Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

Weilan Zhang
Southern Illinois University Carbondale

Stephen D. Ebbs
Southern Illinois University Carbondale, sebbs@plant.siu.edu

Craig Musante
The Connecticut Agricultural Experiment Station

Jason C. White
The Connecticut Agricultural Experiment Station

Cunmei Gao
Shanghai Ocean University

Follow this and additional works at: http://opensiuc.lib.siu.edu/pb_pubs

This document is the Accepted Manuscript version of a Published Work that appeared in final form in the *Journal of agricultural and food chemistry*, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jf5052442.

Recommended Citation

This Article is brought to you for free and open access by the Department of Plant Biology at OpenSIUC. It has been accepted for inclusion in Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.
Uptake and Accumulation of Bulk and Nano-sized Cerium Oxide Particles and Ionic Cerium by Radish (*Raphanus sativus L.*)

Weilan Zhang¹, Stephen D. Ebbs², Craig Musante³, Jason C. White³, Cunmei Gao¹,⁴, Xingmao Ma¹,*

¹Department of Civil and Environmental Engineering, Southern Illinois University; Carbondale, IL, 62901

²Department of Plant Biology and Center for Ecology, Southern Illinois University, Carbondale, IL, 62901

³Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06504, USA

⁴College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China

*Corresponding author

Xingmao Ma

Department of Civil and Environmental Engineering

Southern Illinois University Carbondale

Carbondale, IL, USA, 62901

Ph: 618-453-7774

Fax: 618-453-3044

Email: ma@engr.siu.edu
Abstract

The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, while below ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (*Raphanus sativus* L.) and accumulation of cerium in the radish tissues. Ionic cerium (*Ce*³⁺) had a negative effect on radish growth at 10 mg CeCl₃ /L while bulk cerium oxide (*CeO₂*) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (*CeO₂* NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of *CeO₂* NPs vs. their bulk and ionic counterparts on radish growth.

Keywords

Cerium oxide, Nanomaterials, Nanoparticles, Radish, Phytotoxicity, Plant uptake
Introduction

Nanotechnology is a rapidly expanding global industry. Engineered nanomaterials (ENMs) with their size smaller than 100 nm in at least two dimensions are increasingly found in commercial products. Due to their small size and large specific surface area, ENMs exhibit novel and different physical, chemical and biological properties from their bulk or ionic counterparts. These unique properties provide new opportunities to fight diseases, enhance energy efficiency and improve the environment (1,2,3).

While the synthesis of ENMs adds desirable physical and/or chemical properties over the bulk or ionic forms, the potential environmental health and safety implications of ENM uses have become a serious concern. Previous research has shown that some ENMs used in consumer products are released into the environment and many of these materials are detected in wastewater streams (4,5,6). As one of the most commonly employed nanomaterials, cerium oxide nanoparticles (CeO₂ NPs) have attracted great attention. The potential toxicity of CeO₂ NPs (6-40 nm, unmodified) to bacteria, fish, and mammalian cells has been reported (7,8). Plants play a critical role in maintaining ecosystem health and function and as a food source for humans. Plant uptake of ENMs represents an important pathway for human exposure to these nanoparticles through food consumption (9). Consequently, investigation of the uptake and accumulation of ENMs by agricultural crops is not only warranted but also critical to food safety and human health. However, there are only a small number of studies in the literature that have addressed the interactions of CeO₂ NPs with terrestrial plants (10-16). In one study, Wang et al. (10) found that uncoated CeO₂ NPs (< 25nm) at 0.1-10 mg/L had a slightly positive effect on tomato (Solanum lycopersicum L.) growth and yield (e.g. increased production of tomato
fruit at 10 mg/L). However, cerium was reportedly transported from roots to shoots and accumulated in edible tissues, although the chemical form of Ce was not determined. These authors further investigated the trans-generational effect of CeO$_2$ NPs and found that second generation seedlings grown with seeds from treated parental plants with 10 mg/L CeO$_2$ NPs were significantly smaller and accumulated more cerium as compared to seedlings generated from control plants. Ma et al. (12) studied how rare earth oxide NPs affected root elongation and found that bare CeO$_2$ NPs with an average diameter of 7.2 ± 0.7 nm had no effects on rape (Brassica napus L.), radish (Raphanus sativus L.), wheat (Triticum aestivum L.), cabbage (Brassica oleracea L.), tomato (Lycopersicon esculentum L.), and cucumber (Cucumis sativus L.) at 2,000 mg/L. Rico et al. (13) demonstrated that exposing rice seedlings to bare CeO$_2$ NPs with an average size of 231 ± 16 nm up to 500 mg/L for ten days caused no visible signs of toxicity. However, CeO$_2$ NPs induced a concentration-dependent modification of the oxidative stress and antioxidant defense system in the rice seedlings. Several studies have reported the uptake and accumulation of CeO$_2$ NPs by agricultural crops. For instance, Zhang and colleagues (14) showed that 7 nm and 25 nm bare CeO$_2$ NPs were detected in cucumber tissues but the transport of cerium from roots to shoots was limited. Zhao et al. (15) investigated the effects of bare and alginate coated CeO$_2$ NPs on corn plants and reported that surface coating and soil organic matter could promote the translocation of cerium in higher plants. A recent study demonstrated that intact CeO$_2$ NPs (7 nm) were taken up by soybean roots (16). In summary, CeO$_2$ NPs can be taken up by plants and accumulated in plant tissues, but the majority of the NPs appeared to remain in the root tissues, raising concerns on the heightened accumulation of ENMs by root vegetables.
Interestingly, even though the edible tissues of belowground vegetables often have direct contact with soil-borne ENMs and present the highest potential for ENMs accumulation in food crops, little attention has been paid to this important group of food plants. In this study, radish (Raphanus sativus L.) was adopted as a model plant in that it is a popular vegetable with high global consumption. In addition, radishes mature rapidly in full sun and light, and can be harvested in 3-4 weeks, making it an ideal plant to study the fate and impact of environmental chemicals on the development of belowground vegetables. The objectives of this study were two-fold: 1) how does cerium in different chemical forms (e.g. ionic cerium vs. cerium particles) and physical sizes affect the growth of radish? (2) How extensively and differently will the radish tissues take up and accumulate cerium in different forms and sizes? With these two objectives, we aimed to fill some of the current knowledge gap on the possible differential accumulation of cerium with different forms and particles sizes by plants. Even though detailed studies on the cerium effect of essential physiological and biochemical processes are not the concentration of this study, their interactions are important for mechanistic understanding of the interactions of plants and nanoparticles and warrant further investigations.

Materials and Methods

Chemicals

Dispersions of CeO$_2$ NPs (10 wt. % in H$_2$O) and cerium chloride powder were purchased from Sigma-Aldrich (St. Louis, MO). The bulk powder of CeO$_2$ was obtained from Strem Chemicals, Inc. (Newburyport, MA). Hoagland solution (one-quarter strength) was prepared by dissolving an appropriate amount of the modified Hoagland basal salt mixture (Phytotechnology Laboratories, Lenexa, KS) with deionized water. The
size and morphology of CeO\textsubscript{2} NPs and the bulk suspensions were characterized by transmission electron microscopy (TEM). The hydrodynamic size and zeta potential of CeO\textsubscript{2} NPs in quarter strength Hoagland solution were measured with a dynamic light scattering instrument (Malvern Zetasizer Nano-ZS90, NY).

Seed germination and growth conditions

The radish seeds [Cherriette (F1)] were obtained from Johnny’s Selected Seeds (Winslow, ME). Seeds were surface sterilized with 1.25% sodium hypochlorite solution for 10 minutes and then rinsed with deionized water three times. The sterilized seeds were germinated on moist filter paper in a Petri dish for 7 days. Healthy young seedlings with similar size (7.5 -8 cm in height from the root tip to the tip of cotyledons) and stage of development were transferred to 50 mL polypropylene centrifuge tubes containing quarter strength Hoagland solution and were incubated in a growth cart with a 16 hrs-light/8 hrs-dark cycle (28 °C) to allow the seedlings to further develop. The growth cart was equipped with four T5 fluorescent tubes, providing a light intensity of approximately 104 umol m-2.s-1 of visible light (400 – 700 nm) at the height of plant leaves. After 7 days, the seedlings were transferred from the centrifuge tubes to 100 mL glass jars containing 10 mg/L of bulk or nano-sized cerium oxide (CeO\textsubscript{2}) or cerium chloride (CeCl\textsubscript{3}). Each jar had a floating lid made by Hareline 2 mm thin fly foam (Fishwest, Sandy, UT) so that the plant roots were constantly submerged in the treatment solutions. Due to the scarcity of information on the potential adsorption of cerium on foam surface, it was assumed that the potential impact of foam on cerium bioavailability was insignificant in this study. Four treatments were prepared, all in quarter strength Hoagland solution: (1) control (no cerium treatment), (2) 10 mg/L CeO\textsubscript{2} NPs, (3) 10
mg/L CeO₂ bulk, and (4) 10 mg/L CeCl₃. The concentration of 10 mg/L was chosen because this value is considered environmentally relevant (18) and our previous studies also showed that CeO₂ NPs at this concentration slightly enhanced plant growth (10,11).

Each treatment had 12 replicates. The solutions in the jars were replenished every other day with the same treatment solution to compensate for evapotranspiration, with the assumption that Ce would be taken up concurrently with water by plants. However, if plants preferably take up water, it is possible that cerium would accumulate in the growing solution. Plants were harvested 35 days after germination (i.e., 21 days after treatment). Additionally, a separate set of radish plants were grown and treated exactly as above. The harvested tissues from these plants were used to determine the distribution of cerium across the fine root tips and storage roots microscopically (see below for details).

Plant physiological responses

For the first batch of plants, daily transpiration rate was recorded for each seedling after they were transferred to 100 mL glass jars by measuring the water surface drop before the solution replenishment. The cumulative transpiration of each treatment was then calculated by summing the daily transpiration over the 21 d treatment period.

Relative chlorophyll content was measured with a SPAD 502 Plus Chlorophyll Meter (Spectrum Technologies, Inc. Aurora, IL) one day prior to harvest and was expressed as a percent of control. An OS1p chlorophyll fluorometer (Opti-sciences, Inc. Hudson, NH) was used to measure the yield of quantum efficiency of PSII (light-adapted Y(II)) and the photochemical efficiency of PSII (dark-adapted Fv/FM) on the same day the relative chlorophyll was measured. Five of the 12 replicates from each treatment were used in a leakage test to assess root membrane integrity. The leakage test followed the published
procedures with some modifications (19). Briefly, the entire fine root system was
submerged in 50 mL of deionized water and the initial conductivity C_w was measured
immediately (Orion ROSS Ultra pH/ATC Triode Orion Star A325 Thermo Fisher
Scientific, Waltham, MA). The conductivity of the solution was measured again as C_0
after 3 hours of incubation at room temperature. The entire fine roots were then
autoclaved at 121°C for 20 min with a Tuttnauer Brinkman 3850M autoclave to release
all electrolytes. The final conductivity C_t was measured after the samples cooled to room
temperature. The percentage of electrolyte leakage was calculated as:
$$EL = \frac{(C_0 - C_w)}{(C_t - C_w)} \times 100.$$

Uptake, accumulation and distribution of cerium

At harvest, radish plants were separated into fine roots, storage roots (the edible
radish bulb), and shoots. The tissues were then dried in an oven at 75 °C for 7 days and
their dry weights determined. For each treatment, the 12 storage roots and 12 shoot
tissues were divided into to four groups respectively. The shoot and storage root tissues
in each group were then ground together into fine powders, from which 0.25 g of the
ground tissues were weighed and digested in 4 mL of 70% nitric acid and swirled to mix.
For the fine roots, the remaining seven replicates (five replicates used for the electrolyte
leakage test were excluded) were divided into three groups and each group contained
either two or three of the fine root systems. Due to the smaller biomass of the fine roots,
all ground tissues from each group were used for the digestion. The nitric acid digest was
heated at 95 °C for 20 minutes and then 45 °C for 4 minutes, and the cycle was repeated
5 times until all the dry tissues were dissolved. Afterwards, 2 mL of hydrogen peroxide
was added to the mixture and heated using the same temperature cycle until the solution
was clear. The digest solution was then analyzed by inductively coupled plasma – mass
spectrometry (ICP-MS) to obtain the concentration of cerium in each sample.

The radish roots used to determine the localization and distribution of cerium in
their fine roots and storage roots were harvested at day 21 after treatment. To obtain a
reference for the anatomy of the radish storage root, a cross section of the radish storage
root taken at the equator was cut with a razor blade and observed under a Kruss
MBL3000 light microscope (A.KRÜSS Optronic, Hamburg, Germany) (Supplementary
Figure 1). The radish fine root tips and sections of the storage roots from each treatment
were also examined using a Zeiss LSM 510 META confocal microscope. A laser
excitation wavelength of 543 nm was used and an emission filter band pass was set
between 530-590 nm to collect both the laser reflection and autofluorescence in this
region. To image the storage root, the root was first cut in half horizontally from the
thickest point and then a thin slice (~ 1mm) of the storage root was cut from the bottom
half of the storage root. That slice was then divided into four quarters and one of the
quarters was randomly selected to determine the radial distribution of cerium toward the
midpoint of the storage root. A schematic illustration of the slices preparation is shown in
Supplementary Figure 1. For each sample, a serial scanning along the z-axis of the
sample was conducted and the numbers of scanning planes varied from 8 to 11. The
distance between two optical planes was approximately 10.2 µm.

Data Analysis

A one-way ANOVA was performed in this study for data analysis. The Duncan
test was conducted for post hoc comparisons.
Results

Characterization of CeO$_2$ NPs and the bulk

Supplementary Figure 2 shows the TEM images of CeO$_2$ NPs and bulk CeO$_2$ in quarter strength Hoagland solution. The nanoparticles displayed variable shapes and sizes. Individual nanoparticles possessed triangular, rectangular and other irregular shapes. The images indicate that the average diameter of individual CeO$_2$ NPs ranged from 10 – 30 nm. The nanoparticles aggregated considerably in the Hoagland solution, due to the high ionic strength. The hydrodynamic diameter of the nanoparticle aggregates was ~600 nm as measured by the DLS. The zeta potential of CeO$_2$ NPs in the Hoagland solution was approximately -11.9 mV, suggesting that the nanoparticles were not stable. Bulk CeO$_2$ were mostly at the micron scale but the sizes were not uniform. Particles at the nanoscale were also detected in the bulk solutions. The sizes of bulk CeO$_2$ ranged approximately from 100 nm to 4,000 nm.

Plant physiological status

The radish exposed to CeO$_2$ bulk had the highest total dry biomass and was significantly greater than all other treatments (Figure 1a). The biomass of the nanoparticle treated plants was not significantly different from the control plants. The plant biomass exposed to cerium ions was significantly lower than all other treatments. When the plant tissues were examined separately, the bulk cerium treated radishes, which had similar shoot biomasses as CeO$_2$ NPs-treated radishes, had significantly higher dry shoot biomass than control and cerium ions treatment (Figure 1b). The dry weight of storage roots across the treatments exhibited similar patterns as the total dry biomass (Figure 1c), but the dry biomass of fine roots did not differ significantly as a function of
treatment (Figure 1d). In addition to the total biomass, the distribution of the biomass between the root (fine + storage root) and shoot compartments was significantly different in response to treatment. The shoot/root ratio of dry biomass of cerium ion treated radish (1.34 ± 0.11) was significantly higher (p<0.05) than all other treatments, which had similar ratios (control: 1.00 ± 0.10; bulk CeO₂: 0.95 ± 0.06; CeO₂ NPs: 1.07 ± 0.07).

Visually, there was no apparent adverse effect of any of the cerium treatments on growth and development of the radish plants except for the size differences (Figure 1e).

In addition to the root biomass, the fine root membrane integrity was significantly affected by different forms of cerium. Figure 2 indicates that 10 mg/L of CeO₂ NPs and ionic cerium resulted in significantly greater electrolyte leakage when compared to the control roots. Leakage from bulk cerium treated roots was not significantly different from control roots. The accumulative transpiration of radish for all treatments was comparable until day 21, since then the accumulative transpiration of cerium ion treated radish became significantly lower than other treatment groups (Supplementary Figure 3). The relative chlorophyll content expressed in percentage is shown in Table 1. Although all treated radishes had lower chlorophyll content, only the bulk CeO₂ and CeO₂ NPs treated leaves had significantly lower chlorophyll content compared to the controls. The average quantum yield of photosystem II (Y(II)) and the Fv/FM ratio for plants from different treatments are also shown in Table 1. The results indicated that the Y(II) was unaffected by the treatments. In contrast, only bulk CeO₂ treated radishes displayed an Fv/FM ratio significantly lower value than the control. No significant differences were observed between the other cerium treatments.

Cerium uptake and accumulation
Not surprisingly, exposure to cerium resulted in significantly greater concentrations of this element in plant tissues. For the treated plants, the cerium concentration and content were significantly higher in the fine roots than in other tissues (Figure 3a-d). Among different treatments, the concentration of cerium in the storage root was not significantly different between cerium treatments (Figure 3a). In the shoot tissues, cerium ion treated radish had highest cerium concentration, followed by bulk cerium and then CeO$_2$ NPs treated radish (Figure 3a). The fine roots of CeO$_2$ NPs treated radish had significantly higher concentration of cerium than the bulk and ion treated radish (Figure 3b). When the cerium content rather than the concentration in different tissues was compared, cerium content in the storage roots of different treatments was still similar. The shoot cerium content of bulk and ion treated radishes was not significantly different but was markedly higher than nanoparticle treated radishes (Figure 3c). In the fine roots, the cerium content demonstrated similar patterns as the cerium concentration for different treatments (Figure 3d).

Cerium localization and distribution in radish root and storage root

For the fine root tips, the confocal microscopic images were captured both on the surface and at different depths from the surface. The control had some weak signals from either the cerium content in control tissues or from background excitation (Figure 4a). In contrast, plant roots from treated plants all generated stronger signals (Figure 4b-f). However, the signal patterns were noticeably different. On the bulk CeO$_2$ treated root, the signals were only detected from the mucilagge surrounding the root tip in both surface and deeper scanning images (Figure 4b,c). CeO$_2$ NPs were detected on larger areas of the root surface as well as the mucilage on the root tip of the nanoparticle treated plants (Figure
4d). The signal was even more prominent in the deeper scanning planes (Figure 4e). For cerium ion treated radish root, the signals were predominantly detected in the surrounding areas. Neither the surface scan nor the deep scan detected significantly stronger signals than the controls within the root itself (Figure 4f).

Figure 5 shows the confocal images of cut slices of radish storage roots. The control storage root showed little signal (Figure 5a). In comparison, storage roots from treated plants had strong signals. For bulk CeO$_2$ treated radish, all signals came from the pigmented periderm with a random pattern (Figure 5b). For CeO$_2$ NPs treated radish, stronger signals were observed in the pigmented periderm. In addition, the nanoparticles appeared to penetrate further into the storage root (Figure 5c). Cerium was not only detected in the periderm but also in the secondary vascular tissues in the storage root of cerium ion treated radish (Figure 5d,e).

Discussion

Accompanied with the ever expanding applications of engineered nanomaterials are the increasing concerns about their toxicity to humans and the environment. A major question scientists are trying to ascertain is whether the reduction of micro-sized particles to nano-sized particles will significantly increase their toxicity. Several previous studies have shown that nanoparticles typically exhibit stronger effect on plants than their bulk counterparts (20, 21). For example, following a 15-day hydroponic exposure, the biomass of zucchini plant exposed to silver nanoparticles was 75% less than plants treated with same concentrations of bulk silver powder (21). For CeO$_2$ particles, it is well accepted that the presence of highly mobile lattice oxygen on the surface will cause oxygen
vacancy on the surface (22). With the decrease of nanoparticle size, the specific surface
area and consequently the density of the oxygen vacancy increase. The separation of
oxygen from the lattice structure generates electrons which can be used to reduce Ce⁴⁺ to
Ce³⁺. With increasing oxygen vacancy, the ratio of Ce³⁺/Ce⁴⁺ will increase on the surface
of nanoparticles (23). Because Ce³⁺ is about 14% larger than Ce⁴⁺ (22), the conversion of
Ce⁴⁺ to Ce³⁺ will strain the lattice structure and increase the reactivity and the superoxide
dismutase (SOD) mimetic activity of the CeO₂ particles (24). Therefore, particle size is
an important consideration in the assessment of the environmental toxicity of CeO₂.
Unfortunately, information on the size effect of CeO₂ particles on plant development in
the literature is very limited.

Due to the potential dissolution of some metallic nanoparticles, another major
question actively investigated in the scientific community of nanotoxicology is the
comparative toxicity of nanoparticles and the ionic form of the particles. Because of the
general acceptance that CeO₂ NPs are stable in liquid solutions, ionic cerium was
generally not included in the treatment paradigms (13-16). However, the broad
applications of different forms and sizes of cerium require a comprehensive
understanding and comparison of their fate and phytotoxicity. Our investigation provides
an assessment of the differential fate and phytotoxicity of cerium in its ionic, nanoscale
and bulk particle forms. Several physiological parameters including the root membrane
integrity photosynthesis-related measurements, and biomass parameters were affected by
certain forms of cerium at the tested concentration.

While the specific mechanisms by which cerium compounds may compromise
membrane integrity are not known and may differ, all forms and sizes of cerium resulted
in some damage to root membrane integrity as indicated by an increase in electrolyte
leakage. The effect was significant however only for the nanoparticle and ionic forms.
The changes in the integrity of root membrane could also alter the membrane potential
and potentially the function of the membrane (24). It has been reported that altered
plasma membrane integrity and potential is associated with changes in the ion fluxes into
plant roots (25). Whether this alteration of membrane integrity influenced the
concentration of any essential macronutrients or micronutrients in radish was not
examined but would be a reasonable question for future studies. For the bulk CeO$_2$ and
CeO$_2$ NPs, in addition to their impact on the membrane, physical adsorption on root
surface and blockage of nutrient uptake by plant roots may also occur. It is possible that
such impacts on the roots may have affected the uptake of elements such as magnesium
or iron, two nutrients associated with the synthesis of chlorophyll. A decrease in the
concentration of either of these essential nutrients might have contributed to the decrease
in relative chlorophyll content observed in some treatments. Other aspects of chlorophyll
synthesis or degradation could have been affected as well and a more detailed study will
be required to understand the extent or severity of effects of cerium on chlorophyll
metabolism. The significantly lower F$_{v}$/F$_{m}$ values observed for the bulk cerium treatment
as compared to the control plants suggested that photosynthetic electron transport
associated with photosystem II was stressed in those plants, but not for the other cerium
treatments. These results differ from a study with plantlets of *Medicago arborea* in
which nanoceria was found to have a more negative effect on the F$_{v}$/F$_{m}$ ratio than the
same concentrations of bulk cerium (25). Other studies have shown that the influence of
cerium compounds on plant photochemistry differs depending on factors such as plant
Mn status (26,) and the presence of salt stress (27). Definitive conclusions about the comparative phytotoxicity of the cerium ion and nanoceria cannot be made without further investigation. Even so, the overall effect of all treatments on the two photosynthetic parameters measured were modest and perhaps not indicative of a significant stress imposed on the plants, particularly given that there were no overt visible effects observed for any treatments, including the ionic cerium and the CeO$_2$ NPs treatments. The only other indication of a negative effect of treatment with cerium was the decrease in biomass observed for the cerium ion treatment.

The shoot/root ratio of radish was also affected by cerium, primarily through the change of the biomass of the storage roots. Because the root thickening is a result of the combined cell division and enlargement of secondary xylem and phloem cells which depends on the activity of the vascular cambium (28), it is possible that the cerium of different forms have different impacts on the activity of the vascular cambium. One could speculate that the bulk CeO$_2$ might have enhanced the activity of the vascular cambium while ionic Ce inhibited it. Metabolically, according to the “sink capacity” theory, the storage root represents a major reservoir for radish and sucrose transported within radish is the main carbohydrate for the growth of sinks. As such, photosynthate distribution into different tissues is heavily affected by the activity of sucrose synthase (SuSy) (29-32). If future studies examined the expression of SuSy genes and/or measured the activity of this enzyme in the radish hypocotyl in response to different forms of cerium, it might be possible to ascertain whether the changes in the mass of the storage root in response to bulk or ionic cerium treated radish plants were due to changes in sink strength. The specific mechanisms by which these cerium compounds influence the biomass of radish
storage roots has implications for the agricultural production of radish and related
vegetable species and are therefore worth further attention.

It should be pointed out that concentration of CeCl₃ used in this study was very
low and the impact of chloride ion is not expected to be substantial. Parida and Das (33)
investigated plant salt tolerance and salinity effects on plant growth and the authors
reported that under 100 mM NaCl (3.55 g/L Cl⁻), chloride demonstrated limited influence
on the osmotic adjustment of cell membrane. Scialabba and Melati (34) also reported that
sodium chloride up to a concentration of 0.1% positively affected radish growth. The Cl⁻
in the ionic cerium solution used in this study was significantly lower than those reported
values and was not expected to significantly contribute to the negative effect observed in
the ionic treatment group. Consequently, the negative effect observed in the ionic
treatment should be attributed to the ionic cerium. Another caveat about the results is that
10 mg/L was the concentration of the compounds of CeO₂ and CeCl₃, not the
concentration of cerium as an element. Due to the different molecular weight percentage
of cerium in CeO₂ and CeCl₃, the actual concentration of cerium as an element was 8.14
mg Ce/L in CeO₂ NPs and the bulk and was only 5.68 mg Ce/L in the ionic form. Cerium
in CeO₂ was 43.5% higher than in the ionic form. If the equivalent concentration of
cerium as an element was used, the ionic cerium may display an even stronger effect on
plant physiology.

In addition to the yield of edible storage root, the potential accumulation of
cerium was examined. Exposed plants had detectable cerium in all plant tissues,
including the edible storage roots and leaves even though the forms of cerium in these
tissues are unknown. However, the forms of cerium in plant tissues may affect both their
toxicity and potential availability to humans and they deserve detailed investigation in future studies. In current study, the significantly higher cerium detected in the shoot tissues of exposed plants indicated that cerium translocation from roots to shoot had occurred. The upward transport of bulk cerium to radish shoots was unexpected given the size of the particles and the low dissolution rate of bulk CeO$_2$. It is most likely that the cerium content detected from the bulk treated shoot tissues was from the nanoscale particles present in the bulk mixture (Supplementary Figure 2). The upward transport of CeO$_2$ NPs and ionic cerium from roots to shoots was expected and has been reported in the literature ($^{10, 14, 35}$). Interestingly, however, when the cerium localization in the storage root was investigated with the confocal microscope, signals of cerium in the vascular tissues were only observed in cerium ion treatment, suggesting that active transport may function as an important pathway of cerium accumulation only for ion treated radishes. In contrast, signals from the CeO$_2$ NPs and bulk treated radish roots were mainly located on the periderms. The results suggest that adsorption and diffusion of particulate cerium along the radial direction might be a more important pathway for CeO$_2$ NPs and bulk accumulation in radish storage roots. The diffusion may possibly occur from the lenticels on the periderm, but more precise techniques are needed to confirm this assumption. From the food safety point of view, the cerium accumulation in the edible storage root is more concerning and our results showed that while cerium concentration and content were similar across the cerium treatment, the distribution of cerium in the storage roots varied and consequently their availability to humans would vary. For example, the majority of particulate cerium accumulated in the edible tissue could be removed in the food preparation process while ionic cerium in the storage roots
is more likely to be consumed by humans with the storage root.

In closing, our results suggested that 10 mg/L cerium as cerium oxide or cerium chloride could affect the growth of radish and could accumulate in the edible storage root and shoot tissues. However, the impact and accumulation patterns varied significantly by the size and chemical form of cerium. Ionic cerium displayed the strongest impact on radish root membrane integrity and growth, followed by CeO₂ NPs and then the bulk. While cerium of different forms all accumulate in radish tissues, their accumulation potential and distribution patterns varied greatly. As a result, potential exposure and risk to human health through diet exposure to different sizes and forms of cerium may vary and these differences should be considered when evaluating the food safety of cerium in the environment.

Acknowledgement

The authors acknowledge the financial support of the USDA-AFRI (#2012-67005-19585) and USDA-AFRI (#2011-67006-30181).

Supporting Information Available

The transmission electron microscopic images of bulk CeO₂ and CeO₂ NPs, the accumulative transpiration of radish plants and the anatomy of radish storage root were provided as supporting information. This information is available free of charge via the Internet at http://pubs.acs.org.

(23) Heckert, E. G., Karakoti, A. S., Seal, S., Self, W. T. The Role of Cerium Oxide

Hu, X., Ding, Z., Chen, Y., Wang, X., Dai, L. Bioaccumulation of Lanthanum and
Cerium and Their Effects on the Growth of Wheat (Triticum aestivum L.) Seedlings.

Table 1: The relative chlorophyll content expressed as percentage of control of each treatment, the average Y(II), Fv/Fm ratio, n=12. Different letters in the table represent significant differences between the treatments (p<0.05).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Relative Chlorophyll (%)</th>
<th>Standard error</th>
<th>Y(II)</th>
<th>Standard error</th>
<th>Fv/Fm</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100.00 a</td>
<td>2.67</td>
<td>0.774</td>
<td>0.007</td>
<td>0.830 a</td>
<td>0.003</td>
</tr>
<tr>
<td>Bulk</td>
<td>87.22 b</td>
<td>3.84</td>
<td>0.728</td>
<td>0.022</td>
<td>0.757 b</td>
<td>0.026</td>
</tr>
<tr>
<td>Nanoparticle</td>
<td>83.69 b</td>
<td>4.24</td>
<td>0.731</td>
<td>0.020</td>
<td>0.780 ab</td>
<td>0.016</td>
</tr>
<tr>
<td>Cerium ion</td>
<td>91.51 ab</td>
<td>4.68</td>
<td>0.697</td>
<td>0.060</td>
<td>0.797 ab</td>
<td>0.020</td>
</tr>
</tbody>
</table>
Figure 1: Dry biomass of total radish and different radish tissues treated with 10 mg/L of different forms of cerium (a-d). The reported values are the mean of 12 replicates and the error bars represent standard error. Different letters represent significant differences between the treatments (p<0.05). (e) Images of typical radish plants from the different treatments.
Figure 2: Electrolyte leakage from radish fine roots grown hydroponically in different solutions. The reported values are the average of 5 replicates in each treatment and the error bars represent standard error. Different letters represent significant differences between the treatments (p<0.05).
Figure 3: Cerium concentration (A and B) and mass (C and D) in different radish tissues. The reported values in A and C are the average of 4 measurements. The reported values in B and D are the average of 2 or 3 measurements. Errors bars represent standard error. Letters above bars reflect their statistical grouping. Different letters and Greek symbols represent significant differences between the treatments (p<0.05).
Figure 4: Confocal microscopic images depicting the accumulation of cerium in the fine roots of radish. (a) control root showing weak signals, (b, c) surface and representative deeper scan of fine roots treated by bulk CeO$_2$, (d, e) surface and representative deeper scan of fine roots exposed to CeO$_2$ NPs and (f) a deeper scan image of fine roots exposed to cerium ion. The deeper scan images shown were selected from a stack of deep scan images for different roots.
Figure 5: (a) Confocal images of the horizontal slices of radish storage root treated with different types of cerium. (a): control; (b): bulk CeO$_2$ treated radish; (c): CeO$_2$ NPs treated radish and (d, e): ionic cerium treated radish. P: Periderm; VT: Vascular tissues.
TOC Graphic