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The emergence of local elite networks: Structure or preference?
- An econometric approach -

Christian Aßmann*∗and Christian Henning**
University of Bamberg* and University of Kiel**

May 17, 2010

Abstract

This paper analyzes the determinants and causes of communication in local elite networks. The
database comprises four rural county elite networks from Poland and Slovakia. Socio spatial processes
allowing a flexible incorporation of individual specific information are embedded within a logit frame-
work. Empirical analysis focuses on the assessment of the hypotheses, whether preferences measured
by socio demographic factors and political ideology or institutional settings (structure) influence in-
dividual communication in local elite networks. The results suggest that while in high performing
communities institutional settings, i.e. a common membership in local organizations, are the most
important factors determining communication, in low performing communities communication ties
are stronger determined by actors’ preferences, i.e. ideological distances and socio demographic fac-
tors. Moreover, communication is more centralized for the latter when compared to the former socio
spatial process.

∗Corresponding address: Tel.: +49-951-863 3423. E-mail: christian.assmann@uni-bamberg.de (C. Aßmann)
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1 Introduction

Early studies of policy networks focused on social network structures among governmental and non-
governmental organizations to explain political decision-making (Parsons, 1963) and (Coleman, 1963). In
particular, Laumann and Knoke (1987) and Knoke et al. (1996) have developed social influence models
to explain opinion formation within a political communication process, where governmental actors partly
adopt their policy positions to the positions communicated by other non-governmental organizations.
However, while early policy network studies relate network structures nicely to the political influence
of individual actors, these studies do neither provide a rational model of political influence nor do they
relate policy network structures to political performance at the macro level. In contrast, Henning (2009)
suggest a theoretical model that provides a rationality behind social influence of non-governmental actors
on the political position of governmental agents and allows the relation of policy network structures with
the efficiency of political decision-making at the macro level. In particular, the rationality of political
influence follows from the fact that from the viewpoint of political agents political decision making is
characterized by a fundamental uncertainty regarding the impact of policies on the state of the world.
Thus, while most politicians have a clear preference regrading the desirable state of the world, they have
only limited and incomplete information on the political technology, i.e. how different policy instruments
actually translate into a specific state of the world. Accordingly, agents have to choose among policy
alternatives although they are uncertain regarding the evaluation of different alternatives. But in a world
of uncertainty it turns out that maximization of individual utility can only be achieved by some supple-
ment strategies. For example, to be able to make a rational choice in these situations agents form beliefs
regarding the uncertain impact of various policy alternatives on the state of the world and thus on their
utility. Thus, in a social context characterized by uncertainty information available on the benefits and
harms that might results from a decision is a crucial factor that influences the decision of agents. In this
context Henning and Saggau (2010) analyze in a agent based-model framework how political communi-
cation network structures among a local elite influences information aggregation via communication and
hence overall efficiency of local government. In particular, Henning and Saggau (2010) demonstrate that
political communication among governmental and non-governmental actors implies both a more efficient
learning of the true political technology and a policy bias towards particular interest of local community.
Given a policy bias of local elite the overall impact of communication on the efficiency of local govern-
ment decision-making depends on the network structures, i.e. random networks are c.p. more efficient
when compared to clustered or centralized communication network. Therefore, communication networks
correspond to information aggregation mechanisms and hence can be interpreted as social capital in the
sense of Coleman or Burt, where concrete individual and collective values of a communication network
structures depend on the specific framework conditions.

Please note that also economists have taken up the idea of social influence models to explain agents
opinion formation, e.g. models of herding behavior (Krause, 2004), where Battiston et al. (2004) explicitly
analyzed the role of social networks in agents’ opinion formation and decision. Moreover, Bala and Goyal
(1998) analyze belief formation in a social network. However, they do not analyze how specific network
structures influence agents’ belief formation. Later Gale and Kariv (2003) as well as Choi et al. (2004)
or Celen et al. (2004) explore the interaction between network structures and beliefs, but they focus their
analysis on small networks (3 nodes) and have not considered large and more complex networks. More re-
cently Currarini et al. (2009) analyzes in a very interesting theoretical paper the impact of communication
network structures among a set of actors on their opinion formation.

However, Currarini et al. (2009) have not yet analyzed how communication network structures influ-
ence the overall efficiency of collective decision making.

Given the importance of social network structures on economic and political behavior at the micro level
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and induced outcomes at the macro level, it is interesting to understand how social network structures
emerge in the first place or can be changed.

In this regard Moody (2004) pointed out that the formation of network structures are basically
determined by two different processes: actors’ preferences and the structure of the meeting process
among the set of relevant actors. On the one hand actors choose their network contacts according to
their preferences, while on the other hand the meeting process determines the probability that two actors
actually have the opportunity to form a network tie.

In this context Currarini et al. (2009) have recently analyzed homophily and self-selection in schools
focusing on the relative importance of preferences versus matching structures in an extremely interesting
paper. In particular, Currarini et al. (2009) provide a theoretical model to show that observed friendship
structures, e.g. homophily, imbreeding homophily and the tendency that larger groups from more friend-
ships per capita, could be nicely derived from a simple theoretical model of friendship formation assuming
both a biased meeting (matching) process and biased preferences for a friendship with the same-type.
Furthermore, using aggregate friendship data taken form the Add Health data set they could also em-
pirically specify the parameter of their simple model implying that both biased preferences and a biased
matching process generates observed friendship patterns in American schools. However, Currarini et al.
(2009) did not provide a microeconometric estimation of the underlying network generating process taking
into account individual characteristics to estimate network ties among pairs of individual actors.

In this paper we suggest an empirical framework allowing adequate analysis of communication struc-
tures between individual member of a local political elite. Technically, we apply a socio spatial Gaussian
kernel process suggested by Linkletter et al. (2006) to perform aggregation of individual specific informa-
tion.

Empirical analysis of political communication networks among local elites in two Polish and four Slo-
vakian rural communities suggest that structure is more important than preference, i.e. the number of
common organizational memberships is among the most important determinants of social communication
in local elite networks. Furthermore, with respect to individual specific variables, political party member-
ship is identified as an factors shaping the distance in the socio-spatial space. However, these findings are
not confirmed for all six communities, i.e. especially in low performing communities ideological distances
between actors are the most determining factor of social communication. Interestingly, local elite network
structures are not only more biased towards special interest in low performing when compared to high
performing communities, but elite network structures are also stronger determined by actors’ ideological
preferences and less by structural meeting opportunities like overlapping organizational memberships in
the former.

The paper proceeds as follows. The database is described in Section 2. Section 3 reviews the two
different model frameworks, the estimation methodology and the data generating process. The empirical
results are discussed within Section 4. Section 5 concludes.

2 Data Description

Via personal interviews local elite communication networks have been surveyed in political counties in
Poland and Slovakia. Within the interviews, several questions have been devoted to enquiry of political at-
titudes in different political fields, e.g. question referring to political priorities concerning public services,
infrastructure, etc. This personal attitudes are summarized within a political conflict index providing
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dyad specific information on the probability to observe communication between local elite members.1

A further dyad specific information variable is provided via the also interviewed organizational mem-
berships of local elite members, i.e. it is counted how often two local elite members are member of the
same organizations, e.g. social, political, or religious ones.2 As individual specific information serve the
variables age (in years), highest educational degree3, a dummy variable indicating political party mem-
bership, personal reputation assessed via a number of nominations within a asked reputation network,
and a social prestige index referring to job descriptions. The social prestige index is constructed based
on the asked job occupations of local elite network members, see van der Gaag (2005) for details on the
construction approach. Summary statistics for the variables under consideration are provided in Table
(1). The summary statistics show differences with respect to educational level and age between the coun-
ties, with Chotza having youngest local elite on average and a lower educational level in comparison with
the other counties. This structural differences possibly point at differences in the communication process
within the counties, which are assessed within the empirical subsequent empirical analysis.

3 Model Framework and Estimation

Social network models often provide metric or binary measurements on links between n network con-
stituents, which can be summarized via

−− y12 · · · y1n−1 y1n

y21 −−
... −−

...

yn−11
. . . yn−1n

yn1 yn2 · · · ynn−1 −−


.

If the network is assumed to be symmetric implying yij = yji the network provides a total of n(n −
1)/2 observations summarized within the vector Y . Social network models provide then a link between
observation network relations and explaining factors. This is often done using a regression function of
the type

g(yij) = Xijβ + eij ,

where g(·) is given as

g(yij) =

{
yij , if yij has metric scale;
ηij , if yij is binary,

1The index is calculated as follows

Cij =

√√√√ K∑
k=1

|pik − pjk|dikdjk,

where dik denotes the interest of individual i in policy field k and pik the position of individual i in policy field k.
2All organizations are classified according to their main purpose as follows: (1) policy and administration, (2) agri-

cultural economics, (3) industrial economics, (4) handcraft economics, (5) trade economics, (6) consumer economics, (7)
cultural/educational/media, (8) associations and clubs, (9) religious/church, (10) other organization purposes.

3The following ordinal scheme is used: (1)- unfinished primary school, (2)-completed primary school, (3)-vocational
training, (4)-unfinished high school, (5)-completed high school without matura, (6)-completed high school with matura,
(7)-general gymnasium certificate, (8)-completed professional training, (9)-Bachelor diploma at university, (10)-completed
university study, Magister.
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where the link between ηij and yij is

ηij > 0, if yij = 1, ηij 6 0, if yij = 0.

Xij thereby reflects dyad specific characteristics, e.g. physical distance in business networks (for all
network constituents summarized in X). Next to dyad specific characteristics available, information is
often gathered with respect to network constituents not with respect to social relations. Hence, a natural
approach to augment the regression equation via suitable chosen sufficient network statistics typically
given as the functions of the total number of ties in the network or the number of reciprocal ties,
encounters difficulties in estimation with respect to the ad hoc choice of suitable variable transformations
and network indicators, see Linkletter (2007). Furthermore, neglecting individual specific structures
causes a considerable lack of model fitness, see Hoff (2005), Snijders (2002), and Handcock (2003) for
discussion.

To overcome the matter of lacking fit when using network statistics for explaining social relations,
Hoff et al. (2002) discuss several network models, where latent variables are used for characterization of
the relative position of the actors in an unobserved social space. Furthermore, Hoff (2007) provides a
characterization of the latent social space via a reduced rank matrix obtained from a singular value de-
composition. Since these characterizations of the latent social space do not allow observed characteristics
of the network constituents to influence the relative positions network individuals take to each other,
Linkletter (2007) and Handcock and Tantrum (2007) suggest representations of the latent social space
to dealing with these issues. The different characterizations of the latent space are summarized in the
upcoming sections.

The model considered in Linkletter et al. (2006) provides an extension dealing with several drawbacks
of the latent space approach suggested by Hoff et al. (2002). The socio economic position of an individual
is assumed to depend on socio economic attributes, thereby providing a parsimonious parametrization
of the the latent space. This parsimonious parametrization possibly immunizes the model against over
fitting the data as in the approach followed by Hoff et al. (2002).

The network is modeled as follows. The likelihood of a observed connection between two actors i and
j is assumed to be logistic, hence a latent regression model is used to link dyad specific regressors to
observed network relations, i.e.

ηij = Xijβ + hij + eij .

Assuming logistic errors, the likelihood is then

L(Y |X, β) =
∏
i>j

exp{ηij}yij

1 + exp{ηij}
. (1)

For the relative position hij Linkletter (2007) assumes

hij = −|z(qi) − z(qj)|,

where z(·) is a function mapping the observed characteristics of social agents qi ∈ Q to the real line
thereby subsuming the observed characteristics within a position in the latent space. It is flexibly pa-
rameterized, where parameters are left unspecified a priori, but are simultaneously estimated to specify
the transformation z(·). This approach allows to deal most accurately with transformation reflecting the
homophily of attributes in the considered network. The consideration of a mapping function z(·) allows
an interesting interpretation in the sense of clustering. In regions of the observed space Q, where z(·) is
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flat, differences have only little impact on the connection probability. These regions form groups of actors
with similar characteristics showing high potential to connect with each other. Conversely, large changes
in the functional z(·) indicate regions, where only small changes of large influence on the cooperation
probability. These features possibly create a set of boundaries separating different groups of actors. It
should be noted that the modeling of the relative position in the latent space as given above can be
interpreted as a special case of the approach suggested by Hoff et al. (2002) as it provides a restriction
on the latent space, which is absent in Hoff et al. (2002).

Note that for the number of variables p defining the observed space Q are assumed to be known.
Extensions as given also in Linkletter et al. (2006) are also concerned about selection of adequate variables
forming the observed space. Furthermore the variables forming the latent space Q are standardized to
[0, 1]p via the transformation4

q̃ih = qih − minQh

max(Qh) − min(Qh)
, h = 1, . . . , p,

or alternatively with q∗
ih =

qih− 1
n

∑n

i=1
qih√

1
n

∑n

i=1
(qih− 1

n

∑n

i=1
qih)2

q̃ih = arctan q∗
ih + π/2
π

, h = 1, . . . , p.

A Gaussian process is chosen as a prior for the functional z(·). However, instead of defining a
Gaussian process for Z = z(Q) = (z(q1), . . . , z(qn))′ by a mean vector and a covariance matrix causing
the number of parameters to increase with order O(n2), Linkletter et al. (2006) propose to construct a
Gaussian process by convolution of a Gaussian white noise process α(q) with a smoothing kernel k(q).
Following Higdon (2002) the white noise process α(q) is discretized, which can then be controlled by
fewer parameters. The discretized convolution is given by

z(q) =
m∑

r=1
αrkρ(q − wr),

where m denotes the dimensionality of the considered process, weights αr = α(wr), and wr gives the
Gaussian white noise process. A specific choice for the kernel k(·), which may influence the results, is to
chose an independent p-dimensional Gaussian kernel given by

kρ(qi − wr) =
p∏

d=1

ρ
(wrd−qid)2

d , (2)

where ρ = (ρ1, . . . , ρp)′ model correlations, and wrd and qid denote the dth element of wr and qi respec-
tively. A standard notation of ρd is given as

ρd = e
− 1

2σd ,

where σd is the standard deviation of the kernel in the dth direction. However, Equation (2) is convenient
in terms of MCMC exploration since 0 6 ρd 6 1, d = 1, . . . , p. Interpretation of the parameters ρd can
be based on the notion of spatial correlation. A large value of ρd implies a larger scaling of distance in
dimension of variable xid. A large value of ρd corresponds therefore to a space surface were a evenly
spread distances are more likely to occur, since not only a small regions of space has considerable large
value for the kernel kρ. In combination with weights αr, r = 1, . . . , m this representation of latent

4This standardization is required for identifications reasons, similarly to the standardization of latent positions in the
model-based clustering approach.
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space allows very flexible kinds of third order dependencies. Figure (5) illustrates the effect of different
values of ρ on the scaling of distances within the latent socio-spatial process. Figure(5) indicates that
small changes in the relative position with respect to variables have large effect, with the magnitude of
the effect depending on the chosen parameter constellation with parameters nearer to 1 scaling down
difference within the socio-spatial space.

Computation of the kernel kρ(·) requires realizations of the Gaussian white noise process W =
(w1, . . . , wm)′. These realizations are chosen as a grid with high coverage over the hypercube [0, 1]p.
The number of points m forming the grid is chosen via a rule of thumb known as m = 10p roles sug-
gesting to use 10 points per dimension in order to provide an accurate approximation. High coverage
is achieved using a Latin hypercube design with space filling optimization, see McKay et al. (1979) and
Jones et al. (1998) for details.

The random field z(Q) is hence governed via the parameters α and ρ for which the following prior
assumptions are used. The prior for alpha is given as

α ∼ N (0, Im)

and the prior for ρ is

ρd ∼ U(0, 1), d = 1, . . . , p.

The above outlined socio-spatial process can be used for network implementation and has several
advantages over the latent factor model approach. Since the latent position hij is conceptualized via
the functional z(·) only the knowledge of the corresponding variables qi and qj is necessary to provide a
forecast of the relative latent position. This allows to implement network relations subject to nominated
non-response and non-nominated non-response in case where subjective and dyadic attributes are known.

The model frameworks adapted above will be estimated within the Bayesian framework. Therefore the
following paragraphs will provide the sampling techniques and MCMC sampling blocks used to perform
Bayesian inference in the above given model frameworks.

Markov Chain Monte Carlo (MCMC) sampling is a device to produce a sample from distributions of
interest. In a Bayesian analysis, where properties of the joint posterior analysis are of interest, MCMC
sampling is used to obtain a sample from this joint posterior distribution. This sample and moments
derived thereof serve then as Bayesian estimates. The use of MCMC sampling is necessary, since ana-
lytical derivation of moments of the posterior distribution serving as Bayesian estimators via analytical
integration is most often hindered via the high complexity of integrals. MCMC sampling is performed via
iterative sampling from the full conditional densities of an adequately chosen partition of the parameter
vector into blocks. This iterative sampling constitutes a Markov chain, which ensures under general regu-
larity conditions provided in Chib (2001) and not fulfilled only in pathological cases convergence towards
the joint posterior distribution.5 Before describing the employed sampling schemes, some general notes

5Following Chib (2001), the transition from θ
(r)
k

to θ
(r+1)
k

is accomplished via sampling from
p(θk|θ(r)

1 , . . . , θr
k−1, θ

(r−1)
k+1 , . . . , θ

(r−1)
K , S). The transition of the Markov chain constituting out of K blocks is then

described for continuous full conditional distributions as

K(θr, θr+1) =
K∏

k=1

p(θk|θ(r)
1 , . . . , θr

k−1, θ
(r−1)
k+1 , . . . , θ

(r−1)
K , S).

Sufficient conditions for convergence can then be stated as follows. Let K(θ, θ′) denote the transition density of the Gibbs
sampler and let KR(θo, θ′) be the density of θ′ after R iterations of the Gibbs sampler given the initialization θ0. The

∥KR(θo, θ′) − p(θ|S)∥ → 0 as R → ∞,

where ∥ · ∥ denotes the total variance distance. As it is shown by Roberts and Smith (1994), convergence is ensured under
the following conditions

7



on the applied sampling algorithms and the data augmentation device will be given.

Metropolis-Hastings algorithm and Data augmentation Chib and Greenberg (1995) provide an
extensive review of the different Metropolis-Hasings algorithms, which serve as building blocks in the
applied sampling schemes. The Metropolis-Hastings algorithm is a device to produce a sample from a
target density f , where the proposal density q is allowed to depend on the current state of the Markov-
Chain. A draw from the proposal or jumping distribution y is accepted with probability

α = min
{

f(x)q(x, y)
f(y), q(y, x)

, 1
}

,

where x denotes the current state of the Markov Chain. The choice of the proposal density q is left to
the applied researcher. However, there are several basic types discussed in Chib and Greenberg (1995).
Choosing the candidate value y = x + u, where u is called increment value, is referred to as random
walk Metropolis-Hastings algorithm, since the proposal is given via the current value plus noise. Since
this proposal density can be implemented in many situation and provides a fast sampling device, it
is a common choice for sampling from full conditional distributions, which are not accessible to direct
sampling. However, the use of a Metropolis-Hastings Random Walk algorithm can be problematic, since
mixing over the parameter space may be slow and the acceptance rate may be low in some applications. A
possibly slow mixing over the parameter space under consideration may be indicated via high persistence
within the Gibbs sweeps, i.e. high autocorrelation.6 Alternatively, the proposal density q can be chosen
to be independent of the current state y. Such a chain is labeled as independent chain by Tierney (1994).7

For each type of candidate density scale and for the independent chain approach also the mean
parameter have to be specified. Note that numerical accuracy depends crucially on the choice of these
parameters. With respect to scale parameters, their choice affects accuracy in terms of acceptance ratio
and coverage of sample space. While choosing a small scale of the proposal density ensures to obtain
candidates from a high density region and therefore a high acceptance rate, it causes possibly a poor
coverage of the sample space and vice versa. Roberts et al. (1994) discusses some guidelines for choosing
the scale parameter in the context of the random walk proposal density. In context of normal proposals
and target densities, they argue to use a scaling yielding an acceptance rate ranging from .25 for higher
dimensional problems to .50 in one dimensional problems. Müller (1991) also recommends in context of
the random walk chain algorithm a scale parameter providing an acceptance ratio around .50. While
these choice have shown reasonable performance in applications, they lack consideration of dependencies
between elements of parameter vectors. As noted by Geweke (1989) for independent chain samplers
importance sampling can be used to construct a proposal density. However, to ensure convergence the
importance density must dominate the target density in the tails. Furthermore, all these recommendations
are subject to the general caveat that a proposal density with nearly optimal acceptance probability may
exhibit excessive autocorrelation within draws. To ensure the validity of estimates in such circumstances
alternative families of proposal densities have then to be analyzed. As will illustrated below, (optimized)
importance sampling can provide a generic tool to produce proposal densities providing high acceptance
ratios and lower autocorrelation within sequences of draws.

1. p(θ|S) > 0 implies there exists an open neighborhood Nθ containing θ and ξ > 0 such that, for all θ′ ∈ Nθ,
p(θ′) > ξ > 0;

2.
∫

f(θ)dθk is locally bounded for all k, where θk is the kth block of parameters;
3. the support of θ is arc connected.

6Shephard and Pitt (1997) discuss an alternative measure for numerical accuracy of sampling procedures, see also
Liesenfeld and Richard (2006).

7Chib and Greenberg (1995) mention further classes of proposal densities such as use of pseudodominating densities,
autoregressive chains, and kernel chains.
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Data augmentation as proposed by Tanner and Wong (1987) includes latent variables of the model
into the parameter vector. In the present context of social network models the latent variables ηij for
all i and j are hence included. The joint posterior of the augmented parameter vector is then subject to
analysis via MCMC schemes. While this augmentation on the hand complicates the matter of sampling
directly from the joint posterior distribution, it is applied when simplifying the matter of sampling from
the full conditional distributions. Here the inclusion of the latent variable ηij alters the problem of
sampling β in into sampling the parameters from a linear regression model.

Parameters to be estimated are summarized in θ referring to the parameters governing the conditional
mean and random field z(Q). To obtain Bayesian estimates of parameters of interest, the posterior
distribution has to be calculated. Since the considered model framework does not allow an analytical
treatment, estimation is based on MCMC techniques to obtain draws from the posterior distribution and
used the empirical moments as estimators. To obtain draws from the posterior distribution its form must
be known up to an unknown constant, which is provided via the assumed likelihood and prior functions

p(θ|Y, X) ∝ L(Y |X, θ)π(θ).

The prior π(·) has therefore to be specified. For parameters concerning the conditional mean a multi-
variate normal prior is a straightforward choice. Concerning the random field z(Q) prior assumptions
are chosen with respect to {ρd}p

d=1 as uniform over interval [0, 1] and with respect to α as multivariate
normal with zero mean and diagonal unit variance.8

Given this setup the posterior distribution for θ = {µ, α, ρ} can be summarized as

p(β, α, ρ|Y, X) ∝
∏
i>j

exp{ηij}yij

1 + exp{ηij}

p∏
d=1

I(0,1)(ρd)

exp{−1
2

(β − µβ)′Ω−1
β (β − µβ)} exp{−1

2

m∑
r=1

α2
r}.

Since direct sampling from the posterior is not possible and also the full conditional distribution of the
parameter blocks are non standard, draws β(s), α(s), ρ(s) are obtained via a Metropolis-Hastings algorithm.
It has the following structure.

• Given an initialization β(0), α(0), ρ(0) with p(β(0), α(0), ρ(0)|Y, X) > 0 generate new draws for the
parameters as follows. Repeat for s = 1, . . . , S.

1. Draw a candidate value β∗ for a known symmetric distribution f(β∗|β(s−1)) given the previous
value β(s−1). This distribution is called jumping distribution, see Gelman et al. (1995) for
a complete discussion of the Metropolis-Hastings algorithm including regularity conditions.
Proposal draws are obtained from a multivariate normal with mean β(s−1) and a diagonal
covariance. Note that Hoff et al. (2002) use in the scalar case a uniform jumping distribution
centered around β(s−1). Alternatively, the mean of the proposal distribution is identified as
the solution of the following maximization problem, i.e.

β∗ = arg max
β

∏
i>j

exp{ηij}yij

1 + exp{ηij}
exp{−1

2
(β − µβ)′Ω−1

β (β − µβ)}.

8Alternatively, concerning prior beliefs on ρ George and McCulloch (1993) and Clyde (1999) discuss a mixture prior of
the form

π(ρd) = γI[0,1](ρd) + (1 − γ)I{1},

where γ allows to incorporate a prior belief on the fraction on inactive factors.
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The covariance is then provided as the corresponding inverse Hessian. This proposal den-
sity provides higher acceptance ratios within the Metropolis-Hastings algorithm and hence
enhances numerical accuracy of the algorithm.

2. Calculate the ratio

r = p(β∗, α(s−1), ρ(s−1)|Y, X)/f(β∗|β(s−1))
p(β(s−1), α(s−1), ρ(s−1)|Y, X)/f(β(s−1)|β∗)

= p(β∗, α(s−1), ρ(s−1)|Y, X)f(β(s−1)|β∗)
p(β(s−1), α(s−1), ρ(s−1)|Y, X)f(β∗|β(s−1))

3. Set

β(s)

{
β∗, with probability min(r, 1),
β(s−1), otherwise .

• Apply the Metropolis-Hastings scheme outlined above for α. Use as a jumping distribution for each
element of α a uniform distribution centered around the previous draw. Also the use of a normal
distribution with mean given by the previous draw and diagonal covariance matrix is possible.
Thereby the variance is varied between values between 1 and 0.1.

• Apply the Metropolis-Hastings scheme outlined above for ρ. Again a natural choice for the jumping
distribution for each element of ρ a uniform distribution centered around the previous draw, where
the range is ±λρ varying from 0.15 to 0.05.

In order to ensure mixing across the parameter space, the number of draws S has to be set sufficiently
large. To enhance numerical efficiency, the MH-steps are iterated until a proposal is accepted, which
improves also mixing across the parameter space. Furthermore, since the sequences of draws for the
parameters are autocorrelated, only a fraction of draws is used to obtain estimates, e.g. each 5th or 10th

draw.
The parameter estimates are hence provided by the sampler averages of the drawn sequences, i.e.

β̂ = 1
S′

S′∑
s=1

β(s), α̂ = 1
S′

S′∑
s=1

α(s) and ρ̂ = 1
S′

S′∑
s=1

ρ(s).

Assessing the estimated latent position of actors is possible via

ẑ(q) = E[z(q)|Y, X] = 1
S′

S′∑
s=1

m∑
r=1

α(s)
r kρ(s)(q − wr),

what allows also to give the posterior probability of an observed network connection

π̂ij = E

[
exp{ηij}

1 + exp{ηij}
|Y, X

]
= 1

S′

S′∑
s=1

exp{η
(s)
ij }

1 + exp{η
(s)
ij }

,

where

η
(s)
ij = Xijβ(s) − |z(qi)(s) − z(qj)(s)|.

The adequacy of the whole model setup can be assessed via cross validation techniques. Splitting the
observed network into a training and a validation sample allows to judge, whether the estimated parameter
and latent space parameter provide a valid representation of the network under investigation. The next
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section elaborates techniques on this specific issue of model selection.
In the following approaches suggested within the literature for issues of model specification and selec-

tion are considered and adapted to the features of the suggested model frameworks, which are not subject
to posterior inference. This features are the number of mixing components, the dimension of the latent
space, and the matter of what variables to choose for valid characterization of the latent socio-spatial
space process.

Selection of Variables in the Socio-Spatial Process Model In the above outlined model, the
variables shaping the latent socio-spatial process have been assumed as given and known. In empirical
analysis however, although one might have good theoretical knowledge about variables influence the
individual position in the latent space, the set of variables should be also subject to analysis and testing.

The problem of variable selection corresponds to choosing the best model for the observed network.
A fully Bayesian analysis would investigate all 2p possible subsets of variables according to the marginal
likelihood criteria, which is potentially computationally costly, see Chipman et al. (2001) for a discussion
of related issues. Instead, Linkletter et al. (2006) propose to judge the significance of variables based
on the posterior estimates of the parameters ρk. The more different ρk is from 1, the less likely it is
not a determining factor of the latent space. One important caveat is that in the outlined approach of
Linkletter et al. (2006) the network response variable is considered to be metric and not binary and needs
hence to be adapted to binary network data.9

The importance of single variables is judged on the basis of a comparison of the influence of an ar-
tificial reference variable and the set of variables under consideration. Comparing the influence of an
artificial variable with the considered set of variables is advantageous over direct gauging the posterior
distributions, since it provides a reference scenario for the behavior of an insignificant variable. A draw-
back of this reference distribution approach is an increase in the computational burden for construction
of the reference distribution. The procedure can be summarized by the following algorithm.

1. Augment the set of variables Q by creating a reference variable Qp+1 with no significant influence.
The creation is based on random sampling from the covariate space of the original variables.

2. Compute the posterior mean of ρ̃p+1 of the added reference variable.

3. Repeat steps 1 and 2 M times. Use the obtained median estimates ρ̃
(m)
p+1, m = 1, . . . , M to construct

a reference distribution representing the situation of no influence.

4. Compare the estimates medians ρ̃d, d = 1, . . . , p to the reference distribution to assess their signif-
icance.

The adequateness of the outlined approach is assessed in Linkletter et al. (2006) in various simulation
experiments. The results show that the variable selection via reference distribution is suited to identify
active variables influencing the shape of the latent socio-spatial process, see also the simulation study
conducted in Chapter 4.

Model Comparison via Cross Validation Model fitness is assessed via cross-validation techniques
which allow to compare also non-nested model setups. Cross-validation techniques split the observed
network into a training sample employed for estimation and a forecasting sample. Based on estimates
obtained from the training sample the prediction probabilities are calculated for the forecasting sample.
Based in the forecasting probabilities from different models several fit criteria can be inspected and
judgement on the best model specification made. Alternatively to approximating the marginal likelihood

9It will therefore be of special interest, whether the outline approach can be applied on dichotomous network data as
well.
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via the BIC, Hoff (2005) suggests for identification of the correct dimension of the latent space to assess
the predictive performance of a model. In order to allow comparison across different models and different
dimension of the latent space, he recommends the use of L-fold cross validation. The procedure can be
summarized as follows:

1. Provide a partition of pairs of actors {(i, j) : i ̸= j} into L sets A1, . . . , AL.

2. For different numbers of dimensions or different models

(a) For each l = 1, . . . , L

i. perform estimation via the MCMC algorithm using only pairs {(i, j) /∈ Al}, but sample
values y∗

ij for all pairs.
ii. based on sampled value for y∗

ij compute posterior means y∗
ij ∈ Al and the log predictive

probability lpp(Al) =
∑

i,j∈Al
log p(yij |y∗

ij).

(b) Assess the predictive performance for a specific dimension of model setup via LPP =∑L
l=1 lpp(Al).

This approach can also be extended for selection of the number of components in the model-based
clustering approach via running the additional numbers runs for the considered selection dimension.

4 Empirical Results

This section presents the empirical estimation results. As a baseline model a standard probit model is
estimated including only the dyad specific regressors, i.e. number of common organizational memberships
and political conflict potential between individuals. Estimation of the standard probit model is performed
via maximum likelihood. Estimation results for the standard probit and socio-spatial process model are
presented in Table (2) for the counties of Budkovce (upper part) and Chotza (lower part), while Table
(3) provides estimation results for the counties of Kamienienc and Porchovany.

Starting with the Slovakian county of Budkovce, standard probit regression analysis and socio-spatial
model estimates underline the importance of the number of common organizational memberships as a
dyad specific regressor for individual communication. A relevant factor shaping the relative distance
in the socio-spatial space between individuals is political party membership, where the importance of
this factor is highlighted by the reference distribution approach shown in the upper panel of Figure (5).
Also personal reputation is documented to be among the variables showing significant impact on the
socio-spatial distance.

For the Polish municipality of Chotza difference occur compared to Budkovce. On the one hand, polit-
ical conflict potential is the significant dyad specific regressors, and not number of common organizational
memberships. Furthermore, the estimation results suggest a positive link between political conflict po-
tential and communication, i.e. with a higher political conflict potential making communication more
likely. Furthermore, the reference distribution approach, see second panel of Figure (5), indicates the
irrelevance of of individual specific regressors therefore of distances in the socio-spatial space for individ-
ual communication. Note that, descriptive statistics shown in Table (1) document a younger local elite
on average compared with the other three municipalities and a lower educational level. Possibly, this
structural difference are reflected in different structures of individual communication highlighted via the
empirical analysis.

Within the municipality of Kamienienc, see for estimation results upper part of Table (3), also the
number of common organization is the most influential dyad specific regressor. However, with respect to
individual specific factors influencing the distance between local elite members within the latent social
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space, three variables namely educational level, political party membership, and personal reputation are
documented to exhibit substantial influence, see Figure (5), third panel. Hence, personal communication
within the county of Kamienienc is compared to the three other counties in Poland and Slovakia at most
determined by personal characteristics of local elite members.

Concerning the fourth municipality of Porchovany, estimation results are provided in Table (3). For
this county, the number of common organizations is the influential determinant of communication ties,
next to the political party membership shaping the distance within the socio-spatial process. With respect
to individual specific factors showing influence on the distance within the latent social space, no variables
are found to have substantial influence, compare Figure (5), lowest panel.

Next to analysis of individual specific communication, a short note shall be made on the overall level
of communication ties, individuals have within the local elite network. Therefore, a count data analysis
is performed using a negative binomial setup.10 Estimation is performed via maximum likelihood and
estimation results are shown in Table (4). The empirical analysis reveals the importance of personal
reputation for the overall number of ties within the social communication network. Furthermore, for
the municipality of Chotza, with the youngest average local elite, a higher age significantly increases the
overall number of communication ties.

5 Conclusion

This article analyzed social elite communication networks in four municipalities in Slovakia and Poland.
The network structure and hence the dyadic nature of the dependent variable make empirical model
structures necessary, which allow a flexible yet parsimoniously parameterized aggregation of individual
specific information on the dyadic level of the binary dependent variable. This paper adapts a Gaussian
field process for this purpose and shortly discusses alternative modeling approaches suggested and imple-
mented within the literature. Estimation is performed using a Bayesian approach, which is implemented
using MCMC techniques.

Empirical analysis reveals the importance of common organizational membership and the political
party membership in explaining the occurrence of communication relationship between local elite mem-
bers. Some difference between the municipalities were revealed for the county having the youngest local
elite, where the political conflict potential between enhances the probability of communication between
individuals. With respect to the overall activity in communication networks the poisson regression results
document the importance of individual reputation.

Thus, this paper applied a flexible framework for aggregation of individual specific information on
dyadic levels and provided an analysis of determinants of individual communication in local elite networks.
Future research could aim at a formal comparison of alternative approach incorporating latent individual
heterogeneity.

10Poisson regression results point at similar conclusion, however overdispersion is significantly estimated.
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Table 4: Analysis of Communication Activity - Negative Binomial Regression

mean sd 95% CI
Budkovce – (SVK)

constant 1.541979 .8000722 [−.0261341; 3.110091]
age -.0105996 .0114773 [−.0330947; .0118954]
educational level .1121329 .0622844 [−.0099422; .2342081]
political party membership .2945179 .257805 [−.2107707; .7998064]
personal reputation 1.886588 .4564618 [.9919391; 2.781236]
social prestige index -.0104323 .0090419 [−.0281541; .0072894]

Chotcza – (PL)
constant -.1571744 .7074138 [−1.54368; 1.229331]
age .0199043 .0100786 [.0001506; .039658]
educational level .0080713 .0607763 [−.1110481; .1271907]
political party membership .1162344 .3237661 [−.5183355; .7508043]
personal reputation 2.641798 .471151 [1.718359; 3.565237]
social prestige index .0017585 .0072925 [−.0125344; .0160514]

Kamieniec – (PL)
constant 2.772421 .7966183 [1.211078; 4.333764]
age -.0117793 .0094905 [−.0303803; .0068217]
educational level -.0174434 .0681389 [−.1509932; .1161065]
political party membership -.2415409 .2176573 [−.6681414; .1850597]
personal reputation 1.678827 .4521789 [.7925729; 2.565082]
social prestige index -.0091044 .007929 [−.024645; .0064362]

Parchovany – (SVK)
constant .6724824 1.458618 [−2.186357; 3.531321]
age .0031036 .0194798 [−.0350761; .0412834]
educational level -.1094293 .0819881 [−.2701229; .0512644]
political party membership .2205007 .3014767 [−.3703828; .8113841]
personal reputation 1.281929 .68248 [−.0557072; 2.619565]
social prestige index .0251362 .0160243 [−.0062709; .0565433]
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Figure 1: Socio Spatial Process with ρ = (.3 .4) (right panel) / ρ = (.7 .7) (left panel) / ρ = (.2 .7)
(lower panel)
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Figure 2: Variable Selection via Reference Distribution for four analyzed counties – Budkovce, Chotza,
Kamienienc, Porchovany
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