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Weighted Canonical Forms of Nonlinear Single-Input Control
Systems with Noncontrollable Linearization

Issa A. Tall and Witold Respondek

Abstract— We propose a weighted canonical form for single-
input systems with noncontrollable first order approximation
under the action of formal feedback transformations. This
weighted canonical form is based on associating different
weights to the linearly controllable and linearly noncontrol-
lable parts of the system. We prove that two systems are
formally feedback equivalent if and only if their weighted
canonical forms coincide up to a diffeomorphism whose
restriction to the linearly controllable part is identity.

INTRODUTION

The feedback classification of nonlinear control single-
input systems of the form

Σ : ẋ = f(x) + g(x)u

under the action of feedback transformations of the form

Γ :
z = φ(x)
u = α(x) + β(x)v

has been extensively studied during the past years. Normal
forms for such systems have been computed [4], [5], [6],
[10], [12] using a fruitful approach proposed by Kang and
Krener, which generalizes to control systems a method
developed by Poincaré for dynamical systems (see, e.g.,
[1]). This method is based on analyzing the action of
the homogeneous components of the feedback group on
the homogeneous components, of the same degree, of the
system.

The problem of obtaining canonical forms is more com-
plicated because it involves analyzing the action of homoge-
nous components of lower degree of the feedback group
on the homogenous components of higher degree of the
system. Recently canonical forms for single-input systems,
with controllable linearization, have been obtained by the
authors [10], [13] who proved that two systems are feedback
equivalent if and only if their canonical forms coincide.
Construction of those canonical forms has led to a complete
description of symmetries of single-input control systems
with controllable linearization. Those symmetries have been
fully described by the authors [8], [9] using the canonical
form: possessing a stationary symmetry, a non stationary
symmetry, a one 1-parameter family of symmetries or two
1-parameter families of symmetries corresponds, respec-
tively, to the fact that the drift of the canonical form is
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odd, is periodic with respect to the first variable, does not
depend on the first variable or is odd and does not depend
on the first variable.

The aim of the present paper is to construct a canonical
form for single-input systems with uncontrollable lineariza-
tion. We recall that normal forms for such systems have
been already obtained [11], [12], [5], [7] and so constructing
canonical forms has been a challenging problem. Analyzing
the proposed canonical forms should allow to describe
symmetries and feedback invariants of single-input control
systems with noncontrollable linearization.

I. NORMAL FORMS

All objects, that is, functions, maps, vector fields, control
systems, etc., are considered in a neighborhood of 0 ∈ R

n

and assumed to be C∞-smooth. Consider the system

Σ : ẋ = f(x) + g(x)u, x ∈ R
n, u ∈ R,

where f(0) = 0 and g(0) �= 0 and let

Λ : ẋ = Fx + Gu

be its linearization around the equilibrium point 0 ∈ R
n.

We assume this linearization to be noncontrollable, that is

rank [G FG · · · Fn−1G ] = n − r,

for some positive integer r. Applying a linear feedback
transformation we can always assume that the linear part
(F, G) of the system is in Jordan-Brunoský canonical form

(A,B) = (
(

A1 0
0 A2

)
,

(
0

B2

)
)

that is, the uncontrollable part, of dimension r, is defined
by the matrix A1 in the Jordan form and the controllable
part, of dimension n− r, is defined by the pair (A2, B2) in
the Brunovský form.

We will be using the same notation Sr(R, 0) for the space
C∞(Rr, 0) of smooth functions defined locally at 0 ∈ R

r as
well as for the space R[[x1, . . . , xr]] of formal power series
in x1, . . . , xr with real coefficients. For a smooth R-valued
function h, defined in a neighborhood of 0×0 ∈ R

r×R
n−r,

we denote by

h(x) = h[0](x) + h[1](x) + h[2](x) + · · · =
∞∑

m=0

h[m](x)

its Taylor series expansion at 0 × 0 ∈ R
r × R

n−r, where
h[m](x) stands for a homogeneous polynomial of degree m
in the variables xr+1, · · · , xn whose coefficients are in
Sr(R, 0).
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Following [12], we will use different weights correspond-
ing to the uncontrollable and controllable parts:

f 〈m〉 =
(
f

[m−1]
1 , · · · , f

[m−1]
r , f

[m]
r+1, · · · , f

[m]
n

)T

g〈m〉 =
(
g
[m−1]
1 , · · · , g

[m−1]
r , g

[m]
r+1, · · · , g

[m]
n

)T

φ〈m〉 =
(
φ

[m−1]
1 , · · · , φ

[m−1]
r , φ

[m]
r+1, · · · , φ

[m]
n

)T

,

where, for any 1 ≤ j ≤ r, we set f
[−1]
j (x) = g

[−1]
j (x) =

φ
[−1]
j (x) = 0, and h〈m〉(x) = h[m](x) for a homogeneous

polynomial. We will consider the action of the Taylor series
expansion Γ∞ of the feedback transformation Γ given by

Γ∞ :
z = Tx +

∞∑
m=0

φ〈m〉(x)

u = Kx + Lv +
∞∑

m=0
(α〈m〉(x) + β〈m−1〉(x)v),

(I.1)
on the Taylor series expansion of the system Σ given by

Σ∞ : ẋ = Fx + Gu +
∞∑

m=0

(
f 〈m〉(x) + g〈m−1〉(x)u

)
.

(I.2)
After having transformed (F, G) into its Jordan-

Brunovský form we then study the action of the weighted
homogeneous feedback

Γ〈m〉 : z = x + φ〈m〉(x)
u = v + α〈m〉(x) + β〈m−1〉(x)v

on the weighted homogeneous system

Σ〈m〉 : ẋ = Ax + Bu + f 〈1〉(x) + f 〈m〉(x) + g〈m−1〉(x)u,

where the last n−r components of the vector field f 〈1〉 are
equal to zero (which can always be achieved by a feedback
transformation).

Denote z̄i = (z1, . . . , zi). We proved the following result
in [12].

Theorem I.1 For any m ≥ 2, there exists a weighted
feedback transformation Γ〈m〉, that transforms the weighted
homogeneous system Σ〈m〉 into its weighted homogeneous
normal form

Σ〈m〉
NF : ż = Az + Bv + f̄ 〈1〉(z) + f̄ 〈m〉(z),

with f̄ 〈1〉(z) = f 〈1〉(z) and the components of the vector
field f̄ 〈m〉(z) satisfy

f̄
〈m〉
j (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zm−1
r+1 Sj,m(z̄r) +

n∑
i=r+2

z2
i Q

〈m−3〉
j,i (z̄i)

if 1 ≤ j ≤ r,

n∑
i=j+2

z2
i P

〈m−2〉
j,i (z̄i), if r + 1 ≤ j ≤ n − 2,

0, if n − 1 ≤ j ≤ n,
(I.3)

where Sj,m(z̄r) are C∞-functions of the variables
z1, · · · , zr, the functions P

〈m−2〉
j,i and Q

〈m−3〉
j,i are homo-

geneous polynomials, respectively of degrees m − 2 and
m − 3, of the variables zr+1, · · · , zi, with coefficients in
Sr(R, 0).

Denote by λ = {λ1, . . . , λr} the spectrum of A1, that is
of the uncontrollable linear part of the system (I.2). We
say that an eigenvalue λj is resonant if there is a r-tuple
(α1, . . . , αr) of positive integers such that

α1 + · · · + αr ≥ 2 and λj = α1λ1 + · · · + αrλr. (I.4)

The set Rj of all r-tuples α = (α1, . . . , αr) satisfying (I.4)
is called the resonant set associated to the eigenvalue λj .

A normalization of the vector field f 〈1〉(x) followed by
a successive repeating of Theorem I.1, for m = 2, 3, · · · ,
yield the following result, see [12]:

Theorem I.2 There exists a formal feedback transforma-
tion Γ∞ of the form (I.1), which brings the system Σ∞,
given by (I.2), into its normal form

Σ∞
NF : ż = Az + Bv + f̄ 〈1〉(z) + f̄(z),

where the components f̄j(z) of f̄(z) satisfy

f̄j(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zr+1Sj(z̄r+1) +
n∑

i=r+2

z2
i Qj,i(z̄i)

if 1 ≤ j ≤ r,

n∑
i=j+2

z2
i Pj,i(z̄i), if r + 1 ≤ j ≤ n − 2,

0, if n − 1 ≤ j ≤ n,

and (if the eigenvalues of A1 are distinct) the components
f̄
〈1〉
j (z) of f̄ 〈1〉(z) satisfy

f̄
〈1〉
j (z) =

⎧⎪⎨
⎪⎩

∑
α∈Rj

γj,αzα1
1 · · · zαr

r , if 1 ≤ j ≤ r

0, if r + 1 ≤ j ≤ n.
(I.5)

Above, Pj,i, Qj,i and Sj are formal power series of the
indicated variables, and γj,α ∈ R.

II. CANONICAL FORMS

The objective of this section is to produce a canonical
form for systems under consideration.

Consider the system Σ∞ of the form (I.2) and assume
that its linear part (F, G) has been already brought to
the Brunovský-Jordan canonical form (A,B). Let the first
weighted homogeneous term of Σ∞ which cannot be an-
nihilated by a feedback transformation be of degree 〈m0〉,
m0 ≥ 2. This means we can assume (see Theorem I.1) that,
after applying a suitable feedback, Σ∞ takes the form

ẋ = Ax + Bu + f̄ 〈1〉(x) + f̄ 〈m0〉(x)

+
∞∑

m=m0+1

(
f 〈m〉(x) + g〈m−1〉(x)u

)
,

(II.1)
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where the components of the first non vanishing homoge-
neous vector field f̄ 〈m0〉 are of the form (I.3) for m = m0.

Let s be the smallest nonnegative integer such that

LAsB f̄
〈m0〉
j =

∂f̄
〈m0〉
j

∂xn−s
�= 0 (II.2)

for some 1 ≤ j ≤ n − 2. This implies that

adAk−1B f̄ 〈m0〉 = 0 (II.3)

for any 1 ≤ k ≤ s.
We define j∗ to be the smallest integer 1 ≤ j ≤ n − 2

such that (II.2) is satisfied. Thus, for any 1 ≤ j ≤ j∗ − 1,
we have

LAsB f̄
〈m0〉
j =

∂f̄
〈m0〉
j

∂xn−s
= 0. (II.4)

Let (ir+1, · · · , in−s), where ir+1 + · · ·+ in−s = 〈m0〉 and
in−s ≥ 2, be the smallest, in the lexicographic ordering,
(n − s)-tuple of nonnegative integers such that

∂〈m0〉f̄ 〈m0〉
j∗

∂x
ir+1
r+1 · · · ∂x

in−s

n−s

= θj∗(x̄r) �= 0. (II.5)

By ir+1 + · · · + in−s = 〈m0〉 we mean that ir+1 + · · · +
in−s = m0 − 1 if 1 ≤ j∗ ≤ r and ir+1 + · · · + in−s = m0

if r + 1 ≤ j∗ ≤ n − 2.
For simplicity we will assume that θj∗(0) �= 0. We have

the following result.

Theorem II.1 The system Σ∞, given by (I.2), is equivalent
by a formal feedback Γ∞, given by (I.1), to a system of the
form

Σ∞
CF : ż = Az + Bv + f̄ 〈1〉(z) +

∞∑
m=m0

f̄ 〈m〉(z),

where, for any m ≥ m0, the components of f̄ 〈m〉(z) are
given by (I.3) and those of f̄ 〈1〉(z) by (I.5); additionally,
we have

∂〈m0〉f̄ 〈m0〉
j∗

∂z
ir+1
r+1 · · · ∂z

in−s

n−s

= ±1 (II.6)

and, moreover, for any m ≥ m0 + 1,

∂〈m0〉f̄ 〈m〉
j∗

∂z
ir+1
r+1 · · · ∂z

in−s

n−s

(z̄r, zr+1, 0, . . . , 0) = 0. (II.7)

The form Σ∞
CF satisfying (I.3), (I.5), (II.6) and (II.7) will be

called the weighted canonical form of Σ∞. The following
definition is crucial for an interpretation of the weighted
canonical form.

Definition II.2 (i) Given a system Σ∞ whose linear part
is in Jordan-Brunovský canonical form, we will say that an
invertible change of coordinates z = φ(x) is a diffeomor-
phism of the uncontrollable part if

φj(x) = φj(x1, · · · , xr), for 1 ≤ j ≤ r

φj(x) = kxj , k ∈ R, for r + 1 ≤ j ≤ n.

(ii) We will say that two systems

Σ : ẋ = f(x) + g(x)u, x ∈ R
n, u ∈ R and

Σ̃ : ż = f̃(z) + g̃(z)v, z ∈ R
n, v ∈ R

such that the linearizations of both are in the Jordan-
Brunovsky canonical forms, coincide on controllable parts,
if there exists a formal diffeomorphism of the uncontrollable
parts transforming Σ into Σ̃.

Of course, we should speak about linearly controllable and
linearly uncontrollable parts but we skip the word ”linearly”
by abuse of language. The name of the weighted canonical
form is justified by the following result:

Theorem II.3 Two systems Σ∞
1 and Σ∞

2 are formally
feedback equivalent if and only if their weighted canonical
forms Σ∞

1,CF and Σ∞
2,CF coincide on controllable parts.

III. PROOFS

In this section we will prove our main results, which are
Theorems II.1 and II.3.

A Proof of Theorem II.1

The proof of Theorem II.1 consists of three steps. In
the first step, we will normalize the vector field f 〈1〉. In
the second step we will show that the component f̄

〈m0〉
j∗

of the first non vanishing weighted homogeneous term can
be normalized. Finally, we will prove, by an induction
argument, that the terms of degree 〈m0 + l − 1〉 can be put
into their canonical form.

It is a well known result of Poincaré (see, e.g., [1])
that if all eigenvalues are distinct, then by a formal dif-
feomorphism of the uncontrollable part we can get rid of
all nonresonant terms and bring ẋj = λjxj + f

〈1〉
j (x) into

żj = λjzj + f̄
〈1〉
j (z), for 1 ≤ j ≤ r, where f̄

〈1〉
j (z) is of

the form (I.5).
To perform the second step of the proof of the theorem,

we need to show that the coefficient θj∗(x̄r) of the homoge-
neous term x

ir+1
r+1 · · ·xin−s

n−s of f̄
〈m0〉
j∗ (x) can be normalized

to either 1 or −1.
To see this, consider the weighted homogeneous system

Σ〈m0〉 : ẋ = Ax + Bu + f̄ 〈1〉(x) + f̄ 〈m0〉(x)

and apply a weighted linear feedback defined by:

zj = xj 1 ≤ j ≤ r,

zr+1 = ε(x̄r)xr+1,

zj+1 = Lj−r

Ax+f̄〈1〉(x)
(ε(x̄r)xr+1), r < j < n,

(III.1)
with (ε(x̄r))m0−1 = ±θj∗(x̄r), completed by

v = α〈l+1〉(x) + β〈l〉(x)u = −Ln−r
Ax+f̄〈1〉(x)

(ε(x̄r)xr+1).

Notice that for any r + 1 ≤ j ≤ n, we have

zj = ηj,r+1(x̄r)xr+1 + · · · + ηj,j(x̄r)xj ,
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where ηj,j(x̄r) = ε(x̄r) with ε(0) �= 0. It thus follows that
the inverse of the transformation (III.1) is such that

xj = σj,r+1(z̄r)zr+1 + · · · + σj,j(z̄r)zj ,

for any r + 1 ≤ j ≤ n, and σj,j = 1/ηj,j .
Using the fact that the transformation (III.1) and its

inverse are triangular, we can show (see [14] for details)
that, by applying a weighted homogeneous feedback of
degree 〈m0〉, we take the system Σ̃〈m0〉 into its normal
form where the condition (II.6) is satisfied.

In order to normalize f
〈m〉
j∗ , for m ≥ m0 + 1, we will

need the following Lemma whose proof is straightforward
and follows from the condition (II.3). Define the flag of
involutive distributions D1 ⊂ · · · ⊂ Ds+1 as following

Dk = span
{

∂

∂zn−k+1
, · · · ,

∂

∂zn

}

for any 1 ≤ k ≤ s + 1.

Lemma III.1 Let 1 ≤ k ≤ s. For any vector field H ∈ Dk

we have [
f̄ 〈m0〉(z),H(z)

]
∈ Dk.

Moreover,

ads−k+1
Az+f〈1〉(z)

[
f̄ 〈m0〉(z),H(z)

]
∈ Ds+1.

Let us suppose that the system (II.1)-(I.3) is of the form

ẋ = Ax + Bu + f̄ 〈1〉(x) +
m0+l−1∑
m=m0

f̄ 〈m〉(x)

+
∞∑

m=m0+l

(
f 〈m〉(x) + g〈m−1〉(x)u

)
,

(III.2)

where the vector fields f̄ 〈m〉(x), for m0 ≤ m ≤ m0 + l −
1,satisfy the conditions (I.3), (II.6), and (II.7).

Consider the feedback transformation

Γ〈l+1〉 :
z = x + φ〈l+1〉(x)
u = v + α〈l+1〉(x) + β〈l〉(x)v,

(III.3)

where the components φ
〈l+1〉
j (x) of φ〈l+1〉(x) are defined

as follows:

φ
〈l+1〉
j (x) = 0 1 ≤ j ≤ r,

φ
〈l+1〉
r+1 (x) = µ(x̄r)xl+1

r+1,

φ
〈l+1〉
j+1 (x) = LAx+f̄〈1〉(x)φ

〈l+1〉
j (x), r < j < n,

(III.4)
completed by the feedback

v = α〈l+1〉(x) + β〈l〉(x)u = −LAx+f̄〈1〉(x)φ
〈l+1〉
n (x).

The importance of this transformation is that it leaves
invariant all terms of degree less than 〈m0 + l − 1〉 a nd
takes the system (III.2) into the form

ż = Az + Bv + f̄ 〈1〉(z) +
m0+l−1∑
m=m0

f̄ 〈m〉(z)

+
∞∑

m=m0+l

(
f̃ 〈m〉(z) + g̃〈m−1〉(z)v

)
,

(III.5)

where

f̃ 〈m0+l〉(z) = f 〈m0+l〉(z) +
[
f̄ 〈m0〉(z), φ〈l+1〉(z)

]
g̃〈m0+l−1〉(z) = g〈m0+l−1〉(z).

Denote by a〈m0+l〉j,i+2, â〈m0+l〉j,i+2, and ã〈m0+l〉j,i+2 the
weighted homogeneous invariants (see [12]) associated,
respectively, to the weighted homogeneous systems

Σ〈m0+l〉 : ż = Az + Bu + f 〈1〉(z)

+ f 〈m0+l〉(z) + g〈m0+l−1〉(z)u,

Σ̂〈m0+l〉 : ż = Az + Bu + f 〈1〉(z)

+ f̂ 〈m0+l〉(z) + ĝ〈m0+l−1〉(z)u,

and

Σ̃〈m0+l〉 : ż = Az + Bu + f 〈1〉(z)

+ f̃ 〈m0+l〉(z) + g̃〈m0+l−1〉(z)u,

where

f̂ 〈m0+l〉(z) =
[
f̄ 〈m0〉(z), φ〈l+1〉(z)

]
and ĝ〈m0+l−1〉(z) = 0.

It follows that

ã〈m0+l〉j,i+2 = a〈m0+l〉j,i+2 + â〈m0+l〉j,i+2 (III.6)

for all (j, i) ∈ ∆r, where we define the subset ∆r = ∆1
r ∪

∆2
r ⊂ N × N by

∆1
r = { (j, i) : 1 ≤ j ≤ r and 0 ≤ i ≤ n − r − 1 } ,

∆2
r = { (j, i) : r < j ≤ n − 2 and 0 ≤ i ≤ n − j − 2 } .

By a tedious calculation (see [14] for details) we can
prove that by an appropriate choice of feedback transfor-
mation (III.3)-(III.4), i.e., that of µ(x̄r), we can have

ã〈m0+l〉j∗,s+2 = a〈m0+l〉j∗,s+2 + â〈m0+l〉j∗,s+2 = 0,

where (j∗, s) ∈ ∆r is given by (II.5).
Applying a normalizing weighted homogeneous transfor-

mation of degree 〈m0 + l〉, we thus take the system (III.5)
into the form

ż = Az + Bv + f̄ 〈1〉(z) +
m0+l∑
m=m0

f̄ 〈m〉(z)

+
∞∑

m=m0+l+1

(
f̃ 〈m〉(z) + g̃〈m−1〉(z)v

)
,

(III.7)

where for any m0 ≤ m ≤ m0 + l, the components of
the vector field f̄ 〈m〉(z) are given by (I.3), (I.5), (II.6) and
(II.7).

This completes the proof of Theorem II.1. �
B. Proof of Theorem II.3

Let us consider two systems Σ∞
1 and Σ∞

2 and let

Σ∞
1,CF : ẋ = Ax + Bu + f̄ 〈1〉(x) +

∞∑
m=m0,1

f̄ 〈m〉(x) and

Σ∞
2,CF : ż = Az + Bv + f̃ 〈1〉(z) +

∞∑
m=m0,2

f̃ 〈m〉(z)
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denote respectively their weighted canonical forms, where
m0,1 and m0,2 denote the degrees of the first non lin-
earizable homogeneous parts. It is obvious that Σ∞

1 and
Σ∞

2 are feedback equivalent if their canonical forms Σ∞
1,CF

and Σ∞
2,CF coincide on controllable parts. To prove the

converse, we assume that the systems Σ∞
1 and Σ∞

2 are
formal feedback equivalent while their weighted canonical
forms fail to coincide on controllable parts. Since Σ∞

1

and Σ∞
2 are feedback equivalent, so are their weighted

canonical forms Σ∞
1,CF and Σ∞

2,CF . It means that there
exists a transformation Γ∞ which brings Σ∞

1,CF into Σ∞
2,CF .

First remark that, from the definition of the integer m0,
we necessarily have m0,1 = m0,2. Then, Theorem 2 of
[12], and the fact that the components f̄

〈m0〉
j∗ and f̃

〈m0〉
j∗ are

normalized (see (II.6)), ensure that f̄ 〈m0〉 = f̃ 〈m0〉.
Let l be the largest integer such that for any i ≤ l,

we have f̄ 〈m0+i−1〉 = f̃ 〈m0+i−1〉. This means that the
transformation Γ∞ leaves invariant all terms of degree
smaller than m0 + l of the system Σ∞

1,CF . The form of
the transformation follows then from the following lemma.

Lemma III.2 A transformation Γ∞ leaves invariant all
terms of degree smaller than 〈m0 + l〉 of the system Σ∞

1,CF

if and only if Γ∞ is of the form

Γ∞ :
z = Tx +

∞∑
m=l+1

φ〈m〉(x)

u = kv +
∞∑

m=l+1

(
α〈m〉(x) + β〈m−1〉(x)v

)
,

(III.8)
where k ∈ R, T is an invertible matrix preserving the
Jordan Brunovský form, and for any m such that l + 1 ≤
m ≤ m0 + l − 1, the triplet (φ〈m〉, α〈m〉, β〈m−1〉) is given
by

φ
〈m〉
j (x) = 0 1 ≤ j ≤ r,

φ
〈m〉
r+1(x) = µm(x̄r)xm

r+1,

φ
〈m〉
j+1(x) = LAx+f̄〈1〉(x)φ

〈m〉
j (x), r < j < n,

(III.9)

and

α〈m〉(x) + β〈m−1〉(x)u = −LAx+f̄〈1〉(x)φ
〈m〉
n (x).

The transformation above is defined modulo a composition
with a diffeomorphism of the uncontrollable part given by
Definition II.2.

The proof of this lemma is identical to that given in [12]
and will be omitted for space reasons.

Since the transformation Γ∞ brings Σ∞
1,CF into Σ∞

2,CF ,
we deduce that

f̃ 〈m0+l〉(z) = f̄ 〈m0+l〉(z) +
[
f̄ 〈m0〉(z), φ〈l+1〉(z)

]
.

(III.10)

Following arguments in the proof of Theorem II.1, we
obtain

∂〈m0+l−2〉ã〈m0+l〉j∗,s+2

∂z
ir+1+l
r+1 · · · ∂z

in−s−2
n−s

=
∂〈m0+l−2〉ā〈m0+l〉j∗,s+2

∂z
ir+1+l
r+1 · · · ∂z

in−s−2
n−s

+Kµl+1(z̄r)
∂〈m0〉f̄ 〈m0〉

j∗

∂z
ir+1
r+1 · · · ∂z

in−s

n−s

,

where ā〈m0+l〉j∗,s+2 and ã〈m0+l〉j∗,s+2 are invariants asso-
ciated, respectively, to the weighted homogeneous parts of
degree 〈m0 + l〉 of the systems Σ∞

1,CF and Σ∞
2,CF .

Using Theorem 2 of [12], we can prove that the last
identity implies µl+1(z̄r) = 0, that is, φ〈l+1〉 = 0 and
consequently we have α〈l+1〉 = β〈l〉 = 0. Thus, the
identity (III.10) reduces to

f̃ 〈m0+l〉 = f̄ 〈m0+l〉,

which contradicts the definition of l. We conclude that the
canonical forms Σ∞

1,CF and Σ∞
2,CF coincide on controllable

parts. �

Example III.3 (Kapitsa Pendulum) We consider in this
example the Kapitsa pendulum whose equations (see [2]
and [3]) are given by

α̇ = p + w
l sinα

ṗ = (gl − w2

l2 cos α) sin α − w
l p cos α

ż = w,

where α denotes the angle of the pendulum with the vertical
z-axis, w is the velocity of the suspension point z, p is
proportional to the generalized impulsion, g is the gravity
constant, l the length of the pendulum, and the control is
the acceleration ẇ.

In [12] we showed that this system is feedback equivalent
to the normal form

ẋ1 = λx1 + R1(x1, x2) + x3P1(x̄3) + x2
4Q1(x̄3)

ẋ2 = −λx2 + R2(x1, x2) + x3P2(x̄3) + x2
4Q2(x̄3)

ẋ3 = x4

ẋ4 = u,

where x̄3 = (x1, x2, x3) and

R1(x1, x2) =
∞∑

m=2

amx1(x1x2)m−1

R2(x1, x2) =
∞∑

m=2

bmx2(x1x2)m−1

are resonant terms with am, bm ∈ R.
Let us assume that Q1(0) �= 0, that is

Q1(x1, x2, x3) = Q1,0(x1, x2) + x3Q1,1(x1, x2, x3),

with Q1,0(0) �= 0. Consider the weighted linear change of
coordinates

z1 = x1, z3 = µ(x1, x2)x3

z2 = x2 z4 = ż3
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followed by the feedback v = ż4. We have

z4 = µ(x1, x2)x4 + x3
∂µ

∂x1
ẋ1 + x3

∂µ

∂x2
ẋ2.

Throughout the example, Ok(z) will denote terms of degree
k and higher in the variables z3 and z4 whose coefficients
are functions of the variables z1 and z2.

This implies that

x2
4 = µ−2(z1, z2)z2

4 + z3z4δ(z̄2) + z2
3θ2(z̄2) + O3(z).

Taking µ =
√

Q1,0, we transform the system into

ż1 = λz1 + R1(z1, z2) + z3P1(z̄3) + z3z4S1(z̄3)
+ z2

4(1 + z3Q1(z̄3)) + z3
4Q̃1(z̄4)

ż2 = −λz2 + R2(z1, z2) + z3P2(z̄3) + z3z4S2(z̄3)
+ z2

4Q2(z̄4)
ż3 = z4

ż4 = v.

By a change of coordinates z̃1 = φ1(z1, z2, z3) and z̃2 =
φ2(z1, z2, z3) we can always annihilate the terms z4S1(z̄3)
and z4S2(z̄3) and thus without loss of generality we assume
that the system is already in the form

ẋ1 = λx1 + R1(x1, x2) + x3P1(x̄3)
+ x2

4(1 + xl−1
3 Q1(x̄3)) + x3

4Q̃1(x̄4)
ẋ2 = −λx2 + R2(x1, x2) + x3P2(x̄3) + x2

4Q2(x̄4)
ẋ3 = x4

ẋ4 = u,

for some l ≥ 2. We decompose 1 + xl−1
3 Q1(x̄3) as

1+xl−1
3 Q1(x̄3) = 1+xl−1

3 Q1,0(x1, x2)+xl
3Q1,1(x1, x2, x3)

and we apply a transformation of the form

z1 = x1, z3 = x3 + xl
3ε(x1, x2)

z2 = x2, z4 = ż3

followed by the feedback v = ż4. We can check that

z4 = (1 + lxl−1
3 ε(x1, x2))x4 + xl

3

∂ε

∂x1
ẋ1 + xl

3

∂ε

∂x2
ẋ2,

= x4 + lxl−1
3 x4ε(x1, x2) + xl

3θ(x1, x2) + Ol+1(x)

whose inverse is of the form

x1 = z1, x3 = z3 − zl
3ε(z1, z2)

x2 = z2, x4 = z4 − lzl−1
3 z4ε(z̄2) − zl

3θ(z̄2).

modulo +Ol+1(z). This implies that

x2
4 = z2

4 − 2lzl−1
3 z2

4ε(z1, z2) − 2zl
3z4θ(z1, z2) + Ol+2(z).

Taking ε = Q1,0
2l , we annihilate the terms xl−1

3 x2
4Q1,0(x̄2)

of the first component. Repeating the process we will arrive

at the weighted canonical form

ż1 = λz1 + R1(z1, z2) + z3P1(z̄3) + z2
4(1 + z4Q1(z̄4))

ż2 = −λz2 + R2(z1, z2) + z3P2(z̄3) + z2
4Q2(z̄4)

ż3 = z4

ż4 = v.

We can remark that any diffeomorphism of the form

z̃1 = z1, z̃3 = z3

z̃2 = φ(z1, z2), z̃4 = z4

that preserves the form of the resonant terms
R1(z1, z2), R2(z1, z2) (but not necessarily the coefficients
am and bm; take, for example, z̃2 = kz2) transforms the
above weighted canonical form into an analogous weighted
canonical form with Ri, Pi, and Qi being replaced by
suitable R̃i, P̃i, and Q̃i, for i = 1, 2. This illustrates
Definition II.2 and justifies the name weighted canonical
forms.
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