
Southern Illinois University Carbondale
OpenSIUC
Miscellaneous (presentations, translations,
interviews, etc) Department of Mathematics

12-2009

State Linearization of Control Systems: An Explicit
Algorithm
Issa Amadou Tall
Southern Illinois University Carbondale, itall@math.siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_misc
Published in Tall, I. A. (2009). State linearization of control systems: An explicit algorithm.
Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th
Chinese Control Conference CDC/CCC 2009, 7448 - 7453. doi: 10.1109/CDC.2009.5400494. ©2009
IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE. This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder.

This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in
Miscellaneous (presentations, translations, interviews, etc) by an authorized administrator of OpenSIUC. For more information, please contact
opensiuc@lib.siu.edu.

Recommended Citation
Tall, Issa Amadou, "State Linearization of Control Systems: An Explicit Algorithm" (2009). Miscellaneous (presentations, translations,
interviews, etc). Paper 44.
http://opensiuc.lib.siu.edu/math_misc/44

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_misc?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_misc?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_misc?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_misc/44?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


State Linearization of Control Systems: An Explicit Algorithm

Issa Amadou Tall

Abstract— In this paper we address the problem of lineariza-
tion of nonlinear control systems using coordinate transforma-
tions. Although necessary and sufficient geometric conditions
have been provided in the early eighties, the problem of finding
the linearizing coordinates is subject to solving a system of
partial differential equations and remained open 30 years later.
We will provide here a complete solution to the problem
by defining an algorithm allowing to compute explicitly the
linearizing state coordinates for any nonlinear control system
that is indeed linearizable. Each algorithm is performed using
a maximum of n − 1 steps (n being the dimension of the
system) and they are made possible by explicitly solving the
Flow-box or straightening theorem. The problem of feedback
linearization is addressed in a companion paper. A possible
implementation via software like mathematica/matlab/maple
using simple integrations, derivations of functions might be
considered.

I. INTRODUCTION

IN the late seventies and early eighties the problem of
transforming a nonlinear control system, via change of

coordinates (and feedback), into a linear one has been
introduced and has ever since been referred as linearization
(feedback linearization). Of course linear systems constitute
the first class of control systems to which feedback classi-
fication was applied and a complete picture made possible.
The controllability, observability, reachability, and realization
of linear systems have been expressed in very simple alge-
braic terms. Another crucial property of linear controllable
systems is that they can be stabilized by linear feedback
controllers. Because of the simplicity of their analysis and
design; because several physical systems can be modeled
using linear dynamics, and due to the observation that some
nonlinear phenomena are just hidden linear systems, it is
thus not surprising that the linearization problems were
(and still are) of paramount importance and have attracted
much attention. Uncovering the hidden linear properties of
nonlinear control systems turns out to be useful in analyzing
the latter systems. The downside of linearization is that
some important properties of a nonlinear system, like global
controllability, might be lost by the operation. To give a brief
description of the linearization problems we will start first by
recalling some basic facts about linear systems. We consider
linear systems of the form

Λ :

 ẋ = Fx+Gu = Fx+
m∑
i=1

Giui,

y = Hx
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where x ∈ Rn, Fx and G1, . . . , Gm are, respectively, linear
and constant vector fields on Rn, Hx a linear vector field
on Rp, and u = (u1, . . . , um)> ∈ Rm. To any linear
system Λ we can attach two geometric objects, namely, the
controllability space

Cn = span
[
GFG . . . Fn−1G

]
and the observability space

On = span
[
H> (HF )> . . . (HFn−1)>

]>
.

The system Λ is controllable (resp. observable) if and only
if dim Cn = n (resp. dimOn = n). By a linear change of
coordinates x̃ = Tx, where T is an n× n invertible matrix,
the system Λ is transformed into a linear equivalent one

Λ̃ :

{
˙̃x = F̃ x̃+ G̃v,

ỹ = H̃x̃

with F̃ = TFT−1, G̃ = TG and H̃ = HT−1. The
controllability space C̃n and observability space Õn of the
system Λ̃ are related to those of Λ by C̃n = TCn and
Õn = OnT−1. Thus the dimensions of Cn and On, (and
consequently the controllability and observability) are two
invariants of the state classification of linear systems. The
problem of classification of linear systems via state trans-
formation is to find a linear change of coordinates x̃ = Tx
that maps Λ into a simpler linear system Λ̃. In what follows
we will address only the single input case except otherwise
stated and we will ignore the output. The general case of
multi-input systems will be addressed in another paper. It is
a classical result of the linear control theory (see, e.g., [1],
[6]) that any linear controllable system is state equivalent to
the following form:

Λλ : ẇ = Aλw + bu ,



ẇ1 = λ1w1 + w2

ẇ2 = λ2w1 + w3

· · ·
ẇn−1 = λn−1w1 + wn

ẇn = λnw1 + u,

(I.1)

where

Aλ =


λ1 1 0 · · · 0
λ2 0 1 · · · 0
...

...
...

. . .
...

λn−1 0 0 · · · 1
λn 0 0 · · · 0

 and b =


0
0
...
0
1

 .

If λ1 = · · · = λn = 0, the matrix Aλ is simply denoted by A
and the system Λλ is called Brunovský canonical form ΛBr.
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A. Equivalence and State Linearization Problem.

Consider a C∞-smooth control-affine system of the form

Σ : ẋ = f(x) + g(x)u, x ∈ Rn

around the equilibrium that we assume throughout to be
(0, 0) ∈ Rn × R, that is, f(0) = 0. Let

Σ̃ : ˙̃x = f̃(x̃) + g̃(x̃)v, x̃ ∈ Rn

be another C∞-smooth control-affine system. The systems
Σ and Σ̃ are called state equivalent if there exist coordinates
change x̃ = φ(x) that maps Σ into Σ̃, that is, such that{

dφ(x) · f(x) = f̃(φ(x))
dφ(x) · g(x) = g̃(φ(x)).

We will briefly write φ∗Σ = Σ̃. In the late seventies Krener
[7] described, in terms of their associated distributions,
necessary and sufficient conditions for two systems Σ and
Σ̃ to be state equivalent. He then derived as a corollary the
answer to the following problem.
S-Linearization Problem. When does there exist a diffeo-
morphism w = φ(x) giving rise to new coordinates system
w = (w1, . . . , wn)> in which the transformed system φ∗Σ
takes the linear form Λ : ẇ = Fw + Gu, w ∈ Rn ? He
proved the following [7] (see also [3], [4], [5], and [11]).

Theorem I.1 A control-affine system Σ : ẋ = f(x) + g(x)u
is locally state equivalent to a linear controllable system
Λ : ẇ = Fw +Gu if and only if
(S1) dim span {g(x), adfg(x), . . . , adn−1

f g(x)} = n;

(S2) [adqfg, ad
r
fg] = 0, 0 ≤ q < r ≤ n.

Above the Lie brackets are defined recursively as

ad0
fg = g, adfg = [f, g], . . . , adlfg = [f, adl−1

f g], l ≥ 2.

Notice that if w = φ(x) linearizes the system Σ, then the
following systems of partial differential equations hold{

dφ(x) · f(x) = Fφ(x)
dφ(x) · g(x) = G.

Although the conditions (S1) and (S2) stated in Theorem I.1
did provide a way of testing the state linearizability of
a system, they offer little on how to find the linearizing
change of coordinates φ(x) except for solving the systems
of partial differential equations (PDEs) which is, in general,
not straightforward. Remark that, even in the single-input
case, the solvability of the PDEs is equivalent of finding a
function h with h(0) = 0 such that

Lgh = 0, LgLfh = 0, . . . , LgLn−2
f h = 0, LgLn−1

f h 6= 0,

where for any vector field ν and any function h, we have
denoted Lνh = ∂h

∂xν(x), and iteratively, Llνh = Lν(Ll−1
ν h).

We propose here to give a complete solution without solv-
ing the partial differential equations. We will provide an
algorithm giving explicit solutions. Recall that we have
previously obtained explicit solutions for few subclasses

of control-affine systems, namely strict feedforward forms,
strict-feedforward nice and feedforward forms, for which
linearizing coordinates were found without solving the corre-
sponding PDEs (see [12], [15]). Indeed, for those subclasses
we exhibited algorithms that can be performed using a
maximum of n(n+1)

2 steps each involving composition and
integration of functions only (but not solving PDEs) followed
by a sequence of n + 1 derivations in the case of feedback
linearizability. What played a main role in finding those
algorithms were the strict feedforward form structure, that
is, the fact that each component of the system depended
only on higher variables. In this paper we consider general
control-affine systems for which we provide a linearizing
algorithm (see [17] for feedback linearizing algorithm) that
can be implemented using a maximum of n steps. These
algorithms are based on the explicit solving of the flow-
box theorem [16] and are completely different from those
outlined in [12], [15] (see also [9], [10]).

B. Notations and Definitions

For simplicity of exposition we consider single-input con-
trol systems

Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R.

The case of multi-input systems is more involved and will be
addressed somewhere else. Let 0 ≤ k ≤ n− 1 be an integer.
We say that Σ is quasi k-linear if

g(x) = b, adfg(x) = Ab, . . . , adn−k−1
f g(x) = An−k−1b,

where (A, b) is the Brunovský canonical pair. To fix the
notation we will denote hereafter the coordinates in which
the system is quasi k-linear by the bolded variables xk =
(xk1, . . . ,xkn)> and the system by Σk, where k = k. It
follows easily that a quasi k-linear system takes the form

Σk :



ẋkj = Fkj(xk1, . . . ,xkk+1)
if 1 ≤ j ≤ k
ẋkj = Fkj(xk1, . . . ,xkk+1) + xkj+1

if k + 1 ≤ j ≤ n− 1
ẋkn = Fkn(xk1, . . . ,xkk+1) + u.

A more compact representation of Σk is obtained as

Σk : ẋk = Fk(xk1, . . . ,xkk+1) +Akxk + bu, xk ∈ Rn,

where Akxk = (0, . . . , 0,xkk+2,xkk+3, . . . ,xkn, 0)> is a
vector whose last and first k components are zero. If the
vector field Fk is affine in the variable xkk+1, that is,
decomposes as

Fk(·) = fk(xk1, . . . ,xkk) + xkk+1gk(xk1, . . . ,xkk)

we then simply write Σk = Σaff
k .
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II. MAIN RESULTS

The first result is as follows and states that any S-
linearizable system can be transformed into a linear form
via a sequence of explicit coordinates changes each giving
rise to an quasi k-linear system.

Theorem II.1 Consider a controllable system

Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R.

Assume it is S-linearizable (denote Σ , Σaff
n and x , xn).

There exists a sequence of explicit coordinates changes
φn(xn), φn−1(xn−1), . . . , φ1(x1) that gives rise to a se-
quence of quasi k-linear systems Σaff

n ,Σaff
n−1, . . . ,Σ

aff
0 such

that Σaff
k−1 = φk∗(Σaff

k ) for any 1 ≤ k ≤ n.
Moreover, in the coordinates w , φ1(x1) the system

Σ (actually Σaff
0 ) takes the simpler linear form Λλ where

λ1, . . . , λn are constant real numbers.

The proof of this theorem relies mainly on the flow-box
theorem for which we gave recently explicit solution [16]
(see below) and on Theorem I.1 (S2).

Theorem II.2 Let ν be a smooth vector field on Rn, any in-
teger 1 ≤ k ≤ n such that νk(0) 6= 0 and σk(x) = 1/νk(x).
(i) Define z = φ(x) by its components as following

φj(x) = xj +
∞∑
s=1

(−1)sxsk
s!

Ls−1
σkν

(σkνj)(x)

φk(x) =
∞∑
s=1

(−1)s+1xsk
s!

Ls−1
σkν

(σk)(x)

(II.1)

for any 1 ≤ j ≤ n, j 6= k. The diffeomorphism z = φ(x)
satisfies φ∗(ν) = ∂zk

.
(ii) The diffeomorphism x = ψ(z) given by its components

ψj(z) = zj +
∞∑
s=1

zsk
s!

(
s−1∑
i=0

(−1)iCis∂
i
zk
· Ls−i−1

ν (νj)(z)

)

ψk(z) =
∞∑
s=1

zsk
s!

(
s−1∑
i=0

(−1)iCis∂
i
zk
· Ls−i−1

ν (νk)(z)

)
(II.2)

for any 1 ≤ j ≤ n, j 6= k, is the inverse of z = φ(x), that

is, such that
∂ψ(z)
∂zk

= ν(ψ(z)).

Above, we have adopted the following notation

∂zk
=

∂

∂zk
, ∂zk

· h =
∂h

∂zk
, . . . , ∂izk

· h =
∂ih

∂zik
, i ≥ 2.

A sketch of the proof will be given in Section V along
with few examples. For further details we refer to [16]. The
following remarks that are of paramount importance here.
R1. The expressions above are not series around the origin
or in the variable xk as the coefficients Lsσkν

(σkνj)(x) are
evaluated at x = (x1, . . . , xn) and might well depend on xk.
R2. If the vector field ν is independent of some variable xl
(l 6= k), then the diffeomorphism φ(x) is also independent
of the variable xl (except a linear dependence).
R3. If any of the components of ν(x) is zero, say νj(x) = 0,
then φj(x) = xj .

III. LINEARIZING COORDINATES

In this section we define an algorithm that shows how
to compute the linearizing coordinates for the system. The
algorithm stands also as a proof of Theorem II.1.
A. (S£)-Algorithm. Consider a S-linearizable system

Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R.

Without loss of generality we can assume that g(0) = b =
(0, . . . , 0, 1)>. This algorithm consists of n− 1 steps.
Step 1. Set Σ , Σn and x , xn = (xn1, . . . ,xnn)>. Apply
Theorem II.2 with ν = g(x) to construct a change of coordi-
nates z = φ(x) given by (II.1), such that φ∗(g)(z) = ∂zn.
Such change of coordinates transforms Σ into

Σ̃ : ż = f̃(z) + g̃(z)u = (φ∗f)(z) + (φ∗g)(z)u, z ∈ Rn,

where g̃ = b. Since Σ (hence Σ̃) is S-linearizable, then
Theorem I.1 (S2) is satisfied, which is equivalent to

[adq
f̃
g̃, adr

f̃
g̃] = 0, 0 ≤ q, r ≤ n− 1. (III.1)

Taking q = 0 and r = 1 we get in particular [g̃, adf̃ g̃] = 0
or equivalently (because g̃ = ∂zn)

(S£n) =⇒ ∂2f̃

∂z2
n

= 0.

It follows that f̃ is affine with respect to the variable zn.
Denote xn−1 , z and φn , φ it follows that the change of
coordinates xn−1 = φn(xn) transforms Σn into

Σn−1 :ẋn−1=Fn−1(xn−1) +An−1xn−1 + bu, xn−1 ∈ Rn,

where An−1 ≡ 0 and Fn−1(xn−1) = f̃(xn−1) = φn∗(f).
Moreover, the vector field Fn−1(xn−1) is affine with respect
to the variable xn−1n , zn, that is, decomposes uniquely as

Fn−1(xn−1) = fn−1(xn−11, . . . ,xn−1n−1)
+ xn−1ngn−1(xn−11, . . . ,xn−1n−1).

We deduce that Σn−1 = Σaff
n−1 and Σaff

n−1 = (φn)∗Σaff
n .

Step n− k. Assume that Σaff
n has been taken, via a compo-

sition of diffeomorphisms xk = φk+1 ◦ · · · ◦ φn(x), into the
following system

Σk : ẋk = Fk(xk) +Akxk + bu, xk ∈ Rn,

where Akxk = (0, . . . , 0,xkk+2,xkk+3, . . . ,xkn, 0)>, and
that the vector field Fk(xk) is affine with respect to the
variable xkk+1, that is, it decomposes uniquely as

Fk(xk) = fk(xk1, . . . ,xkk) + xkk+1gk(xk1, . . . ,xkk).

Once again reset the variable x , xk and denote Σk simply
by Σ : ẋ = f(x) + g(x)u with g(x) = b and

f(x) = Fk(xk) +Akxk

= fk(x1, . . . , xk) + xk+1gk(x1, . . . , xk) +Akx.

Notice that in these coordinates

g = ∂xn
, adfg = −∂xn−1 , . . . , ad

n−k−1
f g = (−1)n−k−1∂xk+1
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which implies that adn−kf g = (−1)n−kgk(x1, . . . , xk). We
deduce from Theorem I.1 (S1) that the vector field

ν(x) = gk(x) = (gk1(x1, . . . , xk), . . . , gkn(x1, . . . , xk))>

is nonsingular in Rn and depends exclusively on the variables
x1, . . . , xk. By Theorem II.2 we can construct a change of
coordinates z = φ(x) such that φ∗(ν)(z) = ∂zk

. Moreover
the components of φ are such that

φj(x) = xj + ϕj(x1, . . . , xk), 1 ≤ j ≤ n. (III.2)

This change of coordinates transforms Σ into

Σ̃ : ż = f̃(z) + g̃(z)u = (φ∗f)(z) + (φ∗g)(z)u

where g̃(z) = (φ∗g)(z) = (0, . . . , 0, 1)> and

f̃(z) = (φ∗fk)(z) + [zk+1 − ϕk+1(φ−1(z))](φ∗gk)(z)
+(φ∗(Akx))(z).

Because the k first components of Akx are zero, then (III.2)
implies (φ∗(Akx))(z) = Akz. We then deduce that

f̃(z) = Fk−1(z) +Ak−1z

where Fk−1(z) = (φ∗fk)(z) − ϕk+1(φ−1(z))∂zk
depends

exclusively on the variables z1, . . . , zk and

Ak−1z=zk+1∂zk
+Akz = (0, . . . , 0, zk+1, zk+2, . . . , zn, 0)>

is such that the (k − 1) first components are zero. We can
easily check that

g̃ = ∂zn , adf̃ g̃ = −∂zn−1 , . . . , ad
n−k
f̃

g̃ = (−1)n−k∂zk

which implies that adn−k+1

f̃
g̃ = (−1)n−k+1∂zk

· Fk−1(z).
Theorem II.2 (S2) for r = n− k and q = r + 1 yields

[adn−k+1

f̃
g̃, adn−k

f̃
g̃] =

∂2Fk−1(z)
∂z2
k

= 0.

Hence the vector field Fk−1(z) is affine with respect to the
variable zk, that is, decomposes uniquely as

Fk−1(z)=fk−1(z1, . . . , zk−1) + zkgk−1(z1, . . . , zk−1).
(III.3)

We denote xk−1 , z and φk , φ. Thus the change of
coordinates xk−1 = φk(xk) brings the system Σaff

k into

Σaff
k−1 : ẋk−1 = Fk−1(xk−1) +Ak−1xk−1 + bu,

whereAk−1xk−1 = (0, . . . , 0,xk−1k+1, . . . ,xk−1n, 0)> and

Fk−1(xk−1) = fk−1(xk−11, . . . ,xk−1k−1)
+xk−1kgk−1(xk−11, . . . ,xk−1k−1).

Notice that when k = 1, condition (III.3) reduces simply to

F0(z) = z1λ, where λ = (λ1, . . . , λn)>.

This ends the general step and shows that a sequence of
explicit coordinates changes φn(xn), . . . , φ1(x1) can be
constructed whose composition z = φ1 ◦ · · · ◦ φn(xn) takes
the original system Σ into the linear form Λλ of (I.1).
B. Summary of Algorithm. Start with a system

Σ : ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R.

Step 0. Normalize the vector field g 7−→ g = (0, . . . , 0, 1)>.
Apply a linear change of coordinates to transform the lin-
earization such that ∂f

∂x (0) = Aλ.
Step n− k. If the condition

(S£k+1) =⇒ ∂2f

∂x2
k+1

= 0

fails, the algorithm stops: The system is not S-linearizable.
If (S£k+1) holds, then decompose the vector field f as

f(x1, . . . , xk+1) = F (x1, . . . , xk) + xk+1ν(x1, . . . , xk).

Apply Theorem II.2 to construct a change of coordinates
z = φ(x) ∈ Rn that rectifies the nonsingular vector field

ν(x) = ν1(x)∂x1 + · · ·+ νn(x)∂xn ,

that is, such that φ∗(ν)(z) = ∂zk
. Find the transform φ∗Σ

of the system in precedent step. For k = n− 1, n− 2, . . . , 2
repeat Step n−k. End if system is linear or algorithm fails.

IV. EXAMPLES

In what follows we illustrate with few examples.

Example IV.1 Consider a single-input control system

Σ : ẋ = f(x)+g(x)u ,

ẋ1 = x2 − 2x2x3 + x2
3 + 4x2x3u

ẋ2 = x3 − 2x3u
ẋ3 = u

with

f(x) = (x2−2x2x3+x2
3, x3, 0)>, g(x) = (4x2x3,−2x3, 1)>.

We first rectify the vector field g(x). Denote ν(x) = g(x)
and apply Theorem II.2 with n = 3 and σ3(x) = 1. Since

Lν(ν1) = −8x2
3 + 4x2, L

2
ν(ν1) = −24x3, L

3
ν(ν1) = −24,

we have Ls−1
ν (ν1) = 0 for all s ≥ 5 and hence

z1 = φ1(x) = x1 +
∞∑
s=1

(−1)s
xs3
s!

(Ls−1
ν ν1)(x),

= x1 − 4x2x
2
3 − 4x4

3 + 2x2x
2
3 + 4x4

3 − x4
3

= x1 − 2x2x
2
3 − x4

3.

Likewise, Lν(ν2) = −2 and Ls−1
ν (ν2) = 0, s ≥ 3, yielding

z2 = φ2(x) = x2 +
∞∑
s=1

(−1)s
xs3
s!

(Ls−1
ν ν2)(x)

= x2 − x3(−2x3) + (1/2!)x2
3(−2) = x2 + x2

3.

We apply the change of coordinates

z1 = x1 − 2x2x
2
3 − x4

3, z2 = x2 + x2
3, z3 = x3

to transform the original system into

Σ̃ : ż = f̃(z) + g̃(z)u ,

 ż1 = z2 − 2z2z3

ż2 = z3

ż3 = u,

where g̃(z) = (0, 0, 1)> and f̃(z) = (z2 − 2z2z3, z3, 0)>.
The vector field f̃(z) = (z2 − 2z2z3, z3, 0)> decomposes

f̃(z) = (z2, 0, 0)> + z3(−2z2, 1, , 0)>.
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The next step is to rectify ν(x) = (−2z2, 1, 0)>. Theo-
rem II.2 with k = 2 and σ2(z) = 1 yields

w1 = z1 +
∞∑
s=1

(−1)s
zs2
s!
Ls−1
ν (ν1)(z)

= z1 − z2(−2z2) + (1/2!)z2
2(−2) = z1 + z2

2

w2 = z2

w3 = z3.

The system is then transformed, under these change of coor-
dinates, to the linear Brunovský form ΛBr. The linearizing
coordinates for the original system are thus obtained as a
composition of the two-step coordinate changes

w1 = x1 − 2x2x
2
3 − x4

3 + (x2 + x2
3)2 = x1 + x2

2

w2 = x2 + x2
3

w3 = x3.

Of course, these linearizing coordinates could have been
obtained directly or by other methods. The emphasis here is
on the applicability of the method to any linearizable system.

Example IV.2 We consider the following example{
ẋ1 = x2 + ((1/2)x2 − (1/12)x3x4)u ẋ3 = x4 + x4u

ẋ2 = x3 + (1/2)x3u ẋ4 = u.

Because of the strict feedforward structure, we showed in
[12] (using a 4-step algorithm) that the change of coordinates

z1 = x1 − (1/24)
(
12x2x4 − 4x3x

2
4 + x4

4

)
z2 = x2 − (1/2)

(
x3x4 − (1/3)x3

4

)
z3 = x3 − (1/2)x2

4

z4 = x4

(IV.1)

linearizes the system. We can recover such coordinates
directly by applying the algorithm given in the proof. Denote
by f(x) = (x2, x3, x4, 0)> and

ν(x) , g(x) = ((1/2)x2 − (1/12)x3x4, (1/2)x3, x4, 1)> .

The first step consists of rectifying the control vector field
via Theorem II.2. Since ν3 = 1, hence σ3 = 1 we have

Lν(ν1)=(1/2) (x3/2)−(1/12)
(
x2

4 + x3

)
=(1/6)x3−(1/12)x2

4,

and L2
ν(ν1) = 1

6x4− 1
6x4 = 0, i.e., Lsν(ν1) = 0, s ≥ 2. Thus

φ1(x) = x1 − x4ν1(x) + (1/2)x2
4Lν(ν1)

= x1 − (1/2)x2x4 + (1/6)x3x
2
4 − (1/24)x3

4.

Also Lν(ν2)= 1
2x4, L2

ν(ν2)= 1
2 and Lsν(ν2)=0, s ≥ 3 implies

φ2(x) = x2 − x4ν2(x) + (1/2)x2
4Lν(ν2)− (1/6)x3

4L
2
ν(ν2)

= x2 − (1/2)x3x4 + (1/4)x3
4 − (1/12)x3

4

= x2 − (1/2)x3x4 + (1/6)x3
4.

Similarly Lν(ν3) = 1 and Ls−1
ν (ν3) = 0, ∀s ≥ 3. Hence

φ3(x) = x3 − x4ν3(x) + (1/2)x2
4Lν(ν2)

= x3 − x2
4 + (1/2)x2

4 = x3 − (1/2)x2
4.

Because ν4(x) = 1, we get φ4(x) = x4 and the change
of coordinates (IV.1) rectifies the control vector field g and
linearizes the system. Notice that the algorithm described in

[12] allowed only to find (IV.1) by computing one component
at a time (holding other components identity), starting from
φ3 then φ2 and finally φ1 and updating the system after
each step. A composition of different coordinates changes
gave (IV.1). However, Theorem II.2 allows to compute those
components independently to each other. .

V. APPENDIX

Below we give a brief proof of the constructive approach
(Theorem II.2) for rectifying nonsingular vector fields.
Proof: Notice that for any diffeomorphism z = φ(x) the two
following conditions are equivalent.
(i) φ∗(ν)(z) = ∂zn

.
(ii) Lν(φj)(x) = 0 and Lν(φn)(x) = 1 for 1 ≤ j ≤ n− 1.

For that reason we will show that condition (ii) holds. To
start let us take 1 ≤ j ≤ n− 1. It follows directly

Lν(φj)(x) = Lν(xj) +
∞∑
s=1

Lν

(
(−1)sxsn

s!
Ls−1
σnν(σnνj)

)
= νj(x) +

∞∑
s=1

(−1)sxsn
s!

LνL
s−1
σnν(σnνj)

+
∞∑
s=1

(−1)sxs−1
n

(s− 1)!
νn(x)Ls−1

σnν(σnνj)

= νj(x) +
∞∑
s=1

(−1)sxsn
s!

νn(x)Lsσnν(σnνj)

−νj(x)−
∞∑
s=1

(−1)sxsn
s!

νn(x)Lsσnν(σnνj)

= 0.

A direct computation shows that

Lνφn(x) =
∞∑
s=1

Lν

(
(−1)s−1xsn

s!
Ls−1
σnν(σn)

)
=
∞∑
s=1

(−1)s−1xsn
s!

LνL
s−1
σnν(σn)

+
∞∑
s=1

(−1)s−1xs−1
n

(s− 1)!
νn(x)Ls−1

σnν(σn)

=
∞∑
s=1

(−1)s−1xsn
s!

νn(x)Lsσnν(σn)

+νn(x)σn(x) +
∞∑
s=1

(−1)sxsn
s!

νn(x)Lsσnν(σn)

= νn(x)σn(x) = 1.

This ends the proof of Theorem II.2 (i). �
The proof of Theorem II.2 (ii) is more involved and we

refer to [16] for more details. We illustrate with few examples
and justify in Example V.2 that the expressions (II.1)-(II.2)
of Theorem II.2 are not Taylor series at the origin.
Example V.1 Consider ν(x) = x3∂x1 + (x2 +x3)∂x2 + ∂x3

in R3. Here Lν(ν1) = 1 and Ls−1
ν (ν1) = 0 for s ≥ 3 and

Ls−1
ν (ν2) = x2 + x3 + 1 for all s ≥ 2. It follows that

φ1(x) = x1 +
∞∑
s=1

(−1)sxs3
s!

Ls−1
ν (ν1)(x)

= x1 − x3ν1(x) + (1/2!)x2
3Lν(ν1)(x)=x1 − (1/2)x2

3
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and

φ2(x) = x2 +
∞∑
s=1

(−1)sxs3
s!

Ls−1
ν (ν2)(x)

= x2 − x3ν2(x) +
∞∑
s=2

(−1)sxs3
s!

(x2 + x3 + 1)

= (x2 + x3 + 1)e−x3 − 1.

To find the inverse first notice that ∂iz3 ·L
s−i−1
ν (ν1)(z) = 0

if (i, s) 6= (0, 1), which yields

ψ1(z) = z1 +
∞∑
s=1

zs
3
s!

(
s−1∑
i=0

(−1)iCis ∂
i
zn
· Ls−i−1

ν (ν1)(z)

)
= z1 + (1/2!)z2

3ν1(z) = z1 + (1/2)z2
3 .

From ∂iz3 · L
s−i−1
ν (ν2)(z) = 0 for all i ≥ 2, we deduce

s−1∑
i=0

(−1)iCis ∂
i
z3 · L

s−i−1
ν (ν2)(z)

= Ls−1
ν (ν2)(z)− s∂z3 · Ls−2

ν (ν2)(z) = z2 + z3 + 1− s.

By Theorem II.2 (ii) we get the 2nd component of ψ(z) as

ψ2(z) = z2 +
∞∑
s=1

zs
3
s!

(
s−1∑
i=0

(−1)iCis ∂
i
z3 · L

s−i−1
ν (ν2)(z)

)
= z2 +

∞∑
s=1

zs
3
s! (z2 + z3 + 1)−

∞∑
s=1

zs
3
s! s

= (z2 + 1)ez3 − z3 − 1.

It is straightforward to verify that the inverse is

x1 = ψ1(z) = z1 + (1/2)z2
3

x2 = ψ2(z) = (z2 + 1)ez3 − z3 − 1
x3 = ψ3(z) = z3.

Example V.2 Consider the non singular vector field

ν(x) = λ(x3)∂x1 + ∂x3 , x ∈ R3,

where λ is a flat function, that is, λ and all its derivatives
are zero at x3 = 0. A well-known example is the function

λ(0) = 0, λ(x3) = exp(−1/x2
3) if x3 6= 0.

It is straightforward to check that Ls−1
ν (ν1)(x) = λ(s−1)(x3)

for all s ≥ 1, where λ(k)(x3) is the kth derivative of λ.
Should (II.1) have been a series around 0 or at xk = 0 the
straightening diffeomorphism would have been identity:

φ1(x) = x1 +
∞∑
s=1

(−1)sxs3
s!

Ls−1
ν (ν1)(0) = x1

φ2(x) = x2 +
∞∑
s=1

(−1)sxs3
s!

Ls−1
ν (ν2)(0) = x2

φ3(x) =
∞∑
s=1

(−1)s−1xs3
s!

Ls−1
ν (1)(0) = x3

which is impossible. However we can verify easily that
φ1(x) = x1 −

∫ x3

0
λ(u) du which coincides with

φ1(x) = x1 +
∞∑
s=1

(−1)sxs3
s!

λ(s−1)(x3).

Indeed,
∫ x3

0
λ(u) du = −

∞∑
s=1

(−1)sxs3
s!

λ(s−1)(x3) because

the two functions coincide when x3 = 0 and it is enough
to verify that their derivatives are also equal. The derivative
of the right hand side gives after simplification

−
∞∑
s=1

(−1)sxs−1
3

(s− 1)!
λ(s−1)(x3)−

∞∑
s=1

(−1)sxs3
s!

λ(s)(x3)=λ(x3).

Now to find the inverse of the normalizing coordinates, let
us apply Theorem II.2 (ii) with n = 3 and k = 3. First we
have Lsνν = λ(s)(x3)∂x1 for all s ≥ 1. We thus have

ψ(z) = z +
∞∑
s=1

zs
3
s!

(
s−1∑
i=0

(−1)iCis ∂
i
z3 · (L

s−i−1
ν ν)(z)

)

= z +
∞∑
s=1

zs
3
s!

(
s−1∑
i=0

(−1)iCis

)
λ(s−1)(z3)∂z1

=


z1 −

∞∑
s=1

(−1)szs3
s!

λ(s−1)(z3)

z2

z3


It clearly follows that ψ(z) =

(
z1 +

∫ z3

0

λ(s) ds, z2, z3

)>
which was predictable directly by inverting z = φ(x). .
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