
Southern Illinois University Carbondale
OpenSIUC

Conference Proceedings Department of Electrical and Computer
Engineering

3-2006

Minimizing FPGA Reconfiguration Data at Logic
Level
Krishna Raghuraman
Southern Illinois University Carbondale

Haibo Wang
Southern Illinois University Carbondale, haibo@engr.siu.edu

Spyros Tragoudas
Southern Illinois University Carbondale

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_confs
Published in Raghuraman, K., Wang, H., & Tragoudas, S. (2006). Minimizing FPGA reconfiguration
data at logic level. Proceedings of the 7th International Symposium on Quality Electronic Design
(ISQED’06), 224. doi: 10.1109/ISQED.2006.87 ©2006 IEEE. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from the IEEE. This
material is presented to ensure timely dissemination of scholarly and technical work. Copyright and
all rights therein are retained by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by each author's copyright.
In most cases, these works may not be reposted without the explicit permission of the copyright
holder.

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted
for inclusion in Conference Proceedings by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Raghuraman, Krishna; Wang, Haibo; and Tragoudas, Spyros, "Minimizing FPGA Reconfiguration Data at Logic Level" (2006).
Conference Proceedings. Paper 43.
http://opensiuc.lib.siu.edu/ece_confs/43

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs/43?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

Minimizing FPGA Reconfiguration Data at Logic Level

Krishna Raghuraman, Haibo Wang, and Spyros Tragoudas
Southern Illinois University, Carbondale, IL 62901

Abstract

A framework that relates the size of FPGA reconfigu-
ration data to the number of minterms of a specially con-
structed function is presented. Three techniques, variable
mapping optimization, circuit don’t-care modification, and
look-up table input permutation, are developed to minimize
minterms of the special function. The method to integrate
the proposed techniques into FPGA design automation flow
is discussed and experimental results are presented.

1. Introduction

Reconfigurable systems provide a number of advantages
and are continuously gaining their popularity in various ap-
plications. Currently, most reconfigurable systems are im-
plemented on FPGA platforms. For such systems, an impor-
tant design concern is to minimize FPGA reconfiguration
bitstreams, and this problem has been widely investigated
from high level design. Studies in [1, 2, 3, 4, 5] present
different algorithms to perform temporal partitions with the
objective of reusing function units in different temporal par-
titions. Meanwhile, the reuse of FPGA routing patterns is
investigated in [6]. Relocation and defragmentation tech-
niques are presented in [7, 8]. The work in [9] minimizes
reconfiguration cost by both using coarse-grain logic blocks
and optimizing scheduling and allocation schemes. Ad-
ditionally, other techniques proposed in literature include
configuration caching [10], configuration compression [11],
and column-based configuration method [12].

Differing from previous approaches, this work addresses
the problem of minimizing reconfiguration data at the logic
level. Techniques developed in this work take advantage of
two facts. First, FPGA configuration data are partitioned
into frames, which are the smallest data units that can be in-
dividually accessed by configuration commands [13]. Sec-
ond, a frame contains configuration data for identical hard-
ware located in an FPGA column. To conveniently track
the size of reconfiguration data, we introduce a framework
that links reconfiguration frames to minterms of a specially
constructed function, which is referred to as the difference
function of a look-up table (LUT) column. Based on this

framework, three techniques, variable mapping optimiza-
tion, circuit don’t-care modification, and LUT input order
permutation, are proposed to minimize minterms of LUT-
column difference functions.

The rest of the paper is organized as follows. Section 2
explains FPGA configuration frames and describes how to
link reconfiguration frames to minterms of LUT-column
difference functions. Motivational examples are also given
in this section to elucidate the proposed techniques. Sec-
tion 3 develops procedures to efficiently implement the pro-
posed techniques. Section 4 illustrates how to integrate the
proposed techniques into FPGA design automation flow and
reports experimental results. The paper is concluded in Sec-
tion 5.

2. Preliminaries

In many LUT-based FPGAs, configuration data are par-
titioned into frames [13, 14]. A frame contains configura-
tion data for hardware located in an FPGA column. The
structure of frames is explained using an FPGA LUT col-
umn shown in Figure 1. Assume that there are N LUTs in
the column and each LUT has 16 memory locations. The
16 memory locations of any LUT in the column belong to
16 different frames. In addition, each frame contains N
bits, corresponding to the same memory locations in the N
LUTs of the column. Since a frame is the smallest block
of configuration data that can be accessed by configuration
commands, the entire frame has to be written into the FPGA
even if we just want to change a single bit of an LUT during
partial reconfiguration. This arrangement lessens the bur-
den of addressing LUT locations, consequently simplifying
hardware design and reducing the size of configuration bit-
streams.

As frames are the primitive units of FPGA reconfigura-
tion data, reducing the size of FPGA reconfiguration bit-
streams is equivalent to minimizing the number of recon-
figuration frames. The latter minimization problem can be
addressed in two perspectives. First, it is desirable to have
each LUT require less number of frames during reconfig-
uration. This leads to minimizing the difference between
data stored in each LUT before and after reconfiguration.
This problem can be tackled by both optimizing variable

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 29, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

Frame 1 Frame 2 Frame 16

Configuration bit for memory location 16 in LUT N

Configuration bit for
memory location 1
in LUT1

Configuration bit for
memory location 1
in LUT2

Configuration bit for
 memory location 1
 in LUT N

Frames of configuration data

LUT Column

LUT1

1

16

LUT

LUT

2

N

1

1

16

16

Figure 1. Virtex configuration frames.

mapping and modifying LUT don’t-care locations. Before
and after reconfiguration, an LUT may implement two dif-
ferent functions that depend on two sets of logic variables.
Variable mapping refers to the rule that dictates which two
variables (one is an input of the first function and the other
is an input of the second function) should be mapped to the
same LUT address input. Meanwhile, LUT don’t-care loca-
tions are memory locations whose addresses correspond to
circuit don’t-cares. Data stored in don’t-care locations can
be altered without changing circuit functionality. The sec-
ond perspective on minimizing reconfiguration frames is to
maximize the efficiency of each frame, which is measured
by how many bits of the frame containing data that truly up-
date LUT locations. For a given number of LUT locations
that need to be updated, higher frame efficiencies will result
in less number of frames. The efficiencies of frames can be
improved by permuting LUT input orders, which relocates
LUT locations that need be updated into common frames.

We first introduce notations used in the paper. We refer
to logic functions implemented on an LUT before and af-
ter reconfiguration as its initial and final functions, respec-
tively. For a given LUT, denoted as LUTi, we use fi and
hi to represent its initial and final functions. When it is
not necessary to distinctively identify LUTs, subscripts of
fi and hi are omitted for the sake of conciseness. Further-
more, for any given logic function l, we use lon, ldc, loff

to represent its on, don’t-care, and off sets, respectively.
Three examples will be given to illustrate how variable

mapping (Example 1), don’t-care locations (Example 2),
and LUT input orders (Example 3) can be utilized to reduce
reconfiguration frames. Without losing generality, three-
input LUTs are used.

Example 1: For an LUT, assume f = a·b+c and h = x+y·z.
If the variable mapping is selected as {a ↔ x, b ↔ y, c ↔ z}
(symbol ↔ indicates which two variables are mapped to the same
LUT address), two frames (indicated by asterisks) are needed for
this LUT as shown in Figure 2. However, if the variable mapping
is changed to {a ↔ y, b ↔ z, c ↔ x}, no frames are needed.

Example 2: For an LUT, assume f = a · b and h = a · c. As
shown in Figure 3, four frames are needed for this LUT. However,
if both functions have don’t-care sets fdc = a · c + a · b and

000 001 010 011 100 101 110 111

A3

A2

A1

a (x)

* *

Initial

Final

b (y)

c (z)

0 1 0 1 0 1 1

LUT1

0 0

LUT content before reconfiguration

LUT content after reconfiguration

Address of LUT locations

1

0 1 1 1 1 1

Figure 2. LUT data without variable mapping
optimization.

hdc = a · b + a · c respectively, then the initial and final functions
can be modified as fnew = hnew = a · b + a · c. No frames are
needed after the modification. In this example, both the initial and
final functions depend on the same set of logic variables. After the
variable mapping is fixed, f and h can have either the same or
different support sets.

000 001 010 011 100 101 110 111

A3

A2

A1

a

* * *

Initial

Final

b

c

0 0 0 0 0 1 1

LUT1

0 1

LUT content before reconfiguration

LUT content after reconfiguration

Address of LUT locations

0

1 0 0 0 0 0
*

Figure 3. LUT data without don’t-care modifi-
cation.

Example 3: Assume LUT1 and LUT2 are in the same column
and f1 = a·(b+c), h1 = a+b, f2 = a·b+c, h2 = (a+b)·c. If the
input orders for both LUTs are {a → A3, b → A2, c → A1},
five frames are needed as shown in Figure 4(a). However, if the
input order for LUT2 is changed to {c → A3, a → A2, b →
A1}, only three frames are required as shown in Figure 4(b). Note
that LUT input order permutation is performed with fixed variable
mappings. During the permutation , LUT input orders for both
initial and final functions are changed in the same way.

000 001 010 011 100 101 110 111

A3

A2

A1

a

*

*

* *

*

Initial

Final

b

c

0 0 0 0 0 1 1 1

a

b

c

LUT1

LUT2

A3

A2

A1

0 1 0 1 0 1 1 1

0 0 1 1 1 1 1 1

0 0 0 1 0 1 0 1

LUT content before reconfiguration

LUT content before reconfiguration

LUT content after reconfiguration

LUT content before reconfiguration

Address of LUT locations

Initial

Final

(a) Before LUT input permutation.

A3

A2

A1

a

* * *

Initial

Final

b

c

0 0 0 0 0 1 1 1

c

a

b

LUT1

LUT2

A3

A2

A1

0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 0 0 0 0 1 1 1

LUT content before reconfiguration

LUT content before reconfiguration

LUT content after reconfiguration

LUT content before reconfiguration

Initial

Final

(b) After LUT input permutation.

Figure 4. LUT data with input permutation.

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 29, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

In the quest for solutions of the proposed minimization
problem, we are more interested in how logic values (0 or
1) are stored in LUTs, rather than what actual functions im-
plemented on LUTs are. Due to this reason, we introduce
the concept of the LUT mapping function. LUT mapping
functions are LUT functions expressed in terms of LUT ad-
dress variables. For an LUT whose implemented logic func-
tion is given, we can obtain its mapping function through
substituting logic variables by their associated address vari-
ables. For example, the initial function of LUT1 in Figure 4
is a · (b + c). Substituting logic variables by their associ-
ated LUT address variables, we have its mapping function
as A3 · (A2 + A1). The mapping function of an LUT rep-
resents all the LUT locations that store logic 1. Since each
LUT is associated with two logic functions (f and h), there
are two mapping functions for each LUT as well. Due to
the close relation between LUT logic functions and their
corresponding mapping functions, we also use f and h to
represent the initial and final mapping functions of an LUT,
respectively.

Based on LUT mapping functions, we define the LUT
difference function as:

D = f ⊕ h (1)

In addition, the difference function of an LUT column is
defined as:

D =
N⋃

i=1

Di (2)

where, N is the total number of LUTs in the given column
and Di is the LUT difference function of LUTi. In the com-
putation of D, address variables with the same name but lo-
cated in different LUTs (e.g. A1 of LUTi and LUTj) are
treated as the same variable, since they function as coordi-
nates to indicate LUT locations containing logic 1. There-
fore, function D depends on only p variables: Ap, Ap−1,
· · ·, A1, where p is the number of inputs of the LUTs in the
column. It is easy to see that the number of minterms in D
is equal to the number of frames requested for reconfigur-
ing the entire LUT column. Due to this reason, the phrase
of minimizing LUT difference functions is used in the rest
of the paper as a convenient synonym of minimizing the
number of minterms in LUT difference functions.

3. Proposed Techniques

As discussed early, FPGA reconfiguration data can be
minimized by optimizing variable mapping, modifying
LUT don’t-care locations, and permuting LUT input orders.
The problem of finding optimal variable mappings is easy
since it can be solved separately for each LUT. Techniques
to perform the other two optimization procedures are dis-
cussed in the following.

3.1 Modifying LUT don’t-care locations

In general, expressions for f and h of an LUT contain
their entire on sets (fon and hon) and portions of their don’t-
care sets (fdc and hdc). We use fdc� and fdc† to distinguish
don’t-cares of f that are included and excluded in the ex-
pression of f . Similar notations apply to function h. Then,
we have f = fon + fdc� and h = hon + hdc�. The LUT
difference function can be written as:

D = f · h + f · h
= fon · hoff + fon · hdc† + fdc� · h
+ hon · foff + hon · fdc† + hdc� · f (3)

Obviously, fon · hoff + hon · foff constitutes the lower
bound of the difference between f and h. The other terms
on the right-hand-side of Equation 3 can be eliminated by
assigning proper values to LUT don’t-care locations. This
is formally stated by the following corollary.

Corollary 1 The number of minterms of an LUT difference
function is minimized if the initial and final functions of the
LUT are modified as follows:

fnew = f + fdc · h − fdc · h − fdc · hdc (4)

hnew = h + hdc · f − hdc · f − fdc · hdc (5)

In the above equations, symbols +, ·, and − represent set
union, intersection, and subtraction operations. For an LUT,
adding a minterm to its function implies changing the value
stored in the LUT location that corresponds to the minterm
to logic 1. Meanwhile, subtracting a minterm is the same as
putting logic 0 to the corresponding LUT location. It is easy
to show fnew ⊕hnew = fon ·hoff +hon ·foff and, hence,
prove the corollary. By performing function modification
according to the above corollary, minterms added to f are:

μ+ = fdc · h − fdc · hdc − f (6)

Similarly, minterms that are subtracted from f can be ex-
pressed as:

μ− = fdc · h + fdc · hdc − f (7)

The total LUT locations that are altered can be expressed by
their corresponding minterms as:

μ = μ+ + μ− (8)

Note that a similar set of equations apply to function h.
For an LUT, its don’t-cares consist of controllability

don’t-cares (CDCs) and observability don’t-cares (ODCs).
CDCs are signal patterns that never appear at the LUT in-
puts. Meanwhile, ODCs are defined as LUT input patterns

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 29, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

representing scenarios that the LUT output cannot be ob-
served by circuit primary outputs. Because CDC sets of dif-
ferent LUTs are independent of each other, modifying LUT
locations addressed by CDC patterns can be performed in-
dividually for each LUT. This simple process always leads
to the globally optimized solution when only CDCs are un-
der consideration. On the contrary, modifying ODC loca-
tions is a complicated process. When ODC locations of an
LUT are modified, ODCs of other LUTs may change. Al-
though it is theoretically possible to re-compute ODCs for
the rest of LUTs after each LUT is modified, this approach
is practically unattractive due to its computation complex-
ity. To avoid repeated re-computation of LUT ODCs, this
section presents an efficient method to compute LUT ODCs
that can be simultaneously modified, which are referred to
as compatible ODCs (CODCs). To address a similar prob-
lem in logic synthesis, several techniques [15, 16, 17, 18]
have been proposed. The method presented here is simi-
lar to approaches discussed in [16, 17] in the perspective of
computing CODC upper bounds. However, it differs from
the previous approaches in the following two aspects. First,
ODCs covered by their upper bounds are further restricted
according to Equation 8. Second, a heuristic method is uti-
lized to determine the order of LUTs to be processed.

The simultaneous optimization for multiple vertices
(gates or LUTs), denoted as y1, y2, · · · , yn, can be modeled
by n perturbation variables δ1, δ2, · · · , δn [15]. In this ap-
plication, δi represents ODCs that are added or subtracted
from the function of LUTi. Let DCext represent external
don’t-cares, ODCyi denote ODCs at vertex yi, and sym-
bol | represent generalized cofactor operations. A suffi-
cient condition for the equivalence between the perturbed
and original circuits is [16]:

δi1 ⊆ DCext + ODCyi |δ′
1,···,δ′

i−1
i = 1, 2, · · ·n. (9)

In the above expression, don’t-cares with respect to differ-
ent primary outputs are represented in the vector format and
1 = (1, 1, · · · , 1). The above condition gives a series of
upper bounds (with respect to different primary outputs)
for δi, which depend on ODCyi and previous perturba-
tions. Let m denote the number of circuit primary outputs,
DCext

j and ODCyi

j denote the external and observability
don’t-care sets at vertex yi with respect to primary output j,
respectively. The global upper bound, which is in the scalar
format, can be obtained as:

ζi(δ1, · · · , δi−1) =
m⋂

j=1

(DCext
j + ODCyi

j |δ′
1,···,δ′

i−1
)(10)

for i = 1, 2, · · ·n
As FPGA reconfiguration data for an FPGA column de-

pend on all the LUT functions of the column, it is imperative
to simultaneously optimize all LUT functions of a column.

In addition, LUT difference functions with large numbers
of minterms are likely to affect the overall reconfiguration
frames. Therefore, such LUTs should be given high pri-
orities during the optimization. Due to this observation,
the proposed procedure first ranks all the LUTs according
to the number of minterms in their difference functions.
LUTs whose difference functions contain more minterms
are given higher ranks. Following the descending order of
LUT ranks, ODCs are pruned in accordance with two con-
straints. The first constraint is Equation 8, which eliminates
ODCs that don’t minimize LUT difference functions. The
second constraint is the upper bound given in Equation 10,
which is used to guarantee the correctness of the resulted
circuit.

The proposed procedure is further elaborated as follows.
For the convenience of description, we re-label LUTs after
ranking such that LUTs with higher ranks are given smaller
index numbers. For example, N LUTs arranged in the de-
scending order of their ranks will be listed with their new
labels as LUT1, LUT2, · · ·, LUTN . Thus, LUT1 is the first
LUT to be processed. When the initial function of LUT1

is under consideration, LUT locations whose values are de-
sired to be altered are:

δf
1 = μf

1 (11)

In the above and following equations, we use superscripts
to indicate the function on which δ and μ are defined. Also,
we use subscripts to indicate the LUT that δ and μ are asso-
ciated with. Since LUT1 is the first LUT to be processed,
δf
1 is not subject to the second constraint. However, when

LUTk (k �= 1) is processed, we have to apply both con-
straints. This leads to:

δf
k = μf

k · ζf
k (δ1, · · · δk−1) (12)

The pseudo-code of the proposed CODC computation pro-
cedure is given in Figure 5. Note that CODCs for both LUT
initial and final functions are computed simultaneously in
the procedure.

ODC OPT(LUTs) {
1 Compute ODCs for all LUTs regarding

their initial and final functions
2 Rank all LUTs and re-label them according

to the descending order of their ranking
3 δf

1 = μf
1 ; δh

1 = μh
1

4 for k=2 to N
5 δf

k
= μf

k
· ζf

k
(δf

1 , · · · δf
k−1

)

6 δh
k = μh

k · ζh
k (δh

1 , · · · δh
k−1) }

Figure 5. CODC computation procedure.

3.2 Permuting LUT input orders

By defining LUT-column difference function D, we re-
late the number of reconfiguration frames to the number of

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 29, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

minterms in D. Thus, the optimal LUT input orders should
minimize minterms in the corresponding column difference
function. Although it is possible to solve this problem
through exhaustive enumeration, the large search space of
this problem makes a such approach impractical. This paper
presents a search procedure based on a greedy algorithm.
With assumptions that each LUT has p inputs and N LUTs
are in the give column, the major steps of the procedure
are described in Figure 6. It first constructs LUT differ-
ence functions (line 3) and, concurrently, finds the LUT that
requires the least number of reconfiguration frames (lines
4 ∼ 5). The input order of that LUT will not be permuted,
and is used as a reference when permuting other LUT input
orders. Also, function MintermCount used in line 3 counts
the number of minterms of its operand. After the reference
LUT is selected, the algorithm sequentially picks an unpro-
cessed LUT and permutes its inputs. The permutation pro-
cedure is sketched from lines 9 to 18. It exhaustively tries
all the possible permutations and picks the one that results
in the smallest increase on the number of minterms of the
newly constructed union function (Dtmp). The time com-
plexity of the proposed procedure is (p!) · (N − 1), which
is significantly smaller than the time complexity of the ex-
haustive enumeration method.

1 min tmp = 2p

2 for i = 1 to N
3 D[i] = fi ⊕ hi; min = MintermCount(D[i])
4 if min < min tmp
5 min tmp = min; min index = i; D = D[i]
6 for i = 1 to N
7 if i �= min index
8 D = permute(D, D[i])

9 permute(D, D[i]) {
10 min tmp = 2p

11 for each permutation order of LUTi

12 derive new function D′[i] according
to the new input order

13 Dtmp = D
⋃

D′[i]
14 min = MintermCount(Dtmp)
15 if min < min tmp)
16 min tmp = min; Dmin = Dtmp

17 Order[LUTi] = current permut. order
18 return Dmin }

Figure 6. LUT input permutation procedure.

4. Experimental Results

This section describes how the proposed techniques can
be integrated into FPGA design automation flow, and re-
ports experimental results. The current FPGA design au-
tomation flow is sketched by the solid arrows in Figure 7(a).
For reconfiguration applications, FPGA implementations of
both initial and final circuits are generated following the
same flow. The reconfiguration bitstreams, which change
FPGA hardware from the initial circuit to its final circuit,

are produced by comparing the initial and final FPGA im-
plementations. The proposed optimization procedures can
be added into the design flow between placement and rout-
ing steps as shown in Figure 7(b). After the placement
phases of both the initial and final circuits, the initial and
final functions of all the LUTs become available. Hence,
the proposed techniques can be applied to optimize variable
mappings, modify LUT don’t-care locations, and find op-
timal LUT input orders. After this, FPGA routing can be
performed accordingly.

 Circuit
description

 Logic synthesis &
technology mapping

Placement & routing

Generating bitstreams

Proposed optimization

FPGA

 Logic synthesis &
technology mapping

Placement

Generating bitstreams

Proposed optimization

Routing

(a) (b)

Figure 7. Integrating the proposed tech-
niques into FPGA design flow.

It is often difficult to have direct access to results pro-
duced by the FPGA placement procedure. In this case,
our method can be integrated as indicated by the dash ar-
rows in Figure 7(a). After the placement and routing (P&R)
phases of both the initial and final circuits, we let the FPGA
tool write P&R results into structural VHDL files. The ba-
sic components in these VHDL files are LUTs. In addi-
tion, we let the FPGA tool generate location constraints for
each LUT in VHDL files according to P&R results. The
VHDL files along with the constraint files provide informa-
tion about LUTs in the same column and their initial and
final functions. After applying the proposed optimization
procedures, LUT init values (that represent LUT locations
storing logic 1) are updated and new constraints regarding
LUT input orders are added into constraint files. The up-
dated VHDL and constraint files are fed to the P&R module
in the FPGA tool to re-route FPGA circuits.

We experimented with the latter integration scenario.
Due to the lack of suitable partial reconfiguration bench-
mark circuits, we use ISCAS85 benchmark circuits as initial
FPGA circuits. We derive final FPGA circuits by perform-
ing random function modification on the initial circuits. In
this process, we first define a set of functions, denoted as
g1, g2, · · · gi, which depend on variables A4, A3, A2, A1

(since four-input LUTs are used in our experiments). Then,
we derive final LUT functions by performing either COM-
POSE or INTERSECT operation with using the original
LUT function and one function selected from g1, g2, · · · gi

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 29, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

as operands. The COMPOSE and INTERSECT are function
manipulation operations defined in CUDD package that is
used in the implementation of our optimization procedures.
The selection on operation (COMPOSE or INTERSECT)
and operand function (g1, g2, · · · gi) is totally randomized.

The experiments are conducted on Xilinx Virtex 1000
platform. The obtained results are summarized in Table 1.
The second column of the table lists the number of LUTs as-
signed to each column. Several column configurations are
investigated in the experiment. The third column records
the required frame numbers without performing any of the
proposed optimization. The fourth column summarizes the
number of frames contained in reconfiguration data when
only LUT input order permutation technique is applied.
The percentage of frame reduction is given in the fifth col-
umn. With both don’t-care modification and LUT input or-
der permutation techniques being utilized, the resultant re-
configuration frame numbers and their corresponding sav-
ing (in percentage) are summarized in the sixth and seventh
columns, respectively. The results show that the proposed
techniques can reduce reconfiguration frames by more than
20% on average.

Table 1. Comparing Reconfiguration frames.
Circuit #lut W/o. Inp. Perm. DC Opt. &

Opt. Only Inp. Perm.
#Frm. R(%) #Frm. R(%)

3 274 244 11% 236 14%
C432 4 238 212 11% 208 13%

8 166 136 18% 136 18%
3 142 137 4% 117 18%

C1355 6 124 111 10% 99 20%
9 106 95 10% 83 22%
3 255 239 6% 143 44%

C1908 6 198 175 12% 119 40%
9 172 141 18% 91 47%
3 430 389 10% 322 25%

C2670 6 334 286 14% 251 25%
9 276 232 16% 204 26%
6 771 659 15% 580 25%

C3540 9 632 506 20% 452 28%
12 567 409 28% 377 34%
9 769 617 20% 529 31%

C5315 12 626 574 8% 505 19%
15 542 440 19% 402 26%
12 1168 964 17% 849 27%

C6288 15 986 826 16% 786 20%
18 852 712 16% 672 21%
12 967 780 19% 686 29%

C7552 15 814 660 19% 611 25%
18 693 570 18% 539 22%

5. Concluding Remarks

This paper presents a comprehensive methodology to
minimize FPGA reconfiguration data at logic level. The
methodology is based on a framework that links the size of
reconfiguration data to the number of minterms contained in

LUT-column difference functions. It comprises three tech-
niques, which are variable mapping optimization, don’t-
care location modification, and LUT input order permuta-
tion. To efficiently implement the proposed techniques, two
heuristic algorithms are developed for computing compati-
ble don’t-care locations and finding optimal LUT input or-
ders from a large search space. The developed techniques
can be perfectly combined with other methods that mini-
mize FPGA reconfiguration data at high levels for further
reducing FPGA reconfiguration cost.

References

[1] J. M. Cardoso, “On Combining Temporal Partitioning and Shar-
ing of Function Units in Compilation for Reconfigurable Architec-
tures,” IEEE Trans. on Computers, vol. 52, no. 10, pp. 1362–1375,
2003.

[2] M. Meribout and M. Motomura, “Efficient Metrics and High-Level
Synthesis for Dynamically Reconfigurable Logic,” IEEE Trans. on
VLSI, vol. 12, no. 6, 2004.

[3] M. Kaul and R. Vemuri, “Temporal Partitioning Combined with De-
sign Space Exploration for Latency Minimization of Run-Time Re-
configured Designs,” in Proc. DATE, pp. 202–209, 1999.

[4] M. Kaul and R. Vemuri, “An Automated Temporal Partitioning and
Loop Fission Approach for FPGA Based Reconfigurable Synthesis
of DSP Applications,” in Proc. DAC, pp. 616–622, 1999.

[5] K. M. GajjalaPurna and D. Bhatia, “Partitioning in time: a paradigm
for reconfigurable computing,” in Proc. ICCD, pp. 340–345, 1998.

[6] D. Rakhmatov and S. B.K. Vrudhula, “Minimizing routing configu-
ration cost in dynamically reconfigurable FPGAs,” in Proc. Parallel
and Distributed Processing Symp., pp. 1481–1488, 2001.

[7] K.Compton, J.Cooley and S.Knol, “Configuration relocation and
defragmentation for reconfigurable computing,” in Proc. IEEE
Symp. FPGA Custom Computing Machines, pp. 79–80, 2000.

[8] K.Compton, Z.Li,S.Knol and S.Hauck, “Configuration relocation
and defragmentation for reconfigurable computing,” IEEE Trans.
on VLSI, vol. 10, pp. 209–220, 2002.

[9] Z. Huang and S. Malik, “Managing dynamic reconfiguration over-
head in SoC design using reconfigurable datapaths and optimized
interconnect networks,” in Proc. DATE, pp. 13–16, 2001.

[10] Z. Li, K. Compton, and S. Hauck, “Configuration Caching for FP-
GAs,” in Proc. IEEE Symp. FPGA Custom Computing Machines,
pp. 22–36, 2000.

[11] S. Hauck, Z. Li, and E. Schwabe, “Configuration Compression for
the Xilinx XC6200 FPGA,” in Proc. FPGA Custom Computing Ma-
chines, 1998.

[12] S. Mitra, W. Huang, N. Saxena, S. Yu, and E. J. McCluskey, “Re-
configurable Architecture for Autonomous Self-Repair,” IEEE De-
sign and Test of Computer, vol. 21, no. 2, pp. 228–240, 2004.

[13] XILINX Inc., Virtex Series Configuration Architecture User Guide,
2003.

[14] XILINX Inc., Two Flows for Partial Reconfiguration:Module Based
or Small Bit Manipulations, 2002.

[15] G. De Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill, Inc., 1994.

[16] M. Damiani and G. De Micheli, “Don’t Care set Specifications in
Combinational and Synchronous Logic Circuits,” IEEE Trans. on
CAD, vol. 12, no. 3, pp. 365–388, 1993.

[17] H. Savoj and R. Brayton, “The use of Observability and External
Don’t cares for the Simplification of Multi-Level Netwworks,” in
Proc. DAC, pp. 297–301, 1990.

[18] S. Yamashita, H. Sawada, and A. Nagoya, “SPFD: A New Method
to Express Functional Flexibility,” IEEE Trans. on CAD, vol. 19,
no. 8, pp. 840–849, 2000.

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 29, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

	Southern Illinois University Carbondale
	OpenSIUC
	3-2006

	Minimizing FPGA Reconfiguration Data at Logic Level
	Krishna Raghuraman
	Haibo Wang
	Spyros Tragoudas
	Recommended Citation

