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where q and PC are the  number  and  power, respectively, of 
the clipped  samples.  Note  that we have  equality  in  (2.21)  if, 
and  only if the  absolute values of all the clipped samples  are 
equal. 

Now, we prove that if a  nominal signal contains  nonzero 
unclipped  samples,  then it is not  optimum.  Suppose  that we 
distribute  a  fixed  amount of power P b  between  the cliRped 
part of the signal and an unclipped  sample sei, and  further- 
more, assume that  the allocation of the.power in the clipped 
part is optimum.  Then  the  corresponding  contribution  to  the 
signal-to-noise ratio is given by 

g(soia) = [ (q (Pb  -Soi2))1/2 -A]* ( / z*A$+”l-’.o: i (2.22) 

which is, a  convex  function  of soj2. Therefore,  the  optimal 
ch0ic.e of I soi 1 must lie on  the  boundary of the  set of its pos- 
sible values’; i.e., it  must  be  either  zero  or  clipped. 

We have now  shbwn  that all nonzerp samples of an  opti- 
mum  ngminal signal  have constant  absolute value. Thus, we 
need only to specify the  optimu,m  number  and  locations of 
the  nonzero  samples.  From (2.21) it is readily seen  that  the 
nonzero  samples  must  correspond  to  the 4 lowest eigenvalues 
of  the noise,  and  that  the  optimum q maximizes  the  right  side 
of (2.21)  with PC = l iso 1 1 2  or,  equivalently, F ( q ) .  0 

An interesting  .result  which  fouows  from  Proposition  3 is 
that, if the first  (lowest)  m’eigenvalues  are  equal,  then we have 
that 

r(n)=[1-n-1/2A/lls,11]2/ho, l < n G m  (2.23) 
and  therefore m < q ,  i.e., the first m samples  are assumed to 
be nonzero.  Applying  this  fact  when  the  least  favorable noise 
is white, we deduce  that  the  optimum  nominal signal is con- 
stant  absolute value for all its  samples. Also, if A = 0 it is 
easy to  check  that  Proposition 3 results in’the classical  mini- 
mum-eigenvalue  eigenvector solution. An important ‘aspect  in 
which’Proposition 3 differs  from  Propositions 1 and 2 is that 
it gives an  optimum signal that is dependent  on  the degree of 
distortion  (through  the  ratio r = A/P1j2).  Note  from  (2.19) 
that  the  solutions of Propositions 1-3  coincide  when hl/ho > 
H(r),-where Zf(r) is an  increasing  function  defined on [ 0, 1)  by 

H(r) = (fi- r).)”/( 1 - r)Z - 1. 

111. CONCLUDING REMARKS 

The classical solution  to  the  problem of optimum signal 
selection for  matched  filtering has  been  generalized  in  this 
paper t 4  admit  the  existence of uncertainties in the received 
signal and  in  the noise  covariance matrix:  Following  the mini- 
max  approach  to  the design of finite-length  discrete-time  ro- 
bust  matched  filters, the goal of the selection  (under  a  power 
constraint) of the  transmitted signal  is the  gptimization of the 
lower  bo,uqd of performance  guaranteed  by  the  robust  matched 
fiiter design. 

The discussion has  emphasized  the  presence of signal  un- 
certainties  due  to  channel distOrtion and  the noise Covariance 
uncertainty class has  been  restricted  to  contain  a  maximal ele- 
ment,  or,  equivalently,  a  signal-independent least  favorable 
matrix (see [ 81). .Three  types of distortion  uacerta,inty  models 
that Cover a  wide  area of practical  application have been  studied 
and  different  results  for  the signal  selection  problem have been 
shown  to hold., By use of weighted I,,  1 2 ,  and I ,  norms,  these 

uncertainty  models can  be further generalized to  accommodate 
for  different degrees of distortion in the  directions of the sig- 
nal  space. In such cases the  results  related  to  minimax.matched 
filtering an’d optimum signal  design  can be  extended  straight- 
forwardly. 

With  respect to  the mean-square distortion  model,  a  three- 
fold  justification  for  the classical  signal  design  using the mini- 
mum-eigenvalue  eigenvector of the covariance matrix  has  been 
found:  it  optimizes  the signal-to-noise ratio  when  the received 
signal  cqincides  with the  transmitted  one,  its  associated 
matched  filter is minimax  robust  for  any degree of mean- 
square  distortion  and it optimizes  the worst case signal-to- 
nojse ratio. However, for  the  other  types of distortion  con- 
sidered  here,  the  set of optimum  transmitted signal under 
distortion  no  longer  coincides  with  the minimum-eigenvalue 
eigenspace. The  maximum  and mean absolute  distortion 
models  lend themselves to  an analytical  solution of the signal 
design problem  under  a  mean-square  power  constraint in the 
case of uncorrelated  (not necessarily stationary)  least favor- 
able  noise. For  these models, the  corresponding  results  indi- 
cate  the advisability  of  avoiding comparatively small nominal 
signal samples  and of  allocating,  in  some  cases,  signal  power to  
nonminimum-eigenvalue samples. Note  finally  that,  for  a given 
covariance  matrix  with  a  one-dimensional minimum-eigenvalue 
eigenspace,  and  with  a  sufficiently large  allowable  power  (rela- 
tive to  the degree of distortion),  the  optimum signals for  the 
three  types of distortion classes  coincide. 
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nals  transmitted  from  mobiles  to  base  have been reported earlier [I t ] .  
Only  the  hard-limited  combiner has been analyzed with respect to 
base-to-mobile link [ 11. Here,  we  give new results  on  the performance 
of  the  likelihood  and  the  linear  combining  receivers  operating at the 
mobiles.  Whereas it is  possible  to  find  exactly the union bound on the 
probability  of hit error for a  linear  combiner,  for  a likelihood re- 
ceiver,  hounding  and  approximation  techniques  such  as  simple 
Chernoff  bound  and  saddle  point  integration were employed. We also 
observe  the  asymptotic (SNR ---* m) equivalence  of the hard-limited 
and  the  likelihood  receivers.  This,  together with the approximate 
error  estimates  at  finite SNR, leads us to  believe that the likelihood 
receiver  is  only  marginally  superior  to  a  hard-limited  combiner. As 
expected,  the  linear  combiner  performs  poorly. 

INTRODUCTION 

Recently,  performance analysis  of the  likelihood,  linear, 
and  hard-limited  receivers, for  the mobile-to-base  transmission, 
has  been  reported [ 11 ] . The  above  paper discusses  few inter- 
ference  models  and  continues  the  analysis, based on  one of the 
models.  None  of  these  models is applicable to  base-to-mobile 
transmission. Whereas i t  is possible to  arrive at   the various re- 
ceiver structures  with a suitable  model  applicable to  base-to- 
mobile  transmission,  instead, we present a much  simpler  and 
unified  approach.  In all the receivers, the  attempt is to  dis- 
criminate  spurious  rows of the  decoded  matrix of a user, 
which  consists of samples  from  an  exponential  mixture,  from 
the  correct  row,  which consists of samples  from a  simple  ex- 
ponential  density.  To assess the  performance, we use  Cher- 
noff  bounding  and  saddle  point  integration  techniques  for 
evaluating the  probability of bit  error  for  likelihood receiver 
and use an  exact  method  for  the  linear  combiner. 

In Section I we briefly discuss various  receiver structures 
for  the FH-MFSK modulation  scheme. In Section I1 we  make 
an  approximate  estimate  of  the  likelihood receiver perform- 
ance.  In  Section I1 we also  observe the  asymptotic equivalence 
of the likelihood  and  hard-limited receivers. The  exact  prob- 
ability  of  bit  error is calculated for a linear  combiner  in Sec- 
tion 111. 

I. RECEIVER  STRUCTURE  FOR FH-MFSK MODULATION 

Fig. 1 shows a  section of the  noncoherent  envelope  anal- 
yzer. As in [ 1 ] ,  let T be  the  chip  duration, K be  the  number of 
bits  of  information  transmitted every LT  seconds, W = 20 MHz 
be  the one-way bandwidth,  and R be the  bit  rate.  Then  we 
have 2K such  sections  in  operation  corresponding t o  different 
orthogonal  tones.  Let eij denote  the envelope  squared  output 
at  the  ith envelope  analyzer  after  the  jth  chip.  Corresponding 
to  either  the signal-plus-noise or  the noise-only  case, we have 
eij to  be  either  exponentially  distributed  with  mean value (1 / 
h l )  or  exponentially  distributed  with  mean value ( I /ho) ,  re- 
spectively. 

A mobile user u receives the signals from  the base  and 
creates  a  decoded  matrix every LT seconds.  The values E . be- 
come  the  entries Xi i  in  the  decoded  matrix  (the  decoding is 
done  on  the received matrix  with  the  address of user u ) .  In 
general,  a  receiver  chooses  a  row as the  row  corresponding  to 
the  transmitted  word,  based  on  some  decision  criterion. In 
1 1 1 ,  where  hard-limited  combining is employed,  correspond- 
ing to each  entry  (i, j )  in  the  matrix, a number nil is assigned 
such  that 

kl 

nv = 1 iff Xi; 2 T 

0 otherwise. 

0- 
Fig. 1. Envelope analyzer. 

A row k is declared as the  correct  row if 

In case two  or  more rows  have the  same  maximum  sum 2, 
then  any  row  among  these  rows  is  chosen  at  random as the 
correct  row.  In [ 21 , a linear  combiner based on choosing  the 
kth  row as the  correct  row  such  that 

was analyzed,  for  mobile-to-base  transmission, using some 
approximate  techniques. 

Likelihood Receiver: We shall  assume  that  the  minimum 
frequency  spacing  between  the  hops  in  the  transmitted waves 
is larger than  the  coherent  bandwidth of the Rayleigh fading 
channel.  This,  then,  implies  that Xii are  independent  and  ex- 
ponentially  distributed.  Among  the 2K rows in  the  decoded 
matrix,  only  one  row  is  the  correct  row,  wherein all the Xij's 
have  a  mean  value ( l / h l ) .  In  each  of  the  rest  of  the ( z K  - 1) 
spurious  rows,  some  elements have  a  mean value of ( l / h o )  
and  the  rest have  a mean value of ( l / h l ) .  A spurious  row  has 
contributions  partly  from  the  interfering  usen  plus noise 
and  partly  from  the receiver noise.  On  an  average,  each  spuri- 
ous row will have  a  proportion p of Xij's created due  to  inter- 
ference,  where p is given by 

and M equals the  number of users operating  in  the cell. 
Since each  row  can  be a spurious  row  (hypothesis H o )  or 

not  (hypothesis H l ) ,  we  have the following  testing  problem 
applied to  an Ith  row: 

versus 

where 

j = 1, 2,  .-, L 

I = 1, e.., 2 K .  

It  can  be  noticed  that  the  proportion p is known  once  the 
number of users operating  in  the cell is known,  In  statistical 
literature,  whereas a lot of  attention  has  been  paid t o  estimate 
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i = k  
est Decision 

j =1,2,..L . 
i = l  e-----b 

x.. Log( ) 
1.1 

j = 1,2,..L 

Fig. 2. Likelihood receiver. 

the  parameters of a  mixture  distribution 1.31, [4 ] ,  there have 
been no significant  results  concerning the testing of  whether  a 
sample  originates  from  a  mixture  family cbr from  a  member of 
the family  and  not  the  mixture. 

Normalizing Xl i7s  with  respect to  the  mean value of signal 
plus  noise  energy, we have 

Therefore, (2) gets modified as 

Ho: Yliupe-Y + (1 -p)be-by 

versus 

wheie  b = h o / h l ,  signal-plus-noise-to-noise power  ratio 
(SNNR).  Forming  the  likelihood  ratio [ 51 , we have 

the correct  row  corresponding to  the  word  transmitted  to  the 
user.  In  other  words, all the rows other  than  the  kth  row are 
spurious.  Upon  finding the  distribution of Z l j  under  hypoth- 
eses Ho and H, , we have 

- ln(p+d)<z<-lnp 

elsewhere 
PZ$> = 

Pzkj(') = ln(p + d)<z < -In p 

elsewhere 

where 

c = l / (b  - 1) 

d = ( l  -p)b.  

Simple Chernoff Bound 

Here we evaluate  an  upper  bound on  the probability of bit 

For  identically  and  independently  distributed  random vari- 
error  using the  Chernoff  method [ 61 . 

ables X i ,  we have 

where yo > 0 is the  Chernoff  parameter. 

bit  error P, given by 
We are  interested  in  the  union  bound  on  the  probability of 

j =  1 
where 

Then  the  likelihood receiver chooses  the row havingmaxl {SI} 
as the  correct  row.  The  block diagram of the  likelihood  re- = Prob [ S i - s k  > 01 
ceiver is shown  in  Fig. 2. 

It can  be shown  that  the same  receiver  can  be  arrived at by 
using the  approach  in [ 1  1 ] with an interference  model  appli- 
cable to  base-to-mobile  transmission,  viz. 

=Prob  Z i j - Z k j  > 0 . [ '  j =  1 1 
p(r,l I f f o )  = p 6 ( r  - 1) + (1  - P ) W  

Therefore,  by  upper  bounding Po using (9),  
bound P,. 

Let 

11. THE  LIKELIHOOD  RECEIVER  PERFORMANCE 
y .  = z. .  - I I ]  zkj. 

As discussed earlier,  we have the decision  rule of the likeli- Then 
hood receiver.  Decide the  row having the  maxl {SI} as the  cor- 
rect  row.  The  statistic SI behaves differently  depending  on 
whether ylj's belong to  Ho or HI (3). However, i t  is neither Po = Prob [ ,2 yi > 0 1  < {E(erOYi)}L 
possible to  find the  distribution of S1 exactly  under  either 
hypothesis,  nor  it is possible to calculate  exactly  the  prob-  and  the parameter yo is found as the  solution to 
ability of bit  error  rate. 

Let E( yi e' 0 yi ) =  0. 

(1 1) 

we  can upper 

L 

s, = x Z l j .  
j=1 

The  above  equation  implies  that 
(5) 

E(Zij~rOZij)j j '(e-rOZkj) - jj'(Zkje-'OZkj)E(e'OZij) = 0. 

Without loss of generality,  let us  assume that  the  kth row  is (15) 

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 30, 2009 at 15:33 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31, NO. 5 ,  MAY 1983 

Also, 

Using the  density  function given in  (6)  and  (7),  it  can be 
shown  that ro = 1/2 is the  only  solution to (15). 

We also  observe that 

Therefore, Pb can be  upper  bounded  by  numerically  evaluating 
the right-hand  side (RHS) of ('1 3), using (1  6)  and  (1  7).  Doing 
this,  we  arrive  at  the  curves  shown as A in  Fig. 4. 

Chernoff  Bound  with  Central  Limit  Theorem 

We obtain  another  approximation to the  probability Po de- 
fined  in  (1 3) by using the  results  in  [7] . The  idea is t o  derive  a 
tilted  density  from  the  density of y i  [see  (12)]  and  express 
the  probability Po in  terms of the  tilted  density  variable  ob- 
tained  from yj's. We define 

pTj( t )  = pyj(t)e'Ot/E(e'Oyi) (1 8) 

and 

L 
T = Z  Ti. 

j =  1 

It  can  be  shown  that [ 71 

and ro is chosen so as to  make E ( T )  = 0.  T is  the  sum  of L 
identically  and  independently  distributed  variables,  and  hence, 
p~ is approximately  Gaussian,  especially  in  the  vicinity  of 
E'(T) = 0.  The  condition E ( T )  = 0 implies  that Ebje'OJ'i) = 0 
and,  hence,  by  the  results  in  the  previous  subsection, ro = 1/2. 
We approximate p ~ ( a )  as 

where 

d 2  
= L  { dro - [E(e'U")I/C(e'oli)} . (21) 

r0=1/2  

It can  be  shown  that  the  above  bracketed  term  reduces to 

where all the integrals  are  between the  limits 
-In p ) .  Therefore, 

r m  

at ro = 1/2. 

Evaluating the RHS of (22)  numerically,  we  can  evaluate  the 
approximate  value of Pb using (lo),  (16),  (17),  and  (23).  The 
resulting Pb is  plotted  against  the  number  of  users M in Fig. 4. 
Comparing  this  approximate Pb curve  against [ 1, Fig. 81, we 
se.e mat  the  likelihood  receiver is  marginally better  than  the 
hard-limited  combiner.  Although  not  shown,  it was observed 
that  the  effect of variation of K on  the receiver  performance is 
similar to  the  one  encountered  in  the  hard-limited  combiner, 
suggesting  an  optimum K for a given set of W and R .  For  ex- 
ample,  with W = 20 MHz and R = 32  kbits/s,  we have the  op- 
timum K t o  be 8. 

Asymptotic Equivalence  ofHard-Limited and Likelihood 
Receivers 

In  Fig. 3 we  show  the  plot of the  nonlinearity 

which is nothing  but  the  likelihood  ratio.  The  plot  is for fixed 
p = 0.5 and  for  various values of b. Several observations can be 
made  by  looking  at  the  figure.  First of all,  the  function F ( y )  is 
nonlinear  and,  therefore,  a receiver based on Zyij would  not 
be  optimum.  Second, as b increases,  the  curve  shifts towards 
the  origin,  simultaneously  making  the  transition  sharper.  Ulti- 
mately,  as b --f 00, the  nonlinearity  becomes  degenerate  with 
F ( y )  = -In p ,  y # 0 and  an  infinite  jump  discontinuity  at  the 
origin.  Therefore, F ( y )  has  a  resemblance  toward  hard  limiter 
characteristics,  as b 3 00. Moreover, its  asymptotic  perform- 
ance is identical to  a  hard  limiter, as will be  shown  below. 

As b -+ 03, (3  ) is modified as 

Therefore,  in  the  correct  row,  the  random variables Zkj = 
F(ykj)  are all degenerate,  taking  on values -In p with  prob- 
ability 1. However,  in  a  spurious  row,  the  random variables 
Zii are all identically  distributed  Bernoulli,  taking values -In p 
with  probability p and -00 with  probability (1 - p ) .  Therefore, 
an  error  occurs  in  our  decision only when 

Sk = SI for  some 1 # k .  (26) 

This  can  happen  only  when all the L Bernoulli variables take 
on  the value -In p and  therefore,  the  probability  of  this  event 
equals p L . 
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n = 0.5 

674 

2 '  

0 .  

- 2  - 
"(V) 

/ 
-4 . 

. / 

Y 

Fig. 3. Plot of nonlinearity. 

Hence, 

P ,  = probability of correctly  identifying  a  row as either 
spurious  or  not 

The  above discussion  suggests the possibility of more  than  one 
row competing  for  the  correct  row,  although  only  one  exists 
truly. As in the hard-limited  receiver, we resort to  random 
choice of a row among  these as the  correct  row. The prob- 
ability of correct  word decision becomes 

Only the first  few  terms  in  the  above  equation have  significant 
contribution. Finally the  probability of bit  error P, is given by 

q K - 1  
L. 

Pb = (1 -PC) 
(2K - 1) 

The  asymptotic  bit  error  rate is plotted as curve D in  Fig. 4. 

form 
Now,  the  hard-limited receiver  has a  nonlinearity  of  the 

1 y > T  
F ( Y )  = 

0 otherwise. 

Therefore, as b + 00, (25) implies that P l  of (27) also holds 
good  for  a  hard-limited  receiver,  provided T < 1. (In [ 1 ] , we 
need  the receiver threshold 0 9 1,  since  in  this case the  nor- 
malization of the  envelope is done  with  respect to  the receiver 
noise.) Thus, we have  established the  asymptotic  (SNR -+ ") 
equivalence of likelihood  and  hard-limited receivers. However, 
for  mobile-to-base  transmission,  the  saddle  point  approxima- 
tion [ 11 ] predicts  uniformly  better  performance of the  likeli- 

hood receiver (approximated as a  soft  limiter) over the  hard- 
limited  combiner. One reason  for  this  difference  could be that 
the  interferers  in  mobile-to-base  transmission  could  contribute 
energy to  some  elements of the  correct  row of the  decoded 
matrix of a user under  consideration.  Such is not  the case with 
the base-to-mobile  transmission,  where the  interferers  create 
only  the  spurious  rows. 

Saddle  Point  Integration 

In the previous subsection  on  the  Chernoff  bound,  we 
bounded  the  probability Po that  the  sum of L random vari- 
ables  exceeds  zero value. Denoting @(u)  as the characteristic 
function of the  random variable y i  defined  in  (1 2 ) ,  we have 

where c is a  contour whose  real part goes from -00 t o  f m  and 
whose imaginary  part lies  in the  lower half of the  complex u 
plane.  Here, i = &. The above equation can  be rewritten as 

When L is large,  the  contour c can be deformed  into  another 
contour c', such  that  only  a  portion of the  contour c', around 
the saddle point, has a  dominant  contribution  to  the  integral 
181, [9] .  In fact, it turns  out  that  the  first  term  approxima- 
tion of the  asymptotic  expansion of (31) is  equivalent to  the 
result  achieved with  the  Chernoff  bound  and  the  central  limit 
theorem.' 

With 

G(u) = In @(u) ( 3 2 )  

1 We thank the reviewer for pointing out this  equivalence. 
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Fig. 4. Probability of bit error  versus number of users for likelihood 
receiver. 

the saddle  points  are  the  solutions  to 

(33) 

Using our results on  the  Chernoff  bound, it can be  observed 
that  there is a  unique  saddle  point  on  the  imaginary  axis  at u = 
-i/2. The  deformed  contour c' is then  the  line parallel to  the 
real  axis and going through  the  point - i / 2 .  On the  contour c', 
Im [ G ( u ) ]  is constant  and Re [ G ( u ) ]  reaches  a  maximum  at 
- i / 2 ,  Therefore, by  using the  standard  saddle  point  expansion, 
we  can  write 

where 

a0 = N U )  l u = - i / 2  

a2 =-2 d 2 @ )  l u = +  
"t' L , * .  

GIV = - 

In  Fig. 4 we show as curve C  the  proljability of bit  error Pb of 
(IO), when Po is computed using (34). We notice  that  the  in- 
clusion of the  second  term, as in  the RHS of (34), resulted 
only  in very little change in Pb (observe  the closeness of curves 
B and C ) .  Also, the curve C at 35 dB SNNR lies  slightly  below 
the  theoretical  infinite SNNR curve D. This discrepancy can be 
attributed  only  to  the  saddle  point  approximation  technique. 
Since L is not really  large ( L  = 19) ,  the  interaction  between 
the pole  at  the origin of the  integrand  in  (31)  and  the  not-too- 
far  saddle  point  at - i / 2  must be  considered.  Therefore,  a  more 
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refitied  saddle point  technique'is  needed  for  a  better  estimate 
[ 101. Assuming that  the  optimism  of curve C at 35 dB SNNR 
is retained  at  25  dB  SNNR,  and  with P b  < we  observe 
that  only  about  15 users more  than possible with  a  hard- 
limited  receiver could be accommodated (see Fig. 4; also,  re- 
call that  the hard-limited  receiver  can  accommodate  about  170 
users under  the same conditions). This  suggests that  the  likeii- 
hood receiver is only marginally  superior 'to a  hard-limited  re- 
ceiver. 

III. LINEAR COMBINING RECEIVER 

Based on  our  exponential  mixture  model, we can  evaluate 
the probability of bit  error  for  the  linear  combiner,  without 
invoking  any  approximations. 

Let 

j =  1 

where Ylj are  distributed as in (3). The receiver chooses  the 
row m as the  correct  row  such  that S, = maxz (SI). It is of  in- 
terest  to  find  the  distribution of S, under HQ and H , .  As be- 
fore,  assume that  the  kth  row is the  correct row and all i # k 
are  spurious.  Then 

Sk -gamma ( L ,  1) 

i.e., 

I 0 L - 1  

I o  otherwise. 

We ,find  the  distribution of Si through  the use of characteristic 
functions.  Precisely, 

(37)  

The  above  equation can  be rewritten as 

Evaluating  the  integral  in  the  above  equation using the resi- 
due  theorem [ 121, we have 

Ps i(S 1 

( L  - m - l)! 

1 ) [ m ( m  + 1) *.. ( m  + k - l)] 

1 - k  -bS 

1 %  

= 0 otherwise. (39) 

Above,  the  terms [ ( L  - M )  ... ( L  - m + k - l)]  and [m(m + 
1) ... (m + k - l ) ]  equal  1 when k = 0. Therefore,  the  proba- 
bility of bit  error Pb can  be  calculated  as 

where 

and F s i ( s )  is the  distribution  function of the density  function 
given in (39).  Pb was  evaluated numerically using a  computer 
and  the  results  are  shown  in Fig. 5. It is seen  that  the  linear 
combiner  performs very poorly. Similar  dismal performance of 
the linear  combiner  with  respect to mobile-to-base  transmis- 
sion  was  established  in [2] . 

CONCLUSION 
Considering  the base-to-mobile  transmission,  we compared 

the  performance of the  likelihood,  hard-limited,  and  linear 
combining receivers. The  linear  combiner  performs  the  worst, 
agreeing with  the  expectations,  after observing the  perform- 
ance  in  the mobile-to-base link.  A simple Chernoff  bound  tech- 
nique gives an  upper  bound  on  the  probability of bit  error  for 
the likelihood  receiver.  The  bound is not very tight,  but  as- 
sures a  minimum  performance. As SNR -+ m, it is shown  that 
the  theoretical  considerations  imply-the  equivalence of hard- 
limited  and  likelihood receivers.  This is slightly different  from 
the mobile-to-base  link,  where  the  likelihood receiver seems to 
have a slightly better  performance  than  the  hard-limited  re- 
ceiver [ 111. 

We observed,  by  employing  saddle  point  integration, that 
the likelihood  receiver  is  only  marginally  superior to a  hard- 
limited  receiver at  finite  SNNR  and  hence, because  of the sim- 
plicity  of  implementation,  the  latter is to  be preferred.  Also,  it 
is noticed  that  a  refined  saddle  point  integration  technique is 
required  for  a  better  error  estimate. 
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Abstract-Certain  moments  of  the  output  of  a  bandpass  nonlinear 
system  whose input is a stationary  Gaussian random process will be 
used to evaluate the  performance (i.e., the  average  probability of 
error)  of  the  system.  The  main application of this  procedure is the 
analysis  of a  frequency  translating  saturating  satellite  link.  The  basic 
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