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A CHARACTERIZATION OF PRIMITIVE

POLYNOMIALS OVER FINITE FIELDS

Robert W. Fitzgerald

Southern Illinois University

1. The Characterization.
Let p be a prime and q a power of p. GF (q) denotes the field of order q.

Theorem. Let p(x) be an irreducible polynomial of degree k over GF (q). Set m = qk−1.
Define g(x) = (xm−1)/(x−1)p(x). Then p(x) is primitive iff g(x) has exactly (q−1)qk−1−1
non-zero terms.

Proof. Write:

p(x) = p0x
k + p1x

k−1 + · · ·+ pk =
k∑

i=0

pix
k−i

g(x) = ε1x
m−1−k + ε2x

m−2−k + · · ·+ εm−k =
m−k∑

j=1

εjx
m−j−k.

Note that p0 = 1. Now p(x)g(x) = (xm−1)/(x−1) = xm−1 +xm−2 + · · ·+x+1. Matching
the coefficient of xm−` gives

(1)
∑

i+j=`

piεj = 1.

For ` = n + k, n ≥ 1, this becomes

k∑

i=0

piεn+k−i = 1.

Since p0 = 1 we can write this as:

(2) εn+k = −
k∑

i=1

piεn+k−i + 1

We will view (2) as an (infinite) linear recurring sequence. The initial values ε1, ε2, . . . εk

can be computed from (1) by taking ` = 1, 2, . . . , k. We form the homogeneous version of
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(2) in the usual way. Write out the formula for εn+k+1 and subtract the formula for εn+k.
This yields:

(3) εn+k+1 = (1− p1)εn+k +
k−1∑

i=1

(pi − pi+1)εn+k−i + pkεn.

Claim 1. The characteristic polynomial of (3) is (x− 1)p(x).
By definition, the characteristic polynomial is:

f(x) = xk+1 + (p1 − 1)xk +
k−1∑

i=1

(pi+1 − pi)xk−i − pk.

This is easily checked to be (x− 1)p(x).
We consider the linear recurring sequence with characteristic polynomial p(x), namely:

(4) ηn+k = −p1ηn+k−1 − p2ηn+k−2 − · · · − pkηn,

with the initial values η1, η2, . . . , ηk to be determined.
Claim 2. There is a non-zero K and choices for η1, . . . , ηk such that εi = ηi + K, for all
i ≥ 1.

Let S(f(x)) be the vector space of all sequences satisfying f(x). By [1, 6.55]

S(p(x)) + S(x− 1) = S((x− 1)p(x)).

A sequence is in S(x− 1) iff sn+1 = sn for all n, that is, iff it is a constant sequence. Say
sn = K for all n. Now (4) is in S(p(x)) and (3) is in S((x− 1)p(x)), by Claim 1. Hence
εi = ηi + K, for all i, for some choice of initial ηi.

We lastly check that K 6= 0. We have:

ηk+1 = −p1ηk − p2ηk−1 − . . .− pkη1

εk+1 −K = −p1(εk −K)− p2(εk−1 −K)− · · · − pk(ε1 −K)

= K(p1 + · · ·+ pk)− p1εk − · · · − pkε1

= K(p1 + · · ·+ pk) + εk+1 − 1,

from (2). We thus have K(1 + p1 + · · · + pk) = 1 and so K 6= 0. (Note that in fact
K = 1/p(1).) This completes the proof of Claim 2.

Now (4) is periodic with least period e = ord(p(x)) by [1, 6.28]. Thus (3) is also periodic
with least period e, by Claim 2. For b ∈ GF (q) let Zη(b) be the number of occurrences
of b in one period of (4). Define Zε(b) similarly. Note that Zε(0) = Zη(−K).

Let h = m/e. Then h full periods give ε1, ε2, . . . εm. But we are only concerned with
the coefficients of g(x), namely, ε1, ε2, . . . , εm−k. We need to verify:
Claim 3. εm−k+1 = εm−k+2 = · · · = εm = 0.

From (2) we have

εm−k+1 = −p1εm−k − · · · − pkεm−2k+1 + 1.
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Matching coefficients of xk−1 in p(x)g(x) = xm−1 + · · ·+ x + 1 gives

p1εm−k + · · ·+ pkεm−2k+1 = 1.

Hence εm−k+1 = 0.
Again, from (2) we have

εm−k+2 = −p1εm−k+1 − · · · − pkεm−2k+2 + 1
= −p2εm−k − · · · − pkεm−2k+2 + 1,

since εm−k+1 = 0. Matching coefficients of xk−2 gives

p2εm−k + · · ·+ pkεm−2k+2 = 1.

Thus εm−k+2 = 0. Finish by induction.
First suppose p(x) is primitive. By [1, p. 244]

Zη(b) =
{

qk−1, if b 6= 0
qk−1 − 1, if b = 0.

Then by Claim 2

Zε(b) =
{

qk−1, if b 6= K

qk−1 − 1, if b = K.

Since K 6= 0, we have Zε(0) = qk−1. Then the number of non-zero coefficients of g(x) is,
by Claim 3,

qk − 1− qk−1 = (q − 1)qk−1 − 1.

Now suppose p(x) is not primitive (so that h > 1). The number of zero terms among
ε1, . . . , εm is hZε(0). The number of zero terms among ε1, . . . , εm−k is hZε(0) − k by
Claim 3. Hence the number of non-zero terms in g(x) (of degree m− 1− k) is:

qk − 1− k − (hZε(0)− k) = qk − 1− hZε(0).

Suppose, by way of contradiction, that the number of non-zero terms of g(x) is (q−1)qk−1−
1. Then we have hZε(0) = qk−1. But q is a power of some prime p and so h (recall h > 1)
is also a power of p. But he = m = qk − 1, a contradiction. Thus the number of non-zero
terms of g(x) is not (q − 1)qk−1 − 1. ¤

2. Application to BCH codes.
We will only be concerned with primitive, narrow -sense BCH codes over GF (2). Call

a code C trivial if it consists only of the zero vector and the vector of all 1’s. We are
interested in the non-trivial BCH codes of maximal designed distance. The following is
well-known.
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Proposition. Set m = 2k − 1. Let C ⊂ GF (2k) be a BCH code of designed distance δ. If
δ ≥ 2k−1 then C is trivial. If δ = 2k−1 − 1 then:

(1) dim C = k + 1.
(2) The true minimal distance of C is δ.
(3) The check polynomial h(x) of C is (x−1)p(x), where p(x) is a primitive polynomial

of degree k.

Proof. Let α be a primitive element of F2k . Let g(x) be the generating polynomial. Then
dim C = m − deg g(x) and deg g(x) is the number of i, 1 ≤ i ≤ m, with some cyclic
permutation of its binary expansion ≤ δ − 1 [2, Theorem 9 of 9.3]. For δ = 2k−1, the
binary expansion of δ − 1 is 011 . . . 11. Hence every i, except i = m has a permutation
less than or equal to δ − 1. So deg g(x) = m − 1 and dim C = 1. Hence C is trivial. For
δ = 2k−1− 1, the binary expansion of δ− 1 is 0111 . . . 110. Then the binary expansion of i
has a permutation ≤ δ−1 iff the expansion contains ≤ k−2 ones. Thus deg g(x) = m−k−1
and dim C = k + 1. This proves (1). (2) follows from [2, Theorem 5 of 9.2].

To prove (3), first note that 1 is not a root of g(x) hence h(x) = (x− 1)p(x), for some
polynomial p(x) of degree k by (1). Now (δ,m) = 1 so that αδ is primitive. We check that
αδ is not a root of g(x). If it were then δ ≡ j2i (mod m) for some 1 ≤ i < k and some
odd j, 1 ≤ j ≤ δ − 2. So

j ≡ 2k−iδ ≡ 2k−i−1 − 2k−i = −2k−i−1 (mod m).

Then j + 2k−i−1 = 2k − 1 and j ≥ 2k−1, which is impossible. ¤
Our Theorem gives slightly more information. This was the motivation for (1.1).

Corollary. Set m = 2k−1. Let C ⊂ GF (2k) be a BCH code of designed distance 2k−1−1.
Then the generating polynomial g(x) has weight 2k−1 − 1, the minimal weight of C.
Proof. We have g(x) = (xm − 1)/h(x) and, by (3) of the proposition, h(x) = (x− 1)p(x),
where p(x) is primitive of degree k. Hence, by the Theorem, g(x) has weight 2k−1− 1. ¤
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