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Abstract 

We study the feedback group action on single-input 
nonlinear control systems. We follow an approach of 
Kang and Krener based on analysing, step by step, the 
action of homogeneous transformations on the homoge- 
neous part of the system. We construct a dual normal 
form and dual invariants with respect to those obtained 
by Kang. We also propose a canonical form and show 
that two systems are equivalent via a formal feedback 
if and only if their canonical forms coincide. We give 
an explicit construction of transformations bringing the 
system to its normal, dual normal, and canonical form. 

1 Introduction 

The problem of transforming the nonlinear control 
single-input system 

by a feedback transformation of the form 

to a simpler form has been extensively studied during 
the last twenty years. The transformation I-' brings C 
to the system 

c : x = J(z)  + j(z)?J, 

whose dynamics are given by 

J = 4*(f+ga)  
3 = 4*(gP), 

where for any vector field f and any diffeomorphism 4 
we denote 
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A natural question to ask is whether we can take the 
system f: to be linear, i.e., whether we can linearize the 
system C via feedback. Necessary and sufficient geo- 
metric conditions for this to be the case have been given 
in [5] and [6]. Those conditions turn out to be, except 
for the planar case, restrictive and a natural problem 
which arises is to find normal forms for nonlineariz- 
able systems. Although being natural, this problem is 
very involved and has been extensively studied during 
the last twenty years (see [2] , [3] , [7] ,[9] ,[ 101 , [ 111 , [ 121 , [ 131 
among others). In our paper we will follow a very fruit- 
ful approach proposed by Kang and Krener [ll] and 
then followed by Kang [9],[10]. Their idea, which is 
closely related with classical PoincarC's technique for 
linearization of dynamical systems (see e.g. [l]), is to 
analyse the system C and the feedback transformation 

step by step and, as a_consequence, to produce a 
simpler equivalent system C also step by step. 

This method allowed Kang to produce a normal form 
for any single-input system with controllable lineariza- 
tion. The first goal of our paper is to propose a dual 
normal form. The second goal is to  provide explicit 
transformations bringing the system to Kang normal 
form and to dual normal form. Neither Kang normal 
form nor dual normal form is unique: a given control 
can admit different Kang normal forms and different 
dual normal forms and therefore the third goal of the 
p,c~pci is to propose a canonical form. 

The paper is organized as follows. In Section 2 we 
will introduce, following [ 111 , homogeneous feedback 
transformations. We recall a normal form, obtained by 
Kang, and discuss invariants of homogeneous transfor- 
mations, also obtained by him. We provide an explicit 
construction of transformations bringing the system to 
Kang normal form. In Section 3 we dualize the main 
results of Section 2: we give a dual normal form, ex- 
plicitely construct transformations bringing the system 
to that form, and define dual invariants of homogeneous 
transformations. In Section 4 we construct our canoni- 
cal form and prove that two control systems are fedback 
equivalent if and only if their canonical forms coincide. 
We illustrate our canonical form by analyzing different 
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ball-and-beam systems with various values of the fric- 
tion constant. Proofs of all results are given in [15] (see 
also [14]). 

2 Normal  form and m-invariants 

All objects, i.e., functions, maps, vector fields, control 
systems, etc., are considered in a neighborhood of 0 E 
Rn and assumed to be Cm-smooth. Let h be a smooth 
function. By 

00 

h ( z )  = h['](x) + h[ ' ] ( z )  + h[21(z) + ... = h [ m l ( ~ )  
m=O 

we denote its Taylor series expansion around zero, 
where h["](z) stands for a homogeneous polynomial of 
degree m. 

Similarly, for a map 4 of an open subset of Rn to Rn 
(resp. for a vector field f on an open subset of Rn) we 
will denote by q5[m] (resp. by f r m ] )  the term of degree m 
of its Taylor expansion at zero, i.e., each component 

of g5[m] (resp. fj-ml of f r m ] )  is a homogeneous poly- 
nomial of degree m in z. Denote also Zi = ( 2 1 , .  . . , x 2 ) .  

Consider the Taylor. series expansion of the system C 
given by 

00 

C" : i = F< + GU + (f["](t) + g[m-l]u),  (2.1) 

where F = g(0) and G = g(0). We will assume 
throughout the paper that f (0) = 0 and g(0) # 0. 

Consider also the Taylor series expansion roo of the 
feedback transformation r given by 

m=2 

2 = $(<I = T< + E P I ( < )  
m=2 roo : U = + p ( o v  
00 

= K( + Lv + (a["](<) + P["-l](<)v), 

(2.2) 
m=2 

where T is an invertible matrix and L # 0. Let us 
analyse the action of on the system Coo step by 
step. 

To start with, consider the linear system 

= F < + G ~ .  

Throughout the paper we will assume that it is con- 
trollable. It can thus be transformed (see e.g. [SI) by a 
linear feedback transformation of the form 

x = Tt 
U = K ( + L v  rl :. 

to the Brunovskf canonical form ( A ,  B ) .  Assuming 
that the linear part (F, G ) ,  of the system Coo given by 
(2.1), has been transformed to the Brunovskf canonical 
form (A ,  B),  we follow an idea of Kang and Krener [ll], 
[9] and apply successively a series of transformations 

for m = 2 ,3 , .  . . . A feedback transformation defined 
as an infinite series of successive compositions of rm, 
m = 1 ,2 , .  . ., will also be denoted by roo because, as 
a formal power series, it is of the form (2.2). We will 
not address the problem of convergence and we will 
call such a series of successive compositions a formal 
feedback transformation. 

Observe that each transformation P, for m 2 2, leaves 
invariant all homogeneous terms of degree smaller than 
m and we will call rm a homogeneous feedback trans- 
formation of order m. We will study the action of rm 
on the following system E["] 

i = A< + Bu + f [" ] ( [ )  + gIm-'I([)u + O ( < , U ) ~ + ' .  
(2.4) 

The starting point is the following result, proved in [9]. 
Consider another system given by I 

x = Ax + Bv + J["](z) + ij[m-lI(x)v + O ( X , Z ~ ) ~ + ' .  
(2.5) 

Propos i t ion  1 The feedback transformation rm, de- 
fined b y  (2.3), brings the system ELm], given by (2.4), 
to given b y  (2.5), if and only if the following re- 
lations hold for any 1 < j < n : 

This proposition represents the essence of the method 
developped by Kang and Krener and used in our pa- 
per. The problem of studying the feedback equivalence 
of two systems C and 5 requires, in general, solving a 
system of l-st order partial differential equations. On 
the other hand, if we perform the analysis step by step, 
then the problem of establishing the feedback equiva- 
lence of two systems E["] and % L m ]  reduces to  solving 
the algebraic system (2.6). 

Recall the notation zi = ( z 1 ,  . . . , xi). Using the above 
proposition, Kang [9] proved the following result. 
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Theorem 1 The system Cl"] can be transformed via 
a homogeneous feedback transformations P, into the 
following normal f o r m  EFL : 

xn-l = 2, 

xn = V ,  

(2.7) 

where 3,-2 xi) - - Pj,i [m-21 ( 2 1 ,  ... ,xi) are homoge- 
neous polynomials of degree m - 2. 

In order to construct invariants of homogeneous feed- 
back transformations let us define 

x y ( 5 )  = adAE+f[ml(s,(B + 9["-'1(5)) 

and let be its homogeneous part of degree m - 1. 

Following Kang [9], we denote by u [ " I ~ > ~ ( ~ )  the homo- 
geneous part of degree m - 2 of 

CAt--l [Xim_T1, xim_;l] lw"--i+2 ? 

where C = ( l l 0 ; . .  , O )  and the submanifolds Wi are 
defined as follows: 

wi = {c$ E R" 1 &+I = . . . = Sn = 0 ) .  

The functions a["lt>2(E), for 2 5 i 5 n - 1 ,  1 5 t 5 n-i, 
will be called m-invariants of E["]. 

The following result of Kang [9] asserts that m- 
invariants a["ItJ (5) are complete invariants of homoge- 
neous feedback and, moreover, illustrates their meaning 
for the normal form CPL. Consider two systems 
and g["]. Let 

{ a["1t7i([) : 2 5 i 5 n - 1, 1 5 t 5 n - i } and 

{ dmItyi(t) : 2 5 i 5 n - 1, 1 5 t 5 n - i 1 
denote, respectively, their m-inavariants. 

Theorem 2 The m-invariants have the following 
properties : 

(i) Two systems E["] and g["] are equivalent via a ho- 
mogeneous feedback of order m, modulo higher order 
terms, i f  and only i f  

(5) a["lt>i([) = 5["1t>i 

f o r  any 2 5 i 5 n - 1 and any 1 5 t 5 n - i. 

(ii) The m-invariants i i [ " I t ~ a  of the system E$$? defined 
by (2.7), are given by 

f o r  any 2 5 i 5 n - 1 and any 1 5 t 5 n - i, 

(2.8) 

We have the following result. 

Theorem 3 The feedback transformation 

IC = 5 +  4["1(5) 
U = 2r + a["l(,c) + ,LI["-ll(E)v, 

r m  : 

where (4["], a["], p["-l])  are defined by (2.8), brings 
the system E["] to a normal fo rm EFL given by (2.7). 

3 Dual normal form and dual m-invariants 

In the normal form EFL given by (2.7), all the com- 
ponents of the control vector field gfm-l] are annihi- 
lated and all non removable nonlinearities are grouped 
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in f["]. Kang and Krener in their pioneering paper [ll] 
have shown that it is possible to transform, via a trans- 
formation r2 of order 2, the second order system 

: i = At  + Bu + f[2](t) + g['](t)u + O ( t ,  u ) ~  

to a dual normal form. In that form the components 
of the drift f [ ' ]  are annihilated while all non remov- 
able nonlinearities are, this time, present in g['].  The 
aim of this Section is to propose, for an arbitrary m, a 
dual normal form for the system E["]. Our dual normal 
form, on the one hand, generalizes that given in [ll] for 
second order terms and, on the other hand, dualizes, 
the normal form CPL. The structure of this Section 
will follow that of Section 2: we will give the dual nor- 
mal form, then we define and study dual m-invariants, 
and, finally, we give an explicit construction of trans- 
formations bringing the system to its dual normal form. 
Our first result asserts that we can always bring E["] 
to a dual normal form. 

Theorem 4 The system E["] can be transformed via 
a homogeneous feedback transformations I?", into the 
dual normal f o r m  $L given by: 

X I  = 2 2  

X 2  = 2 3  + Z~QL;-~](Z,)X, + O ( X ,  U)"+] 

Xn-' = 2, + & Q y ' ( 5 i ) 2 i  + O(2,  U)"+' 
i=3 

x, = U, 

(3.1) 

where Q:;-21(Zi) = Q;?-'] ( 2 1 ,  . . . , xi) are homoge- 
neous polynomials of degree m - 2. 

Now we will define dual invariants. To start with, recall 
that the homogeneous vector field Xi["-'] is defined by 
taking the homogeneous part of degree m - 1 of the 
vector field 

x: - = ~ UdAC+ f ( B  + g["-']). 

Consider the system.C["l and for any j, such that 2 5 
j 5 n - 1, define the functions him-'] by setting 

j - 2  

b[m-l] 3 = $-'I + L B L y ( f [ " 1  k + l  ) 
k=O 

n 

+ ( - 1 y + 1  Lg L$-' 
i= 1 
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The functions b;''-'] will be called dual m-invariants of 
the system E["]. Consider two systems CL"] and $["I 
of the form (2.4) and (2.5), respectively. Let 

{ b;"-l1(<) : 2 5 j 5 n - 1 } and 

{iim-'1(<) : 2 5 j 5 n - 1 )  

denote, respectively, their dual m-inavariants. The fol- 
lowing result gives a dual of Theorem 2. 

Theorem 5 The dual m-invariants have the following 
properties: 

(i) Two systems E["] and ,%["I are equivalent via a ho- 
mogeneous feedback of order m, modulo higher order 
terms, i f  and only if, for  any  2 5 j 5 n - 1, 

b[.m-ll (<) = (0. 

(ii) The dual m-invariants of the system E$$, defined 
b y  (3.1)) are given, f o r  any 2 5 j 5 n - 1, b y  

n 
P-ll 3 = c Q;"'' ( 2 1  , . . . , zi)zi. 

i=n- j+2  

This result asserts therefore that the dual m-invariants, 
similarly like m-invariants, form a set of complete in- 
variants of the homogeneous feedback transformation. 
Notice however that the same information is encoded 
in both sets of invariants in different ways. 

Theorem 6 The feedback transformation 

2 = [ +  $J["'([) 
U = v + a["](<) + p["-'l(<)v, r m  : 

where (q!~["], a["], p["-']) are defined b y  (3 .2))  brings 
the system to  a dual normal f o r m  $'k given b y  
(3.1).  

4 Canonical form 

Consider the system C of the form (2.1). Apply succes- 
sively to it a series of transformations rm, m = 1,2, . . . , 
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such that each rm brings to its normal form C k i ;  
for instance we can take a series of transformations de- 
fined by (2.8). In a dual way, apply successively to C 
a series of transformations rm, m = 1 , 2 , .  . . , such that 
each rm brings E["] to its dual normal form @A; for 
instance we can take a series of transformations defined 
by (3.2). Successive repeating of, respectively, Theo- 
rem 1 and Theorem 4 gives the following normal forms. 

Theorem 7 Consider the system C given by (2.1). 

(i) There exists a formal feedback transformation fO" 
bringing the system C t o  a normal f o r m  CFF given by 

where Pj.i(%i) = Pj.i(xl,... ,x i )  are formal  power se- 
ries. 

(ii) There exists a formal  feedback transformation rM 
bringing the system C to  a normal f o r m  Z F F  given by 

i l  = 2 2  

ij = xj+l+ 5 v ~ j , i ( ~ i ) x i ,  2 < j  5 n -  I 
k n -  j+2 

x, = U,  

where Qj,i(%) = Qj,i(xl , .  . . , xi)  are formal power se- 
ries. 

A natural and fundamental question which arises is 
whether the system Coo can admit two different nor- 
mal forms, that is, whether the normal forms given by 
Theorem 7 are in fact canonical forms. It turns out 
that a given system can admit different normal forms, 
see [9], and the aim of this Section is to construct a 
canonical form for Em. 

Consider the system Coo of the form (2.1). Let the 
first homogeneous term of CO", which cannot be anni- 
hilated by a feedback transformation, be of order mo. 
As proved by Krener [12], the order mo is given by 
the largest integer j + 1 such that all distributions 
Dk = span ( 9 , .  . . , adF-lg}, for 1 5 k 5 n - 1, are 
involutive modulo terms of order j - 1. We can thus, 
due to Theorems 1 and 2, assume that, after applying 
a suitable feedback, CO" takes the form 

4 = A t  + Bu + +""I(() + 
00 

(f["l(() + g[m-11([)u)3 
m=mo+] 

where (A ,  B )  is in Brunovskf canonical form and the 
first nonvanishing homogeneous vector field F m o l  is of 

the form 

Let (il, . . . , LS), where il + . . . + in-8 = mo, be the 
largest, in the lexicographic ordering, (n - 3)-tuple of 
nonnegative integers such that, for some 1 < j 5 n - 2, 
we have 

am0 $mol (5) 
. # 0. a@ . . . at;:; 

Define 

We have the following result. 

Theorem 8 The system Coo given by (2.1) is  equiva- 
lent by a formal feedback roo to  a system of the fo rm 

00 

CFF : i = Ax+Bw+ f 7 " ] ( ~ ) ,  (4.1) 
m=mo 

where, f o r  any m 2 mo, 

x ~ P j ~ - 2 1 ( Z i ) ,  1 5 j 5 n - 2 

12- 1 5  j 5 n; 

i=j+2 

(4.2) 
{ 0, jy ( x )  = 

additionally, we have 

(4-3) 

and, moreover, for  any m 2 mo + 1, 

am, Jy (x) 
ax:, * .  .ax::; 

, (x1,O ,..., 0 )  = 0. (4.4) 

The form C& satisfying (4.2), (4.3) and (4.4) will be 
called the canonical f o rm of CO". The name is justified 
by the following result. 

Theorem 9 Two systems Cy and C,W are formally 
feedback equivalent i f  and only if their canonical forms  
E r c F  and ETcF coincide. 

Kang [9], generalizing [ll], proved that any system C"O 
can be brought by a formal feedback to the normal form 
(4.1), for which (4.2) is satisfied. He also observed that 

1629 

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on January 22, 2009 at 14:35 from IEEE Xplore.  Restrictions apply.



his normal forms are not unique. Our results, T h e e  
rems 8 and 9, complete his study. We show that for each 
degree m of homogenity we can use a l-dimensional sub- 
group of feedback transformations which preserves the 
“triangular” structure of (4.2) and at  the same time al- 
lows us to normalize one term. The form of (4.3) and 
(4.4) is a result of this normalization. 

Example We consider the well known ball-and-beam 
example [4], whose Lagrange equations are given by 

(a + 1)i: + Gsin6’ + p7‘ - rd2 = 0 
= 7, (r2 + J b ) e  + 2 T d  + Gr COS 6 

where we take the mass of the ball equal to one and the 
momentum of the beam equal to zero. Let J b  denote 
the momentum of’the ball, T its position, r the torque 
applied to the beam, 0 its angle with respect to the 
horizontal and B 2 0 the.viscous friction constant. We 
set k ~ ,  = & and ~ - = - 2 r d  + GT cos 6’ + ( r2  + J ) u ,  where 
U denotes the control variab!e. In the coordinates sys- 
tem ( J l ,  J 2 ,  6 ,  J 4 )  = ( T ,  i ,  8, e), we obtain the following 
equations 

J4 = U .  

The coordinates change 

Y 1  = 61 

Y 2  = J 2  

~4 = B(BG + G s i n b )  - (Gcos&)J4, 
y3 = -p&- Gsin& 

together with a feedback U = a(<) + ,B(<)w, takes the 
system (4.5) into the following one 

Y l  = y2 

Y 2  = Y3 + Y l Q ( Y 2 , Y 3 ) ( 9 4 2  + P Y 3 Y  

Y 3  = Y4 - P Y l Q ( Y 2 , Y 3 ) ( Y i  + P Y 3 P  

Y 4  = ‘w , 
where Q is an analytic function satisfying Q(0) = ko. 
Applying a suitable feedback transformation (see [14] 
and [15] for details); we show that the ball-and-beam 
system is feedback equivalent to the following canonical 
form 

xl = 2 2  + P ( Z l Z z  + Z z p 1 , 3 ( 3 3 )  -k 2 2 p 1 , 4 ( 3 4 ) )  

x 2  = 2 3  + x12; + 2;P2,4(34) 
x, = 2 4  
x4 = 21, 

where P1,3, P1,4 and P2,4 are formal power series 
whose l-jets vanish at zero and p 2 , 4  ( Z 4 )  = 2 2  R1(32> + 
23R2(23) + x4R3(34). If ,f3 = 0 then p 2 , 4 ( 3 4 )  = 
2 1  P(x3) .  As a conclusion, two ball-and-beam systems 
are feedback equivalent if and only if they have the same 
friction constant ,B. 
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