = (0, . . . , 0, 1)> and

fj(x) =
{
fj(x1, . . . , xk+1) 1 ≤ j ≤ k
fj(x1, . . . , xj+1) k + 1 ≤ j ≤ n,

where 1 ≤ k ≤ n− 1 and fn depends only on x1, . . . , xn.
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Claim: If the following distributions

Dj(x) = span
{
g(x)adfg(x) . . . , adj−1

f g(x)
}
, 1 ≤ j ≤ n

are involutive, then there is a function γn−k such that

(F£k+1) =⇒ ∂2fj
∂x2

k+1

= γn−k(x)
∂fj
∂xk+1

, 1 ≤ j ≤ k.

Moreover, functions Θ(x) = Θ(x1, . . . , xk+1) and Fj(x) =
Fj(x1, . . . , xk) and νj(x) = νj(x1, . . . , xk) exist such that

fj(x1, . . . , xk+1) = Fj(x) + νj(x)Θ(x) 1 ≤ j ≤ k (IV.1)

with Θ(x) depending exclusively on γn−k(x).
Proof: Remark that the vector field f can be written as

f(x) =
k∑
j=1

fj(x1, . . . , xk+1)∂xj
+

n∑
j=k+1

fj(x1, . . . , xj+1)∂xj

and that the function Θ given above is independent of j; oth-
erwise the decomposition (IV.1) would have been trivial. For
any 1 ≤ j ≤ n denote by ∆j = span

{
∂xn−j+1 , . . . , ∂xn

}
the module generated over the field of smooth functions,
that is, each element of ∆j is a linear combination of the
vector fields ∂xn−j+1 , . . . , ∂xn

whose coefficients are smooth
functions. We first verify easily that

adfg = −∂fn−1

∂xn
∂xn−1−

∂fn
∂xn

∂xn
= µn−1(x)∂xn−1+ϑn−1(x)

where µn−1(x) = −∂fn−1
∂xn

and ϑn−1(x) ∈ ∆1. An induction
argument implies that for any 1 ≤ j ≤ n− k − 1 we have

adjfg = µn−j(x)∂xn−j
+ ϑn−j(x)

where µn−j(x) = (−1)j
j∏
i=1

∂fn−i

∂xn−i+1
and ϑn−j(x) ∈ ∆j . In

particular for j = n− k − 1 we have

adn−k−1
f g = µk+1(x)∂xk+1 + ϑk+1(x)

where ϑk+1(x) ∈ ∆n−k−1. The Lie bracket with f gives

adn−kf g =
k∑
j=1

[
fj(x1, . . . , xk+1)∂xj

, µk+1∂xk+1 + ϑk+1

]
+

n∑
j=k+1

[
fj(x1, . . . , xj+1)∂xj

, µk+1∂xk+1 + ϑk+1

]
= −µk+1(x)

k∑
j=1

∂fj
∂xk+1

∂xj + ϑ̃k,

where ϑ̃k(x) ∈ ∆n−k = span
{
∂xk+1 , . . . , ∂xn

}
. This is

due to the following facts:
(i) adn−k−1

f g ∈ ∆n−k;

(ii) fj(x1, . . . , xj+1)∂xj ∈ ∆n−k, k + 1 ≤ j ≤ n;

(iii) [fj(x1, . . . , xk+1)∂xj
,∆n−k] = fj(·)[∂xj

,∆n−k];

(iv) [∆n−k,∆n−k] ⊆ ∆n−k.

A simple calculation shows (using items (i)-(iv)) that[
adn−kf g, adn−k−1

f g
]

= µ2
k+1(x)

k∑
j=1

∂2fj
∂x2

k+1

∂xj + ϑ̂k(x),

where ϑ̂k ∈ ∆n−k = span
{
∂xk+1 , . . . , ∂xn

}
.

The involutivity of Dn−k+1 implies that[
adn−kf g, adn−k−1

f g
]

=
n∑
j=k

δn−jad
n−j
f g

= δn−kad
n−k
f g + ϑ̆k

for some smooth functions δ0, δ1, . . . , δn−k.
Comparing the two Lie brackets it follows that

(µk+1)2 ·
k∑
j=1

∂2fj
∂x2

k+1

∂xj
= −(µk+1)δn−k ·

k∑
j=1

∂fj
∂xk+1

∂xj
,

that is, the condition

(F£k+1) =⇒ ∂2fj
∂x2

k+1

= γn−k(x)
∂fj
∂xk+1

, 1 ≤ j ≤ k.

Notice that γn−k = γn−k(x1, . . . , xk+1) depends exclusively
on the variables x1, . . . , xk+1 since the components fj de-
pend only on such variables. A double integration shows that
there exist functions Fj(x) and νj(x), 1 ≤ j ≤ k such that

fj(x1, . . . , xk+1) = Fj(x1, . . . , xk) + νj(x1, . . . , xk)Θ(x)

where

Θ(x) =
∫ xk+1

0

exp
(∫ t

0

γn−k(x1, . . . , xk, s)ds
)

dt

depends exclusively on γn−k but not on the components.
This achieves the proof of the claim.
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