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Design of Window Comparators for Integrator-Based Capacitor Array Testing
Circuits

Amit Laknaur and Haibo Wang

Department of Electrical and Computer Engineering
Southern Illinois University, Carbondale, IL 62901

Abstract

This paper investigates the impact of window compara-
tor threshold variations on the performance of integrator-
based programmable capacitor array (PCA) testing cir-
cuits. It presents two window comparator designs that take
different approaches to address the problem of comparator
threshold variations in PCA testing. The first comparator
design utilizes a fully symmetric circuit structure to achieve
small threshold deviations. The second design relies on
increasing testing time to reduce the effect of comparator
threshold variations. Experimental results are presented to
compare the performance of the two design approaches.

1. Introduction

Due to their numerous advantages, reconfigurable ana-
log circuits have attracted significant research interests and
development efforts. In many reconfigurable analog cir-
cuits, programmable capacitor arrays (PCAs) are used as an
essential mechanism to configure circuit parameters. The
popularity of using PCAs comes from the fact that PCAs
can be easily programmed with high accuracy and large
ranges.

An n-bit PCA has 2n possible configurations. Exhaus-
tively testing each configuration leads to lengthy testing pro-
cesses. To address this problem, PCA built-in-self-testing
(BIST) circuits, consisting of switched-capacitor (SC) inte-
grators and window comparators, have been proposed [3]
along with the study of the impact caused by non-ideal ef-
fects of SC integrators on the performance of PCA BIST
circuits. However, window comparators were assumed as
ideal components in the previous study. This work inves-
tigates how window comparator threshold deviations affect
the efficiency of integrator-based PCA BIST circuits.

Previously, various window comparators have been pro-
posed for analog testing purposes. The circuit presented

†This material is based upon work supported by the National Science
Foundation under Grant No. 0448357.

in [11] utilizes two operational amplifiers (op-amps) and a
set of resistors which govern comparator threshold voltage.
Comparators in [8, 5] are designed to take differential in-
puts and monitor their common mode levels. Both circuits
utilize differential input pairs as pre-amplifiers and the out-
puts of the pre-amplifiers are digitized by inverters. Com-
parators in [1, 2] are based on a folded cascoded op-amp
topology. Asymmetric differential pairs are intentionally
used at the input stage for introducing input offset voltage,
which is translated into comparator threshold. In most of
the previous work, fewer efforts were devoted to minimiz-
ing comparator threshold variations. This paper addresses
the lack of such discussion in window comparator design,
and presents two comparator circuits that take different ap-
proaches to address the effects of comparator threshold vari-
ations on PCA testing.

The rest of the paper is organized as follows. Sec-
tion 2 explains PCA implementation and summarizes its
fault models. Integrator-based PCA testing techniques are
also explained in this section. Section 3 discusses the im-
pact of comparator threshold variations on the efficiency
of integrator-based PCA testing circuits. A case study is
performed to show how to minimize the impact of com-
parator threshold deviations during PCA testing. Section 4
presents two window comparator circuits for being used in
PCA BIST circuits. Experimental results are presented in
Section 5, and the paper is concluded in Section 6.

2. Preliminaries

2.1 PCA fault models

Normally an n-bit PCA contains n binary weighted ca-
pacitor branches connected in parallel. A branch is made
up of a group of identical capacitors, which are referred to
as unit capacitors. The different parametric faults that could
occur in a PCA are explained below. Leakage paths may ex-
ist in the isolation layer between the two terminals of a unit
capacitor. This leads to a leakage fault whose fault model is
given in Figure 1(a). Due to excess metal or dust, two inter-
connects ideally isolated may become connected through a
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resistive path. This is called bridge fault and its fault model
is shown in Figure 1(b). Switches used in PCAs are nor-
mally implemented using transmission gates. Their switch-
ing characteristics can be deteriorated by excessively large
on-resistance or excessively small off-resistance [7]. These
two types of faults are referred to as large on-resistance fault
and small off-resistance fault (as in Figure 1(c) and (d), re-
spectively). For more discussion of PCA faults, please refer
to literature [3].

(a) (b) (c) (d)

C Rleak

Rb

Ron
Roff

Figure 1. PCA parametric faults.

2.2 Integrator-based PCA BIST circuit

A previously proposed integrator-based PCA BIST cir-
cuit [3] is depicted in Figure 2. Assuming CA = CB and
both fault-free, the output of the integrator should be ideally
at signal ground level as the net charge transferred from CA

and CB to Cf is zero during each integration cycle. Other-
wise charge will be accumulated at capacitor Cf , resulting
in the integrator output to deviate from signal ground level.
During the testing process, the integrator output is fed to
a window comparator after a fixed number of integration
cycles. If the difference between signal ground and the in-
tegrator output is within the range of [−Vε, Vε], where Vε is
referred to as the window comparator threshold, the com-
parator output is logic 1 to indicate that the circuit is fault-
free and else, is logic 0 marking the occurrence of faults.
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Figure 2. Integrator-based PCA BIST circuit.

3. Impact of window comparator threshold vari-
ations

Practically, the integrator output in fault-free scenarios
will not be exactly at signal ground level, due to non-ideal
circuit effects, such as channel charge injection and para-
sitic capacitance. Typically, the maximum difference be-
tween signal ground and the integrator output in fault-free

scenarios can be estimated (e.g. by Monte Carlo or cor-
ner simulation). For the convenience of discussion, we use
V max

k to denote the largest possible integrator output in
fault-free scenarios after k integration cycles. Ideally, win-
dow comparator threshold Vε can be selected to equal V max

k

when designing PCA BIST circuits. However, due to pro-
cess variations, realized comparator thresholds are random
values which are distributed around the designed thresh-
old. As these type of problems are typically studied us-
ing statistical distributions, they are modeled by mean val-
ues and standard deviations. If the comparator is designed
such that the mean value of its threshold, denoted as V̄ε,
is equal to V max

k , the occurrence of process variations that
lead to smaller Vε will result in good devices being labeled
as faulty.

To address the above problem, V̄ε can be selected slightly
larger than V max

k . This reduces the likelihood of throwing
good devices as bad components, but degrades the capa-
bility of detecting parametric faults. How to optimally se-
lect V̄ε is a subject of yield analysis or product profitability
study. In this work, we take a simple approach that selects
V̄ε larger than V max

k by 3·vσ, where vσ is the standard devi-
ation of the comparator threshold. Assuming that the vari-
ation of the comparator threshold follows Gaussian distri-
bution, this approach guarantees that the possibility to label
a good device faulty is smaller than 0.3% [6]. To more ef-
fectively explain how comparator threshold variations affect
the efficiency of integrator-based PCA testing circuits, we
conduct a case study to show the relation between standard
deviations of comparator threshold and detectable ranges of
large on-resistance faults. A large on-resistance fault in-
creases circuit RC delay and, consequently, prevents the
capacitor from getting fully charged (or discharged) dur-
ing the corresponding clock phase. As a result, less charge
is transferred from the faulty input branch to the integra-
tor feedback capacitor. The same effect can be achieved
by eliminating the large on-resistance and reducing the ca-
pacitor value. Therefore, a large on-resistance fault can be
modeled by a fault-free circuit with an attenuated capacitor
as shown in Figure 3.

R

C

on

V α CV .
in inVc

φ φ1 2 φ φ1 2

k

Figure 3. Modeling large on-resistance faults
by capacitor attenuation.

The attenuation factor α, which is the ratio of the re-
duced capacitor value over its original value, is derived as
follows. We use V k

c to denote the voltage across capacitor
C in Figure 3 after φ1 phase of the kth clock cycle. Then,
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we have the relation:

V k
c = Vin · (1 − μ) + V k−1

c · μ2 (1)

where μ = e
−T

2·Ron·C and T is the period of the clock used
in the circuit. This recursive equation can be re-written as:

V k
c = Vin · (1 − μ) · 1 − μ2·(k+1)

1 − μ2
+ V 0

c · μ2·k (2)

where V 0
c is the initial voltage across capacitor C. μ is very

small when the value of Ron ·C is much less than T
2 (which

is the case when we study for the minimum detectable on-
resistance faults). Consequently, the above equation can be
approximated as:

V k
c = Vin · (1 − μ) (3)

During the kth clock cycle charge transferred by capacitor
C can be calculated as:

Q = C · V k
c · (1 − μ) = C · Vin · (1 − μ)2 (4)

Hence, the capacitor attenuation factor is:

α = (1 − μ)2 (5)

Figure 4 compares the amounts of transferred charge ob-
tained from circuit simulation and estimation. It shows that
the capacitor attenuation factor accurately models the effect
of Ron when Ron · C is relatively small.
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Figure 4. Comparison of predicted and simu-
lated charge transfer.

Without losing generalities, we assume a large on-
resistance fault occurs at PCA CA in Figure 2. Therefore,
CA can be replaced by α ·CA in circuit analysis. As a result
of the fault, the net charge accumulated on Cf during one
integration cycle is:

ΔQ = α · CA · Vin − CB · Vin (6)

The integrator output after k integration cycles can be cal-
culated as:

V f
k =

ΔQ · k
Cf

(7)

The previous discussion indicates that the probability of de-
tecting this fault is greater than 0.997 if V f

k > V max
k +6·vσ.

From this inequality, we can solve the minimum detectable
large on-resistant fault as:

Ron =
−T

2 · CA
· 1
ln(1 −√

αmin)
(8)

where αmin is:

αmin = 1 − (V max
k + 6 · vσ)

Vin
· Cf

CB
(9)

Assigning CA = CB = 20pF and Cf = 8pF , the
estimated minimum detectable large on-resistance faults
are plotted in Figure 5. Note that the reported de-
tectable faults are normalized by the maximum allowed on-
resistance value Rmax, which is defined as the maximum
on-resistance value that guarantees at the end of a charg-
ing cycle the voltage across the capacitor reaching 99.9%
of its ideal value. Three comparator threshold standard de-
viations, vσ = 10mV, 20mV, and 40mV, are selected in the
study and their corresponding detectable faults are plotted
using solid, dot, and dash lines, respectively, in Figure 5.
It is not a surprise to see that the fault detection capability
is degraded when vσ is large. The plot also reveals that in-
creasing integration cycles can partially overcome the neg-
ative impact caused by large vσ . For example, to detect a
large on-resistance fault that has the value of 1.2 · Rmax,
if comparator vσ is 10mV, only 4 integration cycles are
needed in the testing process. However, if the comparator
vσ is 40mV, 14 integration cycles have to be performed to
achieve the same level of fault detection capability. With
the increase of integration cycles, comparator thresholds,
indicated by solid lines with legends in Figure 5, have to be
increased accordingly.
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Figure 5. Detectable large on-resistance
faults v.s. integration cycles.

4. Design of analog window comparators

As discussed in the previous section, excellent PCA fault
detection capability can be achieved by either using com-

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06) 
0-7695-2523-7/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 29, 2009 at 11:25 from IEEE Xplore.  Restrictions apply.



parators with small threshold deviations or increasing inte-
gration cycles. The latter relaxes the requirement on com-
parator vσ but results in large comparator thresholds. This
section presents two comparators that fit in the above two
design approaches. The first comparator utilizes a circuit
topology that is similar to a fully symmetric operational
transconductance amplifier (OTA). With proper biasing and
device matching techniques, it has the potential to achieve
very small vσ . The second comparator is based on inverter
circuits. It can easily realize large comparator thresholds
but with significant deviations.

4.1 OTA-based comparator

The OTA-based comparator, as shown in Figure 6, is
comprised of a differential input pair and four current mir-
rors. Transistors N1 and N2 constitute the differential pair
and their tail current is provided by transistor N3. PMOS
devices P1 ∼ P6, which have the same size, implement two
sets of PMOS current mirrors; while, transistors N4 and N7,
N5 and N6, realize two NMOS current mirrors. The size of
transistors N6 and N7 is m times larger than that of N4

and N5. Assume the tail current flowing through N3 is Ib.
When both comparator inputs are at the same level, transis-
tors N1, N2, N4, N5, and P1 ∼ P6 are in their saturation
regions, and all the currents flowing through these transis-
tors are Ib

2 . Devices N6 and N7, working in their linear
regions, pull voltages at nodes A and B close to ground,
driving the comparator output to logic 1. When there is a
difference between the comparator inputs, currents flowing
through devices N1 and N2 become Ib

2 + i and Ib

2 − i, or
vice versa. It is easy to see that node A or B switches to
high voltage level if

Ib

2
+ i > m · (Ib

2
− i) (10)

Assuming that the relation between IDS and VGS of N1

and N2 follows perfect square-law, the comparator thresh-
old can be derived as:

Vε =

√
Ib

μn · Cox · (W/L)1,2
·
√

1 −
√

1 − (
m − 1
m + 1

)2

(11)
where μn is the electron mobility; Cox is the device unit
gate capacitance; and (W/L)1,2 is the device size of N1

and N2.
The proposed circuit is similar to a previous current win-

dow comparator [9] in the aspect of comparing current sig-
nals at high impedance nodes. However, the proposed cir-
cuit takes voltage signals as input, needs only one refer-
ence (instead of two as required in [9]), has a symmetric
structure and several other advantages. First, the compara-
tor threshold can be controlled by adjusting three parame-
ters m, Ib, and (W/L)1,2 resulting in significant flexibility

N1 N2

P1 P2

N3N4

P3 P4

N5N6

P5

N7

P6

OUTA
B

Vin Vref

Vbias

50/1 50/1 50/1 50/1 50/1 50/1

25/1 25/1
25/1 25/1

100/1

100/1100/1

Figure 6. OTA-based window comparator.

during the circuit optimization phase. Second, if N3 gate
voltage Vbias is provided externally or by a biasing circuit
whose output level can be regulated externally, the com-
parator threshold can be adjusted in the field. This feature
can be exploited to fine-tune the comparator threshold to
adapt to varying performance specifications, or to combat
the effects of device aging or changing environment. Third,
the fully symmetric structure of the circuit reduces the im-
pacts of process variations on circuit performance. In addi-
tion, if proper techniques are used in the design to minimize
device mismatches, the comparator threshold variation can
be controlled at small values. Monte Carlo simulations have
have been performed for the circuit shown in Figure 6. It
shows the standard deviation of the comparator is around
3mV.

4.2 Inverter-based comparators

By exploiting the fact that inverter threshold can be ad-
justed through changing device size ratios, inverter circuits
have been used as analog comparators [10] or even quantiz-
ers in analog-to-digital converter design [4]. Such circuits
have small footprints and do not require reference signals,
but suffer the drawback of large threshold variations. In the
PCA testing circuits, this drawback can be partially com-
pensated by increasing integration cycles.

A straightforward implementation of inverter-based win-
dow comparators is shown in Figure 7(a). It contains two
inverters with different threshold voltages (denoted as VH

and VL; VH > VL). If its analog input is within the range
from VL to VH , the comparator output is logic 1; else it is
0. To use this type of comparators the integration cycles
must be selected relatively large, implying that compara-
tors must have large thresholds. If signal ground level is
VDD

2 , thresholds of the comparator shown in Figure 7(a) are
VDD

2 − VL and VH − VDD

2 . Theoretically, the maximum
and minimum inverter thresholds are VDD − |Vtp| and Vtn,
respectively. Therefore, the maximum achievable window
comparator threshold is either VDD

2 − Vtn or VDD

2 − |Vtp|.
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With low power supply, the maximum comparator thresh-
old of the straightforward design may not be large enough.
Hence, level shifters can be used to shift the analog input be-
fore it is digitized by inverters as shown in Figure 7(b) and
(c). Note that the inverter-nor gate is omitted in Figure 7(b)
and (c) for the reason of conciseness. The level shifters are
implemented using PMOS or NMOS source followers de-
pending on the desired shifting directions. The use of level
shifters helps avoid inverters whose thresholds are close to
their theoretical limitations: VDD − |Vtp| or Vtn. Such in-
verters normally require large device sizes and, hence, are
preferred to be avoided.

(a) (b)

(c)

Vin

Vin

Vin

O

P1

P2 N1

N2

P1

P2 N1

N2

A

B

A B

BA

VL

VH

Figure 7. Inverter-based window compara-
tors.

The impact on comparator threshold variations caused
by adding level shifters has to be carefully treated in the
design process. For level shifters in Figure 7(b), their small
signal gains can be derived as:

G =
1

1 +
√

(W/L)2
(W/L)1

(12)

where (W/L)1 and (W/L)2 are transistor sizes of N1 and
N2 for the NMOS level shifter, or P1 and P2 for the PMOS
level shifter. Since the input-referred threshold deviation is
inversely proportional to the small signal gain of the level
shifter, G is preferred to be as close to 1 as possible. This
implies that the ratio of (W/L)2

(W/L)1
should be selected small in

the design process. This observation is confirmed by sim-
ulation results, which are represented by the two dot lines
in Figure 8. In the legends of the figure, P-INV and N-INV
stand for inverters with PMOS and NMOS level shifters,
respectively.

For level shifters in Figure 7(c), their small signal gains
are determined by the transconductance of the driving de-
vices (N1 or P1) and output resistance of both driving and
load transistors in the level shifter. Changing the ratio of
(W/L)1 over (W/L)2 has little impacts on their small sig-
nal gains. In this scenario, devices N1 and N2 (as well as
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Figure 8. Threshold variations of inverter-
based window comparators.

P1 and P2) should have the same size in order to minimize
mismatches between N1 and N2. As shown in Figure 8,
the comparator in Figure 7(c) exhibits the smallest thresh-
old deviation when (W/L)1 = (W/L)2. From the given
simulation data, the comparator in Figure 7(c) always has
smaller variations than the circuit given in Figure 7(b). This
fact is partially due to the process variation and device mis-
match profile used in our simulation. It may vary with dif-
ferent fabrication processes.

5. Experimental results

Circuit simulations are performed to investigate the per-
formance of the two comparators in PCA testing opera-
tions. To demonstrate the validity of the proposed BIST
techniques, circuit simulations are performed to detect PCA
faults using the proposed testing method. Each PCA con-
tains 8 binary-weighted capacitors and its value can be pro-
grammed from 1 to 255 unit capacitance, which is 400fF.
CAB switches are implemented using CMOS transmission
gates. The sizes of PMOS and NMOS transistors in the
transmission gate are selected to be the same (10μ/0.4μ)
in order to minimize channel charge injection and clock
feedthrough. The clock frequency used in the experiment
is 1MHz, and the power supply is 3.3V. To reduce simu-
lation time, an op-amp macromodel is used in simulation.
Its key performance parameters are summarized as follows:
Low frequency gain = 74dB, Unit-gain frequency = 10MHz,
Common mode rejection ratio = 70dB, Input offset volt-
age = 4mV, Slew Rate = 20V/μs, Settling time (0.1%) =
0.5μs, Power supply = 3.3V and Output swing range =
0.18V ∼ 3.1V

Two other parameters which need to be determined in
the experimental setup are, the value of feedback capaci-
tor Cf and the number of integration cycles. We propose
two approaches for this purpose. The first method, called
comparator-oriented approach, starts from the threshold of
the analog window comparator. It is preferred when the
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selection of comparator threshold is restricted and the com-
parator circuit exhibits small threshold variations. Assume
that the threshold and its standard deviation of the compara-
tor are Vε and vσ , respectively. For each testing configura-
tion, the values of Cf and k should be selected such that af-
ter k integration cycles the integrator output reaches a level
which is very close to, but does not exceed, Vε−3·vσ . Since
Cf has discrete values, a computer program can be used to
search the combination of Cf and k that leads to the inte-
grator output coming close to Vε − 3 · vσ the most. When
multiple such combinations exist, the one with the small-
est k value is preferred. The second method, referred to as
maximum-threshold approach, is suitable for BIST circuits
using inverter-based window comparators. In such circuits,
the thresholds of comparators are desired to be as large as
possible. The large comparator threshold will allow more
integration cycles, which consequently leads to more effec-
tive diminution of the negative impact of comparator thresh-
old variations. Assume the maximum output of the op-amp
while it maintains its linearity is V max

amp . This value is also
the maximum output of the integrator circuit before it start-
ing to lose its linearity. From the discussion in Section 3,
we can conclude that the comparator threshold should be
selected as V max

amp − 3 · vσ . In addition, the maximum al-
lowed integrator output in fault-free scenarios should not
exceed V max

amp − 6 · vσ. Therefore, this criterion can be used
to select the combination of Cf and k for the BIST circuit
configuration.

The above approaches have been applied with the OTA-
based and inverter(INV)-based comparators, respectively.
Table 1 gives the ranges of parametric faults detected by
the two comparators. While Table 2 shows the number of
integration cycles required for the detection of arbitrarily
selected parametric faults. Clearly the INV-based compara-
tor requires more number of to produce the same results as
the OTA-based comparator.

Table 1. Ranges of detectable faults.
Ranges of detectable faults

Parametric Faults OTA-based INV-based
Leakage (Rleak) 0 ∼ 770KΩ 0 ∼ 430.5KΩ

Bridge (Rb) 0 ∼ 175MΩ 0 ∼ 12.25MΩ

Large on-resist.(Ron) 200KΩ ∼ ∞ 302KΩ ∼ ∞
Small off-resist.(Roff ) 0 ∼ 275MΩ 0 ∼ 7MΩ

6. Concluding remarks

In this work, we studied the problem of how window
comparator threshold variations affecting the efficiency of
PCA BIST circuits. Principles obtained in this study can be
potentially applied to other analog BIST circuits that con-
tain window comparators. To address the issue of com-

Table 2. Comparison of integration cycles.
Integration cycles required for detecting specific faults
Specific fault values OTA-based INV-based
Rleak = 300KΩ 5 21
Rb = 5MΩ 2 7
Ron = 500KΩ 3 6
Roff = 5MΩ 2 9

parator threshold variations in PCA testing, two window
comparator circuits are developed. The first comparator has
a fully symmetric structure which results in small thresh-
old variations. This design also has several other advan-
tages, making it suitable for a wide range of testing appli-
cations. The second design is based on digital inverter cir-
cuits, which has a very small footprint. It relies on increas-
ing testing time to reduce the effects of its large threshold
deviations. Circuit simulations are conducted to investigate
the performance of PCA BIST circuits with using the above
two design approaches. Experimental results provide a use-
ful comparison that may help the selection of proper design
approaches in the development of PCA testing circuits.
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