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SMALL EXTENSIONS OF WITT RINGS

Robert W. Fitzgerald

Southern Illinois University

We consider certain Witt ring extensions S of a noetherian Witt ring
R obtained by adding one new generator. The conditions on the new
generator are those known to hold when R is the Witt ring of a field
F , S is the Witt ring of a field K and K/F is an odd degree extension.
We show that if R is of elementary type then so is S.

The elementary type conjecture is a proposed classification of noetherian Witt rings. A
potential source of counter-examples is as follows: start with a field F where WF is known
(necessarily of elementary type) then look at noetherian WK for extension fields K of F.
Jacob and Ware [3] have shown that WK is again of elementary type when [K : F ] = 2.
Here we look at the simplest case of odd degree extensions, again showing WK is of
elementary type. We note that WF is noetherian iff G(F ) ≡ F ./F ·2 is finite. Also when
K/F has odd degree then G(F ) ∼= F .K ·2/K ·2 embeds into G(K).

We will in fact work with abstract Witt rings R (as defined by Marshall [4]) with
associated group of one dimensional forms G(R). The small extensions considered here are
as follows. Let H be a subgroup of G(R). We say a Witt ring S is an H-extension of R if
there exists an α ∈ G(S) such that:

(1) G(S) = {1, α}G(R), and
(2) For all x ∈ G(R) we have:

DS〈1,−x〉 =
{

DR〈1,−x〉, if x /∈ H

{1, α}DR〈1,−x〉 if x ∈ H

DS〈1,−αx〉 = {1,−αx} (DR〈1,−x〉 ∩H) .

These conditions hold for R = WF,S = WK when K/F is an odd degree extension
and [G(K) : G(F )] = 2 by [2,4.7] (we note that [2,4.7] should include the condition that
NK/F (a) = 1). No such field extensions are known. However, there are many examples of
H-extensions of abstract Witt rings, which we determine inductively. This can be viewed
as a first step in classifying extensions of noetherian Witt rings. It also helps the search
for odd degree extensions K/F with [G(K) : G(F )] = 2, while lessening the motivation for
such a search.

For any group H, H. denotes H \ {1}. The quaternionic mapping associated to R will
be denoted by q. For x ∈ G(R), Q(x) = {q(x, y) : y ∈ G(R)} and for a subgroup H,
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2 ROBERT W. FITZGERALD

Q(H) = {q(h, y) : h ∈ H, y ∈ G(R)}. The value set of 〈1,−x〉 is D〈1,−x〉 = {y ∈ G(R) :
q(x, y) = 1}. We will often work with several Witt rings at once and write qR, QR(x) and
DR〈1,−x〉 to indicate these objects for R.

R is of local type if |q(G(R), G(R))| = 2. We let En denote the elementary 2-group
of order n. The group ring R[En] is again a Witt ring. An element t ∈ G(R) is rigid if
D〈1, t〉 = {1, t} and t is birigid if both t and −t are rigid. The basic part of R, B(R),
consists of ±1 and all x ∈ G(R) with either x or −x not rigid. B(R) is a subgroup of G(R)
and R = R0[G(R)/B(R)], where R0 is the Witt ring generated by B(R). We express this
last statement by writing R0 = W (B(R)).

The product in the category of Witt rings is:

R1 uR2 = {(r1, r2) : ri ∈ Ri and dim r1 ≡ dim r2 (mod 2)}

If R = R1 uR2 then G(R) = G(R1)×G(R2) and:

DR〈(1, 1), (x, y)〉 = DR1〈1, x〉 ×DR2〈1, y〉.

The radical of R is rad(R) = {x ∈ G(R) : D〈1,−x〉 = G(R)}. We say R is degenerate if
rad(R) 6= 1 and totally degenerate if rad(R) = G(R). Dn denotes a totally degenerate Witt
ring with square class group of order 2n. There are two possibilities for Dn depending on
whether -1 is a square or not. Specifically, Dn is either a product of n copies of (Z/2Z)[E1]
or n copies of Z/4Z. If R is degenerate then there exist uniquely determined n and non-
degenerate Witt ring R0 such that R = Dn uR0. R0 is the non-degenerate part of R.

R is of elementary type if it can be built from Z/2Z,Z/4Z and Witt rings of local type
by a succession of group ring extensions (for some En) and products. The elementary type
conjecture is that every noetherian Witt ring is of elementary type.

1. Group ring extensions.

Lemma 1.1. Let S be an H-extension of R.

(a) If H = 1 then S = R[E1], with E1 generated by α.
(b) If H = G(R) then S = D1 uR, with D1 generated by α.

Proof. Suppose first that H = 1. Then for all g ∈ G(R) we have from the definition of
an H-extension that DS〈1,−αg〉 = {1,−αg}(DR〈1,−g〉 ∩H) and so αg is birigid. Thus
B(S) ⊂ G(R) and G(S) = {1, α}G(R). So by[4,5.19] S = R[E1], where E1 is generated by
α.

Next suppose that H = G(R). Then DS〈1,−α〉 = {1,−α}(DR〈1,−1〉 ∩ H) = G(S).
Hence α ∈ rad(S). Then by [4,pp. 105–106] S = D1 uR, where D1 is generated by α. ¤

When H 6= 1, which we will often assume in light of (1.1), we use the following notation
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(recall that B(R) is the basic part of R):

T =
⋃

h∈H.
DR〈1,−h〉

T0 =
⋃

h∈H.
(DR〈1,−h〉 \ {−h})

B(H) = H ∩B(R)

BT =
⋃

h∈B(H).
DR〈1,−h〉

BT0 =
⋃

h∈B(H).
(DR〈1,−h〉 \ {−h})

Lemma 1.2. Let S be an H-extension of R with |H| > 1. Then:

(a) ±T0 ⊂ B(R) ⊂ ±T,
(b) B(S) = ±{1, α}T.

Proof. First note that DS〈1,−α〉 = {1,−α}H, and |H| > 1 imply α ∈ B(S). If x ∈
G(R) \±T then DR〈1,±x〉 ∩H = {1} so by the definition of H-extensions, DS〈1,±αx〉 =
{1,±αx}. Hence αx /∈ B(S), and as α ∈ B(S), x /∈ B(S). That is, x is birigid in S, and so
also in R. Thus x /∈ B(R) and we have:

B(R) ⊂ ±T,

B(S) ⊂ ±{1, α}T

Let x ∈ T0, x 6= −1 so that for some h ∈ H., x ∈ DR〈1,−h〉 and x 6= −h. Then
DR〈1,−x〉 contains −x, h which are distinct and not equal to 1. So −x ∈ B(R) and
also x ∈ B(R). If x = −1 then again x ∈ B(R). Thus T0 ⊂ B(R), and so ±T0 ⊂ B(R)
completing the proof of (a).

If x ∈ T with x ∈ DR〈1,−h〉, h ∈ H. then DS〈1,−x〉 = {1,−αx} (DR〈1,−x〉 ∩H)
contains {1,−αx, h,−αxh}. Thus −αx ∈ B(S). Again α ∈ B(S) so x ∈ B(S). This shows
±{1, α}T ⊂ B(S), completing the proof of (b). ¤

Lemma 1.3. If S is an H-extension of R with |H| > 1 then B(R) = ±BT and either:

(a) B(R) = ±B(H) and B(S) = ±{1, α}H, or
(b) B(R) = ±T and B(S) = {1, α}B(R).

Proof. If h ∈ H \B(H) then DR〈1,−h〉 = {1,−h}. So:

(1.4) ±T = ±BT ∪ ±(H \B(H)).

Now B(R) ⊂ ±T by (1.2)(a) and B(R) ∩ ±(H \B(H)) = ∅ so B(R) ⊂ ±BT. Conversely,

±BT = ±(BT ∪B(H)) ⊂ ±T0 ∪ ±B(H) ⊂ B(R),
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which proves the first statement.
Now (1.4) gives:

±T = ±BT ∪ ±H = B(R) ∪ ±H,

and (1.2)(b) gives:

B(S) = ±{1, α}T = {1, α}B(R) ∪ ±{1, α}H.

This expresses the group B(S) as the union of two subgroups, hence either:
(i) {1, α}B(R) ⊂ ±{1, α}H, or
(ii) ±{1, α}H ⊂ {1, α}B(R).

In case (i) B(S) = ±{1, α}H and B(R) ⊂ ±{1, α}H∩G(R) = ±H. Hence B(R) = ±B(H).
In case (ii) B(S) = {1, α}B(R) and H ⊂ B(R). Then H = B(H), BT = T and by the first
statement B(R) = ±T. ¤

Recall that any Witt ring R can be written as R0[G(R)/B(R)], where R0 = W (B(R)),
the Witt ring generated by B(R). See [4,Chapter 5, Section 7] for details.

Proposition 1.5. Let R = R0[En], with R0 basic. Let S be an H-extension of R. Then:

(a) If H = 1 then S = R0[En+1].
(b) If |H| > 1 and H ⊂ G(R0) then S = S0[En], for some Witt ring S0 that is an

H-extension of R0 (with the same α).
(c) If H 6⊂ G(R0) and −1 ∈ H then S = (D1 uR0[H/B(H)]) [G(R)/H], and G(R0) ⊂

H.
(d) If H 6⊂ G(R0) and −1 /∈ H then S = (Z uR0[H/B(H)]) [G(R)/±H] and G(R0) ⊂

±H.

Proof. If H = 1 then S = R[E1] by (1.1), which gives (a). So assume |H| > 1. Further
suppose that H ⊂ G(R0) so that B(H) = H ∩ B(R) = H ∩ G(R0) = H. Then −H. ⊂
T ⊂ G(R0). Hence ±H ⊂ ±T ⊂ G(R0). Thus if (1.3)(a) holds, so that G(R0) = B(R) =
±B(H) = ±H, then B(R) = ±T also. So we are always in case (b) of (1.3). Then, since
G(S)/B(S) ∼= G(R)/B(R), we have S = S0[En], where S0 = W (B(S)). From H ⊂ B(R)
we have that S0 is an H-extension of R0.

Next suppose that H 6⊂ G(R0). We still have that G(R0) = B(R). If B(R) = ±T then
H ⊂ B(R), contrary to our assumption. Thus we are in Case (a) of (1.3). First say that
−1 ∈ H. Note that−1 ∈ H∩B(R) = B(H) also. Then B(R) = B(H) and B(S) = {1, α}H.
Thus S = S0[G(R)/H], for S0 = W ({1, α}H), since G(S)/B(S) ∼= G(R)/H.

Now DS0〈1,−α〉 = DS〈1,−a〉 ∩ {1, α}H = {1, α}H. Hence α ∈ rad(S0). Write S0 =
D1 u S1, for some Witt ring S1 and with D1, generated by α, being Z2[E1] or Z4 using [4,
p. 104]. Note that S1 = W (H).

If h ∈ H \ B(H) then DR〈1,−h〉 = {1,−h} and DS〈1,−h〉 = {1, α,−h,−αh} so that
DS1〈1,−h〉 = DS〈1,−h〉∩H = {1,−h}. Similarly, DS1〈h〉 = {1, h}. And if h ∈ B(H) then
DS1〈1,−h〉 = {1, α}DR〈1,−h〉 ∩H = DR〈1,−h〉 ∩H = DR〈1,−h〉 ∩B(H) = DR0〈1,−h〉.
Thus S1 = R0[H/B(H)].

We still suppose H 6⊂ G(R0), so that we are in Case (a) of (1.3), and now say that
−1 /∈ H. Then S = S0[G(R)/±H] as G(S)/B(S) = {1, α}G(R)/±{1, α}H ∼= G(R)/±H.
Here S0 = W (±{1, α}H).
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Now DS0〈1,−α〉 = {1, α}H has index two in G(S0) = ±{1, α}H. Further α /∈ DS〈1,−α〉
else −1 ∈ {1,−α}H and −1 ∈ H. Thus we have an orthogonal decomposition in the sense
of [1]:

(1.6) G(S0) = {1, α} ⊥ DS〈1,−α〉.

Set S1 = W ({1, α}) and S2 = W (DS〈1,−α〉). Note that S1 = Z as −1 /∈ DS〈1,−α〉. If
h ∈ ±H \±B(H) then DR〈1,±h〉 = {1,±h}, DS〈1,−h〉 = {1, α,−h,−αh} and DS〈1, h〉 =
{1, h}. Thus we have DS1〈1,±h〉 = DS〈1,±h〉 ∩ ±H = {1,±h}. So S2 = S3[H/B(H)], for
some Witt ring S3. S2 is indeed a group ring as H 6⊂ G(R0) implies H 6= B(H).

We wish to apply [1,3.4] and deduce that the decomposition (1.6) yields a product of
Witt rings. First we need to handle the case where S2 is decomposable, that is, S2 = Z[E1].
In this case |G(S2)| = |DS〈1,−α〉| = 4 so that H = {1, t}, for some t /∈ G(R0) and
G(R0) = {±1} as G(R0) ⊂ ±H. Now DS〈1,−t〉 = {1, α,−t,−αt} so we consider instead
the orthogonal decomposition:

{1, t} ⊥ DS〈1,−t〉.
Now QS({1, t}) = {1, q(t,−1)} and QS(DS〈1,−t〉) = {1, q(α,−1), q(−t,−1), q(−αt,−1)},
using q(α,−t) = q(α,−1) and q(t,−αt) = 1. Then QS({1, t}) ∩QS(DS〈1,−t〉) = 1. Thus:

S0 = W ({1, t}) uW (DS〈1,−t〉).

Now W ({1, t}) = Z as −1 /∈ DS〈1,−t〉 and W (DS〈1,−t〉) = R0[{1, α}] since α is birigid
in qfst and G(R0) = {±1}. This gives the desired result of (d).

We now apply [1,3.4] and obtain that either (1.6) yoilds a product or QS({1, α}) =
QS(DS〈1,−α〉). But if t ∈ H \ G(R0) then q(t, t) = q(t,−1) and q(α, α) = q(α,−1) are
distinct, since −1 /∈ DS〈1,−αt〉. Hence the decomposition (1.6) in fact yields the product
S0 = S1uS2. We have already seen that S1 = Z and that S2 = S3[H/B(H)]. If h ∈ ±B(H)
then DS3〈1,−h〉 = DS1〈1,−h〉 = DR〈1,−h〉 = DR0〈1,−h〉. So S3 = R0.

¤

2. Local type rings.

Notation. For a subset A ⊂ G(R) set:

CR(A) =
⋂

a∈A

DR〈1,−a〉.

Lemma 2.1. Suppose that S is an H-extension of R. Suppose k ∈ CR(H) \ H. Then
QR(H) ∩QR(k) = 1.

Proof. Let ρ ∈ QR(H)∩QR(k) so that ρ = q(h, x) = q(k, y) with h ∈ H, and x, y ∈ G(R).
Since H ⊂ DS〈1,−α〉 we have that q(k, y) = q(αx, h). By linkage there exists a t ∈ G(S)
such that:

q(k, y) = q(k, t) = q(αx, t) = q(αx, h).
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The first equality gives ty ∈ DS〈1,−k〉 = DR〈1,−k〉 ⊂ G(R), since k /∈ H. Hence t ∈ G(R).
The second equality gives:

t ∈ DS〈1,−αxk〉 ∩G(R) = DR〈1,−xk〉 ∩H.

This implies t ∈ DR〈1,−x〉 since H ⊂ DR〈1,−k〉. The third equality gives:

ht ∈ DS〈1,−αx〉 ∩G(R) = DR〈1,−x〉 ∩H.

Hence h ∈ DR〈1,−x〉 and ρ = q(x, h) = 1. ¤
The small Witt rings of local type will often be treated separately. The only local

type Witt ring with two generators is Z. There are two Witt rings of local type on four
generators and both are group rings. If L is local type and |G(L)| ≥ 8 then L is not a
group ring. See [4,Chapter 5, Section 3] for details.

Lemma 2.2. Suppose R = L u R2, with L a Witt ring of local type and |G(L)| ≥ 8.
Let π1 be the projection map of G(R) onto G(L). Let S be an H-extension of R. Then
π1(H) = 1 or G(L).

Proof. Set B = π1(H) and write Q(L) = {1, ρ}. Suppose that B 6= 1. If (u, v) ∈ H with
u 6= 1 then pick r ∈ G(L)\DL〈1,−u〉. We get q((u, v), (r, 1)) = (ρ, 1) and so (ρ, 1) ∈ Q(H).

Now H ⊂ B × G(R2) so that CL(B) × 1 = CR(B × G(R2)) ⊂ CR(H). If CL(B) = 1
then B = G(L) and we are done. So suppose there exists 1 6= z ∈ CL(B). Set h =
(z, 1) ∈ CR(H). Then Q(h) = {1, (ρ, 1)} ⊂ Q(H). By (2.1) we must have h ∈ H and so
CL(B)× 1 ⊂ H. In particular, CL(B) ⊂ B.

Continue to let h = (z, 1) where 1 6= z ∈ CL(B). We claim there exist an h1 ∈ H and
an x ∈ DR〈1,−h〉 such that q(x, h1) = (ρ, 1). Suppose not. We consider any x = (a, 1)
with a ∈ DL〈1,−z〉. Then q(x, (u, v)) = (ρ, 1) unless a ∈ DL〈1,−u〉. Thus DL〈1,−z〉 ⊂
DL〈1,−u〉 for all (u, v) ∈ H, that is, DL〈1,−z〉 ⊂ CL(B). Then CL(B) = DL〈1,−z〉 and
so B = {1, z}. But CL(B) ⊂ B so that DL〈1,−z〉 ⊂ {1, z} and |G(L)| = 4, a case we are
excluding.

Thus there does exist an h1 ∈ H and an x ∈ DR〈1,−h〉 such that q(x, h1) = (ρ, 1).
Then in S we have q(αx, h1) = (ρ, 1) and so QS(h) ⊂ QS(αx). We obtain:

|QS(αx) ∩QS(h)| = 2.

On the other hand:

DS〈1,−αx〉 ∩DS〈1,−h〉 = {1,−αx} (DR〈1,−x〉 ∩H) ∩ {1, α}DR〈1,−h〉.
Here DR〈1,−x〉 ∩H ⊂ DR〈1,−h〉 as h ∈ CR(H). Also, by construction, x is an element of
DR〈1,−h〉 and h ∈ CR(H) ⊂ DR〈1,−h〉. So −1, x ∈ DR〈1,−h〉 and −αx ∈ αDR〈1,−h〉.
Thus DS〈1,−αx〉 ⊂ DS〈1,−h〉. By [4,5.2]:

|QS(αx) ∩QS(h)| = |DS〈1,−αxh〉|
|DS〈1,−αx〉 ∩DS〈1,−h〉| =

2|DR〈1,−xh〉 ∩H|
2|DR〈1,−x〉 ∩H| ,

and DR〈1,−xh〉∩H = DR〈1,−x〉∩H as h ∈ CR(H) implies H ⊂ DR〈1,−h〉. So |QS(αx)∩
QS(h)| = 1, a contradiction. Hence π1(H) = G(L). ¤



SMALL EXTENSIONS OF WITT RINGS 7

Corollary 2.3. Suppose R is of local type with |G(R)| 6= 4. If S is an H-extension of R
then either:

(a) H = 1 and S = R[E1], with E1 generated by α, or
(b) H = G(R) and S = D1 uR, with D1 generated by α.

Proof. If |G(R)| = 2 then it is clear that H = 1 or H = G(R). If |G(R)| ≥ 8 the take
R2 = 1 in (2.2) to get H = 1 or G(R). Now apply (1.1). ¤

3. Products: General Lemmas.
We start with a lemma that may be of general interest.

Lemma 3.1. Let R be a Witt ring of elementary type. Let K be a proper subgroup of
G(R) and let y ∈ G(R). If

G(R) =
⋃

k∈K

D〈1,−yk〉,

then y ∈ rad(R) ·K.

Proof. We first prove the result for non-degenerate R where we must show y ∈ K. It suffices
to prove this for subgroups K of index two. Namely, if K0 is any subgroup satisfying the
hypothesis let A denote the set of subgroups K of index two that contain K0. Then for
any K ∈ A :

G(R) =
⋃

k∈K0

D〈1,−yk〉 ⊂
⋃

k∈K

D〈1,−yk〉.

Assuming the result holds for subgroups of index two, we obtain y ∈ K. Then y ∈⋂
K∈AK = K0, as desired.
So suppose [G(R) : K] = 2. We work by induction on |G(R)|. We need to prove that

y ∈ K when R is of local type, a group ring or a product. First suppose R is of local type.
Then K = D〈1,−a〉, for some a ∈ G(R). We have:

G(R) =
⋃

k∈D〈1,−a〉
D〈1,−yk〉 = D〈1,−y, ay〉.

Multiplying by−a gives G(R) = D〈〈−a,−y〉〉′, the pure part of the Pfister form 〈〈−a,−y〉〉.
In particular, −1 ∈ D〈〈−a,−y〉〉′ so 〈〈−a,−y〉〉 = 0 and y ∈ D〈1,−a〉 = K.

Next let R = R0[E1], with E1 = {1, t} and |G(R0)| ≥ 2 (if G(R0) = 1 then R is
degenerate). Suppose y /∈ K. We claim G(R0) ⊂ K. Choose any g ∈ G(R0). Then there
exist k1, k2 ∈ K with −gt ∈ D〈1,−yk1〉 and −t ∈ D〈1,−yk2〉. We get gt = yk1 and
t = yk2 since y /∈ K. Hence g = k1k2 ∈ K. This proves the claim. Both G(R0) and K
have index two so K = G(R0). From t = yk2 we have y ∈ tG(R0). Pick g ∈ G(R0)

.. Then
g ∈ D〈1,−yk3〉 for some k3 ∈ K. But yk3 ∈ yK = tG(R0), so this is impossible. The
contradiction implies y ∈ K.

Lastly, say R = R1 u R2. Write y = (y1, y2). Now K ∩ (G(R1) × 1) is a subgroup of
index at most two in G(R1) × 1. Let K1 be its projection into G(R1). Similarly, let K2
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be the projection of K ∩ (1 × G(R2)) into G(R2). Then [G(Ri) : Ki] ≤ 2, for i = 1, 2. If
K2 = G(R2) then:

⋃

k∈K

DR〈1,−yk〉 =
⋃

k1∈K1

D〈1,−y1k1〉 ×G(R2)

so that G(R1) =
⋃

K1
D〈1,−y1k1〉. By induction then y1 ∈ K1 and hence y = (y1, y2) ∈

K1 × G(R2) = K. In the same way, if K1 = G(R1) then y ∈ K as desired. So we may
assume that [G(Ri) : Ki] = 2 for i = 1, 2. Write K = {1, γ}K1 ×K2. We have:

G(R) =
⋃

k1∈K1,k2∈K2

(D〈1,−y1k1〉 ×D〈1,−y2k2〉 ∪D〈1,−y1γ1k1〉 ×D〈1,−y2γ2k2〉) ,

where γ = (γ1, γ2).
Suppose y1 ∈ K1. If G(R1) = ∪D〈1,−y1γ1k1〉 then by induction we have y1γ1 ∈ K1

and so γ1 ∈ K1. Then K = K1 ×G(R2) and K2 = G(R2) a case we have already covered.
We may thus assume there exists a g1 ∈ G(R1) \ ∪D〈1,−y1γ1k1〉. Then g1 × G(R2) ⊂
∪(D〈1,−y1k1〉 ×D〈1,−y2k2〉) and so G(R2) = ∪D〈1,−y2k2〉. By induction y2 ∈ K2 and
y = (y1, y2) ∈ K1 ×K2 ⊂ K, and we are done.

We may thus assume y1 /∈ K1. Similarly, y2 /∈ K2. Pick, for i = 1, 2, a gi ∈ G(Ri) \
∪D〈1,−yiki〉, which is possible by induction. Then g1 × G(R2) ⊂ ∪(D〈1,−y1γ1k1〉 ×
D〈1,−y2γ2k2〉) and so G(R2) = ∪D〈1,−y2γ2k2〉. By induction once more, we have y2γ2 ∈
K2. Similarly, y1γ1 ∈ K1. Then y ∈ (γ1, γ2)(K1 ×K2) ⊂ K, as desired. This proves the
result for non-degenerate R.

Now suppose R is degenerate. Write R = D u R2, with rad(R) = G(D) × 1 and R2

non-degenerate. Let π2 be the projection of G(R) onto G(R2). Set K2 = π2(K) and write
y = (y1, y2), with y1 ∈ G(D) and y2 ∈ G(R2). Our assumption is:

G(R) = G(D)×G(R2) =
⋃

(k1,k2)∈K

D〈(1, 1),−(y1k1, y2k2)〉

= G(D)× ( ⋃

k2∈K2

DR2〈1,−y2k2〉
)
.

From the non-degenerate case we get y2 ∈ K2 = π2(K). Thus there exists a d ∈ G(D) such
that (d, y2) ∈ K. Hence y = (y1, y2) = (dy1, 1)(d, y2) ∈ rad(R) ·K. ¤

Our key reduction lemma follows.

Lemma 3.2. Let R = R1uR2 and suppose S is an H-extension of R. If H = H1×G(R2)
then there exists a Witt ring T that is an H1-extension of R1 such that S ∼= T uR2.

Proof. We first construct T. Let G(T ) be a group containing G(R1) as a subgroup of index
2; write G(T ) = {1, β}G(R1). Let ϕ : G(T ) → {1, α}(G(R1) × 1) be the isomorphism
sending g1 7→ (g1, 1) and βg1 7→ α(g1, 1), where g1 ∈ G(R1). For z ∈ G(T ) define:

DT 〈1,−z〉 = ϕ−1(DS〈1,−ϕ(z)〉 ∩ {1, α}(G(R1)× 1)).
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We check that T is an H1-extension of R1. If z ∈ G(R1) \H1 then:

DT 〈1,−z〉 = ϕ−1((DR1〈1,−z〉 ×G(R2)) ∩ {1, α}(G(R1)× 1))

= ϕ−1(DR1〈1,−z〉 × 1)

= DR1〈1,−z〉.

If z ∈ H1 then:

DT 〈1,−z〉 = ϕ−1({1, α}(DR1〈1,−z〉 ×G(R2)) ∩ {1, α}(G(R1)× 1))

= ϕ−1({1, α}(DR1〈1,−z〉 × 1))

= {1, β}DR1〈1,−z〉.

Lastly, if z ∈ G(R1) then:

DT 〈1,−βz〉 = ϕ−1(DS〈1,−α(z, 1)〉 ∩ {1, α}(G(R1)× 1)).

Now:

DS〈1,−α(z, 1)〉 = {1,−α(z, 1)} ((DR1〈1,−z〉 ×G(R2)) ∩ (H1 ×G(R2)))

= {1,−α(z, 1)} ((DR1〈1,−z〉 ∩H1)×G(R2))

Since (1,−1) ∈ DR1〈1,−z〉 ∩H1 ×G(R2) we have:

DS〈1,−α(z, 1)〉 = {1, α(−z, 1)} ((DR1〈1,−z〉 ∩H1)×G(R2)) .

Hence:

DT 〈1,−βz〉 = ϕ−1({1, α(−z, 1)}(DR1〈1,−z〉 ∩H1)×G(R2)) ∩ {1, α(−z, 1)}(G(R1)× 1))

= ϕ−1({1, α(−z, 1)}(DR1〈1,−z〉 ∩H1)× 1)

= {1,−βz}(DR1〈1,−z〉 ∩H1).

We begin the verification that (G(T ), DT ) is linked, so that T is indeed a Witt ring.
Let t = αε1(u, v) ∈ G(S) and let βε2x, βε3y ∈ G(T ) with each εi = 0 or 1.
Claim. If t ∈ ϕ(βε3y)DS〈1,−ϕ(βε2x)〉 then βε1u ∈ βε3yDT 〈1,−βε2x〉.

We first assume that ε1 = 0. We have four cases:
Case 1 : ε2 = 0, ε3 = 0. Here (uy, v) ∈ DS〈1,−(x, 1)〉, hence uy ∈ DR1〈1,−x〉 ⊂

DT 〈1,−x〉.
Case 2 : ε2 = 0, ε3 = 1. Here α(uy, v) ∈ DS〈1,−(x, 1)〉. We must have that x ∈ H1 so

α(uy, v) ∈ {1, α}(DR1〈1,−x〉 ×G(R2)). Then uy ∈ DR1〈1,−x〉. Thus βuy ∈ DT 〈1,−x〉 =
{1, β}DR1〈1,−x〉.

Case 3 : ε2 = 1, ε3 = 0. Here:

(uy, v) ∈ {1,−α(x, 1)}((DR1〈1,−x〉 ×G(R2)) ∩H)

= {1,−α(x, 1)}((DR1〈1,−x〉 ∩H1)×G(R2))
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Thus uy ∈ DR1〈1,−x〉 ∩H1. We obtain uy ∈ DT 〈1,−βx〉 = {1,−βx}(DR1〈1,−x〉 ∩H1).
Case 4 : ε2 = 1, ε3 = 1. Here α(uy, v) ∈ {1,−α(x, 1)}((DR1〈1,−x〉 ∩ H1) × G(R2))

so that (−xuy, v) ∈ (DR1〈1,−x〉 ∩ H1) × G(R2). Thus −xuy ∈ DR1〈1,−x〉 ∩ H1 and
βuy ∈ DT 〈1,−βx〉 = {1,−βx}(DR1〈1,−x〉 ∩H1).

The four cases with ε1 = 1 are identical to the four above cases. For example, if
ε1 = 1, ε2 = 0, ε3 = 0 then we have α(uy, v) ∈ DS〈1,−(x, 1)〉, which is Case 2 above. Thus
the Claim is proven.

We can now check linkage in T. Let x, y, z, w ∈ G(T ) and suppose:

xDT 〈1,−y〉 ∩DT 〈1,−yz〉 ∩ wDT 〈1,−z〉 6= ∅.
Apply ϕ to get:

ϕ(x)DS〈1,−ϕ(y)〉 ∩DS〈1,−ϕ(yz)〉 ∩ ϕ(w)DS〈1,−ϕ(z)〉 6= ∅.
By linkage on S, there exists a t ∈ G(S) in:

ϕ(y)DS〈1,−ϕ(x)〉 ∩DS〈1,−ϕ(xw)〉 ∩ ϕ(z)DS〈1,−ϕ(w)〉.
Now apply the Claim :

yDT 〈1,−x〉 ∩DT 〈1,−xw〉 ∩ zDT 〈1,−w〉 6= ∅,
as desired.

Lastly, set W = T u R2. Then G(W ) = ({1, β}G(R1)) ×G(R2). Set γ = (β, 1) so that
G(W ) = {1, γ}(G(R1) × G(R2)) = {1, γ}G(R). We will show W is an H-extension of R,
via γ, and hence that S ∼= W.

First let h = (h1, g2)) ∈ H, where h1 ∈ H1 ⊂ G(R1) and g2 ∈ G(R2). Then:

DW 〈1,−h〉 = DT 〈1,−h1〉 ×DR2〈1,−g2〉
= ({1, β}DR1〈1,−h1〉)×DR2〈1,−g2〉
= {1, γ}DR〈1,−h〉.

Next let g = (g1, g2) ∈ G(R) \H, with g1 ∈ G(R1) \H1 and g2 ∈ G(R2). Then:

DW 〈1,−g〉 = DT 〈1,−g1〉 ×DR2〈1,−g2〉
= DR1〈1,−g1〉 ×DR2〈1,−g2〉 = DR〈1,−g〉.

Lastly, let g = (g1, g2) ∈ G(R), with g1 ∈ G(R1) and g2 ∈ G(R2). Then:

DW 〈1,−γg〉 = DW 〈1,−(βg1, g2)〉
= DR1〈1,−βg1〉 ×DR2〈1,−g2〉
=

({1,−βg1}(DR1〈1,−g1〉 ∩H1)
)×DR2〈1,−g2〉

= (DR1〈1,−g1〉 ∩H1)×DR2〈1,−g2〉
∪ γ

(−g1(DR1〈1,−g1〉 ∩H1)×−g2DR2〈1,−g2〉
)

= {1,−γ(g1, g2)}(DR〈1,−(g1, g2)〉 ∩H)

= {1,−γg}(DR〈1,−g〉 ∩H).

Thus W = T uR2 is an H-extension of R and so is isomorphic to S. ¤
Our last general lemma is the most technical, but it also does most of the work.
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Lemma 3.3. Let u ∈ G(R) and h ∈ H. Then:

DR〈1, uh,−h〉 \ uH ⊂
⋃

t∈h(D〈1,−u〉∩H)

DR〈1,−t〉.

Proof. Let w ∈ DR〈1, uh,−h〉 \ uH. Then w ∈ DR〈1,−hv〉 for some v ∈ DR〈1,−u〉 and
uw /∈ H. We have:

q(αu, h) = q(u, h) = q(u, vh) = q(uw, vh).

Thus, by linkage, there exists a t ∈ G(S) such that:

q(αu, h) = q(αu, t) = q(uw, t) = q(uw, vh).

The third equality gives vht ∈ DS〈1,−uw〉. Since uw /∈ H this implies t ∈ G(R). Then the
first two equalities give:

ht ∈ DS〈1,−αu〉 ∩G(R) = DR〈1,−u〉 ∩H,

t ∈ DS〈1,−αw〉 ∩G(R) = DR〈1,−w〉 ∩H.

Hence w ∈ DR〈1,−t〉 where t ∈ h(DR〈1,−u〉 ∩H). ¤

4. Products: Degenerate Witt rings.
If R is a degenerate Witt ring then R = D u R2, for some Witt ring R2 and where

G(D) = {1, d}, with DD〈1, 1〉 = DD〈1, d〉 = {1, d}. We will often use the fact that if
(u, v) ∈ G(R) then DR〈1,−(u, v)〉 = DR〈1,−(du, v)〉.
Lemma 4.1. Suppose R = D uR2 is degenerate. Let π1 be the projection of G(R) onto
G(D). Let S be an H-extension of R. Then either G(D)× 1 ⊂ H or S is isomorphic to an
H0-extension of R, for some subgroup H0 ⊂ G(R) with π1(H0) = 1.

Proof. Suppose (d, 1) /∈ H and that π1(H) 6= 1, so that (d, y) ∈ H for some y ∈ G(R2).
Let G2 be the subgroup of G(R2) such that 1 × G2 = H ∩ (1 × G(R2)). Then H =
(1×G2) ∪ (d× yG2). Set H0 = 1× {1, y}G2, and note that π1(H0) = 1.

Let β2 = 1 and set G(S0) = {1, β}G(R2). Define S0-value set s so that S0 is an H0-
extension of R. We wish to show S ∼= S0. Extend G2 to a subgroup K of index two in
G(R2) that does not contain y. Define ϕ : G(S) → G(S0) by α 7→ β and for (u, v) ∈ G(R):

ϕ(u, v) =
{

(u, v), if v ∈ K

(du, v), if v /∈ K.

It is quickly checked that ϕ is an isomorphism. We will show:

(4.2) ϕ(DS〈1,−s〉) = DS0〈1,−ϕ(s)〉,

for all s ∈ G(S). This shows both that S0 is a Witt ring and that S ∼= S0.
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Claim. If (u, v) ∈ G(R) then ϕ(DR〈1,−(u, v)〉 = DR〈1,−(u, v)〉.

DR〈1,−(u, v)〉 = {1, d} ×DR2〈1,−v〉
= 1× (DR2〈1,−v〉 ∩K) ∪ d× (DR2〈1,−v〉 ∩K)

∪ 1× (DR2〈1,−v〉 ∩ yK) ∪ d× (DR2〈1,−v〉 ∩ yK).

Thus:

ϕ(DR〈1,−(u, v)〉 = 1× (DR2〈1,−v〉 ∩K) ∪ d× (DR2〈1,−v〉 ∩K)

∪ d× (DR2〈1,−v〉 ∩ yK) ∪ 1× (DR2〈1,−v〉 ∩ yK)

= DR〈1,−(u, v)〉,

proving the Claim.
We now check (4.2) in various cases. First suppose s = (u, v) ∈ G(R), with v ∈ K.

Then s ∈ H iff u = 1 and v ∈ G2. We have ϕ(s) = s and ϕ(s) ∈ H0 iff u = 1 and v ∈ G2

iff s ∈ H. DS〈1,−s〉 = {1, α}DR〈1,−s〉 or DR〈1,−s〉 depending on whether or not s ∈ H.
So by the Claim, ϕ(DS〈1,−s〉) = {1, β}DR〈1,−s〉 or DR〈1,−s〉 depending on whether or
not ϕ(s) ∈ H0. Thus ϕ(DS〈1,−s〉) = DS0〈1,−ϕ(s)〉.

Next suppose that s = (u, v) ∈ G(R) with v ∈ yK. Then s ∈ H iff u = d and v ∈ yG2.
We have ϕ(s) = (du, v) so that ϕ(s) ∈ H0 iff u = d and v ∈ yG2 iff s ∈ H. Again using the
Claim:

DS〈1,−s〉 =
{ {1, α}DR〈1,−s〉, if s ∈ H

DR〈1,−s〉, if s /∈ H.

Thus:

ϕ(DS〈1,−s〉) =
{ {1, β}DR〈1,−s〉, if ϕ(s) ∈ H0

DR〈1,−s〉 if ϕ(s) /∈ H0.

Now DR〈1,−s〉 = DR〈1,−(u, v)〉 = DR〈1,−(du, v)〉 = DR〈1,−ϕ(s)〉. Hence we have as
desired that ϕ(DS〈1,−s〉) = DS0〈1,−ϕ(s)〉.

Now suppose s = α(u, v) ∈ αG(R). Then:

DS〈1,−s〉 = {1,−α(u, v)}(DR〈1,−(u, v)〉 ∩H)

= {1,−α(u, v)}[({1, d} ×DR2〈1,−v〉) ∩ (1×G2 ∪ d× yG2)]

= {1,−α(u, v)}[1× (DR2〈1,−v〉 ∩G2) ∪ d× (DR2〈1,−v〉 ∩ yG2)]

Now:

ϕ((1× (DR2〈1,−v〉 ∩G2)) ∪ (d× (DR2〈1,−v〉 ∩ yG2)))

= 1× (DR2〈1,−v〉 ∩G2) ∪ 1× (DR2〈1,−v〉 ∩ yG2)

= 1× (DR2〈1,−v〉 ∩ {1, y}G2)

= DR〈1,−(u, v)〉 ∩H0.
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Thus if v ∈ K then:

ϕ(DS〈1,−s〉) =ϕ(DS〈1,−α(u, v)〉
= {1,−β(u, v)}(DR〈1,−(u, v)〉 ∩H0) = DS0〈1,−ϕ(s)〉,

verifying (4.2) in this case.
Lastly, if v ∈ yK then:

ϕ(DS〈1,−s〉) = ϕ(DS〈1,−α(u, v)〉
= {1,−β(du, v)}(DR〈1,−(u, v)〉 ∩H0)

= {1,−β(du, v)}(DR〈1,−(du, v)〉 ∩H0)

= DS0〈1,−ϕ(s)〉.
Thus (4.2) holds in all cases. ¤
5. Products: Local type factors.

Lemma (3.3) looks simpler when one factor has local type.

Lemma 5.1. Suppose R = L u R2, with L of local type. Suppose S is an H-extension
of R. Let h = (h1, h2) ∈ H and u = (u1, u2) ∈ G(R) such that u1 /∈ DL〈1,−h1〉 while
u2 ∈ DR2〈1,−h2〉. Then:

G(R) = uH ∪ (u1 ×G(R2)) ∪
⋃

t∈h(DR〈1,−u〉∩H)

DR〈1,−t〉.

Proof. Write Q(L) = {1, ρ}. Then 〈〈−u,−h〉〉 = (ρ, 1). Hence −DR〈〈−u,−h〉〉′ = {(x, y) ∈
G(R) : x 6= 1}. Now −u · 〈−u,−h, uh〉 ' 〈1, uh,−h〉. Thus DR〈1, uh,−h〉 = {(x, y) ∈
G(R) : x 6= u1}. Apply (3.3). ¤
Lemma 5.2. Suppose R = L u R2, with L of local type. Let π1 be the projection of
G(R) onto G(L). Let S be an H-extension of R and suppose that π1(H) = G(L). Let
u = (u1, u2) ∈ G(R).

(a) If |G(L)| ≥ 4 then π1(DR〈1,−u〉 ∩H) = DL〈1,−u1〉.
(b) If L = Z and π1(DR〈1,−u〉 ∩ H) 6= DL〈1,−u1〉 for some u, then H = 1 × H2 ∪

−1×−H2, where 1×H2 = H ∩ (1×G(R2)) and H2 is an ordering on R2.

Proof. Suppose that π1(DR〈1,−u〉 ∩H) = K < DL〈1,−u1〉.
Claim. If v ∈ G(L) \K then (v,−1) ∈ H.

Since π1(H) = G(L) there exists a w ∈ G(R2) such that (v, w) = h ∈ H. Now:

DR〈1, uh,−h〉 = −u(DL〈〈−u,−v〉〉′ ×DR2〈〈−u2,−w〉〉′)
⊃ u1G(L). × u2T,

where T = −DR2〈〈−u2,−w〉〉′. Also:

⋃

t∈h(DR〈1,−u〉∩H)

DR〈1,−t〉 ⊂
( ⋃

k∈K

DL〈1,−vk〉
)
×G(R2).
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Now v /∈ K implies G(L) 6= ∪DL〈1,−vk〉 by (3.1). Choose a g ∈ G(L) \ ∪DL〈1,−vk〉.
We check that we may assume g 6= u1. If v ∈ DL〈1,−u1〉 then we have u1DL〈1,−v〉 =

DL〈1,−v〉 ⊂ ∪DL〈1,−vk〉 and so no g ∈ G(L) \ ∪DL〈1,−vk〉 is equal to u1. If instead
v /∈ DL〈1,−u1〉 then, as |K| < |DL〈1,−u1〉|, there exists a w 6= u1 such that K ⊂
DL〈1,−u1〉 ∩ DL〈1,−w〉. If v /∈ DL〈1,−w〉 then w is not in any DL〈1,−vk〉, for k ∈ K,
and we may take g = w. If v ∈ DL〈1,−w〉 then v /∈ DL〈1,−u1w〉 and we may take
g = u1w.

We thus have g ∈ u1G(L). \∪DL〈1,−vk〉. So g×u2T ⊂ uH by (3.3). Hence u1g×T ⊂
H. Then (u1g, u2), (u1g,−u2w) ∈ H and so (1,−w) ∈ H. We obtain that (v,−1) =
(v, w)(1,−w) ∈ H and the Claim is proven.

Now suppose u1 6= 1. Let x ∈ G(L).. Since |K| < |DL〈1,−u1〉| we have |K| ≤ 1
4 |G(L)|.

So we can choose v ∈ G(L) \ {1, x}K. Then (v,−1) and (vx,−1) are in H by the Claim.
Hence (x, 1) ∈ H. This shows that G(L)×1 ⊂ H. But then DL〈1,−u1〉×1 ⊂ DR〈1,−u〉∩H
and π1(DR〈1,−u〉 ∩H) = DL〈1,−u1〉, as desired.

Next suppose u1 = 1 and |G(L)| ≥ 4. We show π1(DR〈1,−u〉 ∩ H) = G(L). Pick any
a ∈ G(L) and pick a b ∈ G(L). such that a ∈ DL〈1,−b〉. This is possible since |G(L)| ≥ 4
implies there are at least two b’s such that a ∈ DL〈1,−b〉. So there is such a b not equal to
1. Then, by the above paragraph, π1(DR〈1,−(b, u2)〉 ∩H) = DL〈1,−b〉 contains a. Thus
there exists a k ∈ DR2〈1,−u2〉 such that (a, k) ∈ H. Thus (a, k) ∈ DR〈1,−(u1, u2)〉, as
u1 = 1, and so a ∈ π1(DR〈1,−u〉 ∩H).

Lastly, suppose u1 = 1 and L = Z. Here K = {1} and v = −1. The Claim shows that
(−1,−1) ∈ H. Now H2 = H ∩ (1×G(R2)) has index 2 in H since 1×G(R2) has index 2
in G(R) and H 6⊂ 1×G(R2). Hence H = 1×H2 ∪ −1×−H2. The last paragraph of the
proof of the Claim gives u1g × T ⊂ H, where g 6= u1. Thus g = −1 and after multiplying
by −1 ∈ H we get:

(5.3) 1×DR2〈〈−u2,−w〉〉′ ⊂ H.

This holds for all w ∈ G(R2) such that (−1, w) ∈ H, that is, for all w ∈ −H2. Thus for
any h2 ∈ H2:

−u2DR2〈1, h2〉 ⊂ DR2〈−u2, h2,−u2h2〉 ⊂ H2

DR2〈1, h2〉 ⊂ H2.

Thus H2 is a preoredering. Also (5.3) holds for any u2 ∈ G(R2) with π1(DR〈1,−(1, u2)〉) =
1. That is, DR〈1,−(1, u2)〉 ∩ (−1 × −H2) = ∅ or equivalently, u2 is not in DR2〈1, h2〉 for
any h2 ∈ H2. For such a u2, (5.3) implies −u2 ∈ H2. Hence:

G(R2) = −H2 ∪
⋃

h2∈H2

DR2〈1, h2〉.

But H2 is a preordering so that ∪DR2〈1, h2〉 ⊂ H2. Thus G(R2) = −H2 ∪ H2, H2 has
index 2 in G(R2) and so H2 is an ordering. ¤
Notation. Suppose R = R1 u R2 and that H is a subgroup of G(R). For x ∈ G(R1) set
F (x) = {y ∈ G(R2) : (x, y) ∈ H}.
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Lemma 5.4. Let R = R1uR2 and let S be an H-extension of R. Let π1 be the projection
of G(R) onto G(R1) and suppose π1(H) = G(R1). Then for all x ∈ G(R1):

(a) F (x) is non-empty.
(b) F (1) is a subgroup of G(R1).
(c) F (x) is a coset of F (1).

Proof. No F (x) is empty since π1(H) = G(R1). Clearly F (1) is a subgroup. Fix y0 ∈ F (x).
If y ∈ F (1) then (1, y), (x, y0) ∈ H implies (x, yy0) ∈ H and so yy0 ∈ F (x). This says
y0F (1) ⊂ F (x).

Now let y ∈ F (x). Then (x, y0), (x, y) ∈ H so that (1, yy0) ∈ H. Hence yy0 ∈ F (1) and
we have the reverse inclusion F (x) ⊂ y0F (1). ¤
Lemma 5.5. Let R = R1 uR2 be of elementary type. Let S be an H-extension of R. Let
π1 be the projection of G(R) onto G(R1). Suppose the following:

(1) π1(H) = G(R1).
(2) F (a) ∩ rad(R2) ⊂ {1}, for all a ∈ G(R1).
(3) For all u = (u1, u2) ∈ G(R) we have π1(DR〈1,−u〉 ∩H) = DR1〈1,−u1〉.

Then H = G(R1)×H2, for some subgroup H2 ⊂ G(R2).

Proof. Let a ∈ G(R1). We will first show that:

(5.6) G(R2) =
⋃

k∈F (a)

DR2〈1,−k〉.

Pick any b ∈ DR1〈1,−a〉 and any g ∈ G(R2). Then a ∈ DR1〈1,−b〉 = π1(DR〈1,−(b, g)〉 ∩
H) by assumption (3). Hence there exists a k ∈ DR2〈1,−g〉 with (a, k) ∈ H. That is,
g ∈ DR2〈1,−k〉 for some k ∈ F (a), proving (5.6).

Write F (a) = yF (1) as in (5.4). Then (5.6) becomes:

G(R2) =
⋃

k∈F (1)

DR2〈1,−yk〉.

Thus y ∈ rad(R2)·F (1) by (3.1). That is, there exists a d ∈ rad(R2) such that d ∈ yF (1) =
F (a). By assumption (2) then d = 1. Hence y ∈ F (1) and so F (a) = F (1). By assumption
(1) we have (a,m) ∈ H for some m ∈ G(R2). Then m ∈ F (a) = F (1) so that (1,m) ∈ H
also. So (a, 1) = (a,m)(1,m) ∈ H. Hence G(R1)× 1 ⊂ H and H = G(R1)× F (1). ¤

We first complete the case of a local factor L with |G(L)| ≥ 8.

Corollary 5.7. Let R = LuR2, with R2 of elementary type,L of local type and |G(L)| ≥ 8.
Let S be an H-extension of R. Suppose F (a)∩rad(R2) ⊂ {1} for all a ∈ G(L). Then either
H = 1×H2 or H = G(L)×H2 for some subgroup H2 ⊂ G(R2).

Proof. Again let π1 denote the projection of G(R) onto G(L). We know that π1(H) = 1 or
G(L), by (2.2). If π1(H) = 1 then clearly H = 1×H2 for some subgroup H2. So suppose
that π1(H) = G(L), the first hypothesis of (5.5). We are assuming the second hypothesis
as well. And (5.2) shows the third hypothesis of (5.5) holds. Hence H = G(L) ×H2, for
some subgroup H2. ¤

The argument for R = Z uR2 is different.
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Lemma 5.8. Let R be a real Witt ring of elementary type. Let P ⊂ G(R) be an ordering.
Suppose that for all x ∈ P that:

P =
⋃

k∈D〈1,−x〉∩P

D〈1, xk〉.

Then R = Z uR2, for some Witt ring R2.

Proof. Suppose Z is not a factor of R. Then R has a group ring factor that is real. Thus
R = R0[E1] uR2, for some Witt rings R0, R2, and we may assume P = P0{1, t} ×G(R2),
where P0 ⊂ G(R0) is an ordering on R0 and E1 = {1, t}. Then take x = (t, 1). We have
that D〈1,−x〉 = {1,−t} ×G(R2) and D〈1,−x〉 ∩ P = 1×G(R2). Thus:

P =
⋃

k∈D〈1,−x〉∩P

D〈1, xk〉 =
⋃

g2∈G(R2)

D〈(1, 1), (t, g2)〉

= {1, t} ×G(R2)

Hence P0 = 1 and R0 = Z, giving a contradiction. ¤

Lemma 5.9. Let R = Z u R2 and suppose S is an H-extension of R. Then one of the
following occurs.

(a) H = 1×H2 for some subgroup H2 ⊂ G(R2).
(b) R = Z uR3, for some Witt ring R3, and {±1} × 1 ⊂ H.
(c) R = Z u Z uR3, for some Witt ring R3, and (1, 1)×G(R3) ⊂ H.

Proof. Again let π1 be the projection of G(R) onto G(Z) = {±1}. If π1(H) = 1 the we are
in case (a). Thus we may assume that π1(H) = G(Z). If for every u ∈ G(R) we have that
π1(DR〈1,−u〉 ∩H) = D〈1,−π1(u)〉 then (5.5) implies we are in case (b). So suppose this
fails for some u ∈ G(R). Then by (5.2) H = 1×H2 ∪ (−1×−H2), for some ordering H2

of G(R2). We will first show that for every h2 ∈ H2 that:

H2 =
⋃

k∈DR2 〈1,−h2〉∩H2

DR2〈1, h2k〉.

Consider ϕ = 〈(1, 1), (1, h2), (1,−1)〉 ∈ S. We compute its value set two ways. First:

DS〈(1, 1), (1, h2), (1,−1)〉 =
⋃

β∈DS〈(1,1),(1,−h2)〉
DS〈(1, 1), β(1, h2)〉.

Now (−1, h2) /∈ H so DS〈(1, 1), (1,−h2)〉 = 1×DR2〈1,−h2〉. For ϕ to represent an element
of α(1×G(R2)) we must have β ∈ −H = H. That is, β = (1, β2) with β2 ∈ H2. Thus:

DS(ϕ) ∩ α(1×G(R2)) = α ·
⋃

β2∈DR2 〈1,−h2〉∩H2

(1×DR2〈1, β2h2〉).
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Next:
DS(ϕ) = (1, h2) ·

⋃

γ∈DS〈(1,1),(1,−1)〉
DS〈(1, 1), γ(1, h2)〉.

For any x ∈ H2 take γ = (1, x) ∈ DS〈(1, 1), (1,−1)〉. Then since (−1,−xh2) ∈ H:

α(1, x) ∈ (1, h2)DS〈(1, 1),−(−1,−xh2)〉
= (1, h2) · {1, α}(1×DR2〈1, xh2〉)

Thus DS(ϕ) ∩ α(1 × G(R2)) = α(1 × H2). The two computations of DS(ϕ) thus yield
H2 = ∪DR2〈1, βh2〉, over β ∈ DR2〈1,−h2〉 ∩H2.

We may now apply (5.8) to obtain R2 = ZuR3, for some Witt ring R3. Let H3 ⊂ G(R3)
be the subgroup such that H2∩(1×G(R3)) = 1×H3. We note that both H2 and 1×G(R3)
have index two in G(R2).

If H2 = 1 × G(R3) then (1, 1) × G(R3) ⊂ H and we are in case (c). So suppose
H2 6= 1×G(R3). Then 1×H3 has index two in H2 and H3 has index two in G(R3). Write
H2 = 1×H3 ∪ (−1× zH3), for some z ∈ G(R3). Then:

(5.10) H = [(1, 1)×H3] ∪ [(1,−1)× zH3] ∪ [(−1,−1)×−H3] ∪ [(−1, 1)×−zH3].

Now [G(R3) : H3] = 2 implies at least one of the cosets zH3,−H3,−zH3 equals H3. Say
zH3 = H3. Then the second term of (5.10) shows (1, 1, 1), (1,−1, 1) ∈ H. Set R4 equal
to the product of the first copy of Z and R3. Then R = Z u R4 and {±1} × 1 ⊂ H. We
are thus in case (b). Next say −H3 = H3. Then (1,−1) ∈ 1 × H3 ⊂ H2. Since H2 is
an ordering we have DR2〈(1, 1), (1,−1)〉 ⊂ H2. But the 1 × G(R3) ⊂ H2, a case we have
already considered. Lastly, suppose −zH3 = H3. Then the fourth term of (5.10) shows
(1, 1, 1), (−1, 1, 1) ∈ H. This is case (b) again. ¤
6. Products: Group ring factors.

Lemma 6.1. Let R = R1 uR2, with R1 = R0[E1] and E1 generated by t. Let S be an H-
extension of R. Let π1 be the projection of G(R) onto G(R1) and suppose π1(H) 6⊂ G(R0).
Then either π1(H) = G(R1) or 1×G(R2) ⊂ H.

Proof. From π1(H) 6⊂ G(R0) we may assume h = (t, g2) ∈ H, for some g2 ∈ G(R2).
Suppose π1(H) 6= G(R1), Choose −g1 ∈ G(R1) \ π1(H). Then −g1t /∈ π1(H). Set u =
(g1t, 1) and note that π1(DR〈1,−u〉 ∩H) = 1. Now:

DR〈1, uh,−h〉 = DR1〈1, g1,−t〉 ×DR2〈1, g2,−g2〉
⊃ g1 ×G(R2).

Also: ⋃

k∈h(DR〈1,−u〉∩H)

DR〈1,−k〉 ⊂ DR1〈1,−t〉 ×G(R2) = {1,−t} ×G(R2).

Hence by (3.3), g1×G(R2) ⊂ uH. Multiplying by u gives t×G(R2) ⊂ H. Thus 1×G(R2) ⊂
H. ¤
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Lemma 6.2. Let R = R1 uR2, with R1 = R0[E1] and E1 generated by t. Let S be an H-
extension of R. Let π1 be the projection of G(R) onto G(R1) and suppose π1(H) = G(R1).
If u1 ∈ G(R0)

. and u = (u1, u2) then π1(DR〈1,−u〉 ∩H) = DR1〈1,−u1〉.
Proof. Set K = π1(DR〈1,−u〉 ∩H) and suppose K < DR1〈1,−u1〉. Let g ∈ G(R0). Then
(gt, g2) ∈ H for some g2 ∈ G(R2), since π1(H) = G(R1). Now DR〈1, uh,−h〉 contains
−gtDR1〈1,−u1〉 × u2T, where T = −DR2〈〈−u2,−g2〉〉′. Also:

⋃

w∈h(DR〈1,−u〉∩H)

DR〈1,−w〉 ⊂
⋃

k∈K

DR1〈1,−kgt〉 ×G(R2)

= ({1} ∪ −gtK)×G(R2).

Hence by (3.3), if y ∈ DR1〈1,−u1〉 \K then:

−gty × u2T ⊂ uH

−gtu1y × T ⊂ H.

Now u2 and −u2g2 are in T so (−gtu1y, u2) and (−gtu1y,−u2g2) are in H. Thus (1,−g2) ∈
H and as result (gt,−1) ∈ H.

This holds for all g ∈ G(R0) so we have that tG(R0)×−1 ⊂ H. Thus G(R0)× 1 ⊂ H.
But the DR1〈1,−u1〉 × 1 ⊂ DR〈1,−u〉 ∩ H and π1(DR〈1,−u〉 ∩ H) = DR1〈1,−u1〉, a
contradiction. ¤
Lemma 6.3. Let R = R1 uR2, with R1 = R0[E1] non-degenerate and E1 generated by t.
Let S be an H-extension of R. Let π1 be the projection of G(R) onto G(R1) and suppose
π1(H) = G(R1). Then G(R1)× 1 ⊂ H.

Proof. We will first show F (g) = F (1) for all g ∈ G(R0). Let g ∈ G(R0)
.. Pick u1 ∈

G(R0)
. such that g ∈ DR1〈1,−u1〉. For all u2 ∈ G(R2), since g ∈ DR1〈1,−u1〉 =

π1(DR〈1,−(u1, u2)〉 ∩H), there exists a k ∈ G(R2) with (g, k) ∈ H and k ∈ DR2〈1,−u2〉.
That is, G(R2) = ∪k∈F (g)DR2〈1,−k〉. By (3.1) and (5.4), F (g) = F (1).

We next show G(R0)×1 ⊂ H. Continue to let g ∈ G(R0)
.. Now, as g ∈ π1(H) = G(R1),

we have (g, m) ∈ H for some m ∈ G(R2). Then m ∈ F (g) = F (1) so (1,m) ∈ H and hence
(g, 1) = (g,m)(1,m) ∈ H. This shows G(R0) ⊂ H.

We will be done if we show F (t) = F (1). Then, if (t, k) ∈ H we get (1, k) and hence
(t, 1) are in H. Apply the previous paragraph to get G(R1)× 1 = {1, t}G(R0)× 1 ⊂ H.

So suppose F (t) 6= F (1). We have by (3.1):

G(R2) 6=
⋃

k∈F (t)

DR2〈1,−k〉.

Pick u2 ∈ G(R2) \ ∪DR2〈1,−k〉. Set u = (−t, u2). Then, as there is no k with (t, k) ∈ H
and k ∈ DR2〈1,−k〉, we have π1(DR〈1,−u〉 ∩H) = 1. Pick any g ∈ G(R0)

. ( we note that
|G(R0)| > 1, else R1 is degenerate). Pick any g2 ∈ F (g) and set h = (g, g2) ∈ H. Now:

DR〈1, uh,−h〉 = DR1〈1,−gt,−g〉 ×DR2〈1, u2g2,−g2〉
⊃ −gt×DR2〈1, u2g2,−g2〉.
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Also: ⋃

w∈h(DR〈1,−u〉∩H)

DR〈1,−w〉 ⊂ DR1〈1,−g〉 ×G(R2).

Hence, by (3.3),

−gt×DR2〈1, u2g2,−g2〉 ⊂ uH

−t×DR2〈g2, u2,−1〉 ⊂ H.

In particular, (−t, g2) ∈ H. Since (−1, 1) ∈ G(R0)× 1 ⊂ H , we get (t, g2) ∈ H. But then
g2 ∈ F (t) ∩ F (g), which equals F (t) ∩ F (1) by previous work. F (t) is a coset of F (1), by
(5.4), so in fact F (t) = F (1) as desired. ¤

7. The Main Theorem.

Theorem 7.1. Let R be a Witt ring of elementary type. If S is an H-extension of R, for
some subgroup H ⊂ G(R), then S is also of elementary type.

Proof. We argue by induction on |G(R)|. If |G(R)| ≤ 2 then either H = 1 or H = G(R)
and we are done by (1.1). Suppose |G(R)| > 2. If R = A u B then πA will denote the
projection of G(R) onto G(A).

Now suppose R is degenerate. Write R = Dk u R2, where R2 is non-degenerate and
G(Dk)× 1 = rad(R). If some d ∈ rad(R) ∩H then write R = D1 uR3, where d generates
D1. We have G(D1) × 1 ⊂ H and so H = G(D1) ×H3, for some subgroup H3 ⊂ G(R3).
Then (3.2) implies S = D1 uS3, where S3 is an H3-extension of R3. By induction, S3 is of
elementary type and so S is also. We may thus assume rad(R)∩H = 1. If πDk

(H)∩G(Dk) 6=
1 then by (4.1) we may replace H, without affecting S, by another subgroup H0 such that
πDk

(H0)∩G(Dk) = 1. We assume this has already been done so that πDk
(H)∩G(Dk) = 1.

We note this also holds trivially if R is non-degenerate and k = 0.
Next suppose R has a local type factor L with |G(L)| ≥ 8. Write R = L u R4. Dk

is a factor of R4. We check the hypothesis of (5.7). Let a ∈ G(L) and suppose x ∈
F (a)∩rad(R4). This means (a, x) ∈ H and so x ∈ πDk

(H) = 1. Thus F (a)∩rad(R4) ⊂ {1},
as desired. Apply (5.6) to get that either G(L) × 1 ⊂ H or πL(H) = 1. In the first case,
H = G(L) ×H4, for some subgroup H4 of G(R4). Then (3.2) implies S = L u S4, where
S4 is an H4-extension of R4. By induction, S4 is of elementary type and so S is also. We
may thus assume we are in the second case: πL(H) = 1.

Now suppose the local factor is L1 = Z. There are three cases according to (5.9). In case
(b) we can write R = ZuR5, with {±1}×1 ⊂ H. Then H = G(Z)×H5, for some subgroup
H5 ⊂ G(R5). Applying (3.2) again gives S = Z u S5, where S5 is an H5-extension of R5.
Induction again shows S is of elementary type. In case (c) we can write R = Z u Z u R6,
with (1, 1)×G(R6) ⊂ H. Once again (3.2) yields S = S0uR6, where S0 is an H0-extension
of ZuZ, for some subgroup H0. Since ZuZ ∼= Z[E1], (1.5) shows S0 is of elementary type
(in (1.5)(b) we have R0 = Z so that its extension is of elementary type as |G(R0)| = 2).
Thus S is also of elementary type. We may thus assume we are in case (a) of (5.9), namely,
that πL1(H) = 1. This is the same conclusion as when the local factor has at least 8 square
classes.
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The only local type factors we have omitted are those with 4 square classes and these
Witt rings are group rings. We are thus in the following position: R = Y uW1 u . . .uWn,
where Y is a product of Dk with k ≥ 0, and local type rings L with |G(L)| 6= 4 and each
Wi is a non-degenerate group ring. (It is possible that Y = 1.) We also have πY (H) = 1, so
that if n = 0 then H = 1 and we are done by (1.1). So suppose n ≥ 1. Write Wi = Vi[E1].
We first suppose that πWi

(H) 6⊂ G(Vi) for some i. Write R = Wi u R7. There are two
possibilities according to (6.1).

The first possibility is that 1×G(R7) ⊂ H. Write H = H0×G(R7), for some subgroup
H0 of G(Wi). Then (3.2) gives that S = S0 u R7, for S0, some H0-extension of Wi. If
G(R7) 6= 1 then we are done by induction. We drop the subscript i and suppose then
that R = W = W0[En], where W0 is basic and n ≥ 1. In cases (a),(c),(d) we have S is of
elementary type. In case (b) S = S0[En], where S0 is an H-extension of W0, and so agsin
S is of elementary type by induction.

The second possibility in (6.1) is that πWi(H) = G(Wi). Then by (6.3) we have H =
G(Wi)×H7, where H7 is a subgroup of R7. Apply (3.2) once again to get that S = WiuS7,
where S7 is an H7-extension of R7. Induction gives that S is of elementary type. This
completes the result when (6.1) applies, that is, when πWi(H) 6⊂ G(Vi), for some i.

We may thus assume we have R = Y u W1 u . . . u Wn, with πY (H) = 1 and every
πWi(H) ⊂ Vi. Choose ti /∈ Vi, for each i and set g = (1, t1, . . . , tn) ∈ G(R). Then:

g /∈ ±
⋃

h∈H.
DR〈1,−h〉,

as for any h ∈ H. has a coordinate in G(Vi)
.. By (1.2), g /∈ B(R). Thus R is itself a group

ring, a case we covered two paragraphs ago. ¤
The previous sections can be used to determine the possible H-extensions of a given

ring R. As an example, consider R = (D1 u L3)[E2]. Let d generate D1, −1, a, b generate
L3 and s, t generate E2. Thus G(R) = gp(d,−1, a, b, s, t), where gp(A) denotes the group
generated by A. G(R) has 2825 subgroups, 47 of which will yield H-extensions. Up to
isomorphism, there are exactly 8 H-extensions of R. Below we list the 8 extensions S
along with one choice for the corresponding subgroup H.

1. (D1 u L3)[E3] 1

2. (D1 u (D1 u L3)[E1])[E1] gp(d,−1, a, b, s)

3. D1 u (D1 u L3)[E2] G(R)

4. (Z u (D1 u L3)[E1])[E1] gp(d, a, b, s)

5. Z u (D1 u L3)[E2] gp(d, a, b, s, t)

6. (D1 u L3[E1])[E2] gp(d)

7. (D2 u L3)[E2] gp(d,−1, a, b)

8. (D1[E1] u L3)[E2] gp(−1, a, b)

We give a brief sketch of how this list was derived. Begin by running through the cases
of (1.5). In (a) H = 1 and S is (1) by (1.1). In (c), G(R0) is a proper subgroup of H,
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so S is (2) or (3), depending on whether or not H = G(R). In (d) G(R0) ⊂ ±H,−1 /∈ H
and H 6⊂ G(R0). Thus H looks like a subgroup K of index 2 in G(R0) that does not
contain -1, together with one or more elements from {t, s, ts}. S is (4) if |H ∩ E2| = 2
and (5) if |H ∩ E2| = 4. In (1.5)(b) S = S0[E2], where S0 is an H-extension of R0. Now
R0 = D1 uL3. By (4.1) we can assume that either H = G(D1)×H2, or that H = 1×H2,
for some H2 ⊂ G(L3). Now H2 = 1 or H2 = G(L3) by (2.3) and (5.7). Since we have
already done the case H = 1 this gives three choices: G(D1) × 1, G(D1) × G(L3) and
1×G(L3). The corresponding S is (6), (7) and (8), respectively.
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