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Bayesian Hierarchical Modeling with 3PNO Item 
Response Models 

Yanyan Sheng*, Todd C. Headrick 

Section on Statistics and Measurement, Southern Illinois University, Carbondale, IL, 62901, USA 

 

Abstract  Fully Bayesian estimat ion has been developed for unidimensional IRT models. In this context, prior 
distributions can be specified in a hierarchical manner so that item hyperparameters are unknown and yet still have their own 
priors. Th is type of hierarchical modeling is useful in  terms of the three-parameter IRT model as it reduces the difficu lty of 
specifying model hyperparameters that lead to adequate prior distributions. Further, hierarch ical modeling amelio rates the 
noncovergence problem associated with  nonhierarchical models when appropriate prior informat ion is not available. As such, 
a Fortran subroutine is provided to implement a hierarchical modeling procedure associated with the three-parameter 
normal og ive model for binary item response data using Gibbs sampling. Model parameters can be estimated with the 
choice of noninformative and conjugate prior d istributions for the hyperparameters.  
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1. Introduction 
The unidimensional item response theory (IRT) model 

provides a fundamental framework for modeling 
person-item interaction given the usual assumption of one 
latent dimension. The popular two-parameter normal ogive 
(2PNO; e.g.,[1,2]) IRT model specifies that the probability 
of the i-th person obtaining a correct response on the j-th 
item as 
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where i = 1,…,n and j = 1,…,k . The notations αj, βj, and θi in 
(1) are scalar parameters describing the item (i) slope, (ii) 
intercept, and (iii) person-trait, respectively. Further, the 
model in (1) assumes that no guessing is involved with 
respect to the test item responses. 

In terms of objective tests that involve mult iple-choice or 
true-or-false items, where an item may be too difficult for 
some examinees, the three-parameter normal ogive (3PNO; 
e.g.,[3]) model should be considered. Specifically, the 3PNO 
model assumes that the probability associated with a correct 
response is greater than zero even for examinees with very 
low trait levels, and it is defined as follows 

( ) (1 ) ( ),0 1.ij j j j i j jP y γ γ α θ β γ= + − Φ − ≤ <       (2) 
Inspect ion  o f (2) ind icates  that  the 3PNO model  
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accommodates for guessing by adding the 
pseudo-chance-level parameter γj. As such, the model in  (2) 
is more appealing because it is applicable to a wider variety 
of testing situations where the 2PNO model may not be 
appropriate. 

In the context of the Bayesian estimation of IRT models, 
simultaneous estimation  of item and person parameters relies 
on the use of Markov Chain Monte Carlo (MCMC; e.g.,[4,5]) 
techniques to summarize the posterior distributions. For 
example, A lbert[10] applied a MCMC algorithm (the Gibbs 
sampler[11]) to the 2PNO model using data augmentation 
[12], which has been implemented in Fortran[13]. Further, 
Sahu[14] (see also[15]) generalized this approach to the 
3PNO model. However, this generalization, where the model 
hyperparameters take on specific values (such as in the 
applications of[16] and[17]), has a disadvantage associated 
with the nonconvergence problem unless strong informative 
priors are specified  for the item slope and intercept 
parameters[18].  

In the context of the 3PNO model, it  has been 
demonstrated that improper noninformat ive prior densities 
for item slope and intercept parameters result in  an undefined 
posterior distribution, which presents the problem of 
unstable parameter estimates[18, 19]. Further, even with 
proper informative prior densities, the Gibbs sampling 
procedure noted above either fails to converge or requires a 
large number of iterations for the Markov Chain to reach 
convergence[19]. Sheng[20] indicated that this problem can 
be resolved by specifying the prior distribution in  a 
hierarchical manner so that the item hyperparameters are 
unknown and have their own prior distributions. These 
second-order priors are called hyperpriors and are useful for 
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incorporating uncertainty in the hyperparameters of a prior 
distribution[6]. Further, it has been demonstrated that a 
vague hyperprior does not affect posterior precision like a 
vague prior does[20] because the uncertainty is at the second 
level of the prio r, and consequently its effect on the resulting 
posterior distribution is so small that the posterior is 
dominated by the data[21]. Th is hierarchical modeling 
approach allows for a more objective approach to inference 
by estimating the parameters of prio r distributions from data 
rather than specifying them based on subjective informat ion. 

Given that MCMC is computationally  expensive and that 
Fortran is fast in terms of numerical computing[22], the 
purpose of this paper is to provide a subroutine to determine 
the posterior estimates (and their standard errors) associated 
with the 3PNO model parameters using Gibbs sampling. The 
Fortran subroutine has the option of specifying 
noninformat ive and conjugate hyperpriors for item slope and 
intercept parameters. 

2. Methodology 
2.1. The Gibbs Sampling Procedure 

To implement a Gibbs sampling procedure for the 3PNO 
model defined in (2), a Bernoulli variab le W is first 
introduced such that Wij = 1 (or Wij = 0) if the i-th person 
knows (or does not know) the correct answer to the j-th item. 
The probability function associated with Wij is defined 
as[14] 

ijij w
ij

w
ijijij wWP −Φ−Φ== 1))(1()()( ηη       (3) 

where ηij = αjθi – βj. As such, if Wij = 0 then the i-th person 
will guess the j-th item correctly (or incorrectly) with a 
probability γj (o r (1– γj)). Further, a  latent random variab le Z 
is introduced such that Zij ~ N(ηij, 1)[10, 12] where if Wij = 1 
(or Wij = 0) then Zij > 0 (or Zij ≤ 0). The prior distributions 
associated with the item and person parameters are assumed 
to be as follows 

, , ,  
),(~ tsBetajγ .   

Note that we consider models where the prior d istributions 
are assumed for the hyperparameters µα, µβ, σ2

α and σ2
β, 

instead of specifying values for them. 
The joint posterior distribution of (θ, ξ, γ, W , Z, µξ, Σ ξ), 

where ξj = (αj, βj)′, µξ =(µα, µβ)′, Σ ξ = diag(σ2
α, σ2

β), is 
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where f(y|W, γ) is the likelihood function. 
The full conditional d istribution of Wij, Zij, θi, ξj, and γj can 

be derived in closed form as follows: 

  (5) 
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where x =[θ, -1];  
),(~| tabsaBeta jjjj +−+•γ ,           (9) 

where aj is the number of correct responses obtained by 
guessing, and bj is the number of persons who do not know 
the correct answer to the j-th item. 

In terms of the hyperparameters µα, µβ, σ2
α and σ2

β, their 
full conditional d istributions are 
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respectively, with uniform noninformative hyperpriors 
22 1),( ααα σσµ ∝p  and 22 1),( βββ σσµ ∝p , or as 
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with conjugate hyperprior distributions   
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As such, using starting values of θ(0), ξ(0), γ(0), µξ(0) and Σ ξ
(0), 

observations (W(l), Z(l), θ(l), ξ(l), γ(l), µξ(l), Σ ξ
(l)) can be 

simulated from the Gibbs sampler by iterat ively drawing 
from their respective full conditional distributions specified 
in (5) through (15). The transition from (W(l–1), Z(l–1), θ(l –1), 
ξ(l–1), γ(l–1), µξ(l–1), Σ ξ

(l–1)) to (W(l), Z(l), θ(l), ξ(l), γ(l), µξ(l), Σ ξ
(l)) is 

based on the following seven steps: 

1. Draw W(l) ~ p (W|y, θ(l –1), ξ(l–1), γ(l–1)); 

2. Draw Z(l) ~ p(Z|W(l), θ(l –1), ξ(l–1)); 

3. Draw θ(l) ~ p(θ|Z(l), ξ(l–1)); 

4. Draw ξ(l) ~ p(ξ |Z(l), θ(l), µξ(l–1), Σ ξ
(l–1)); 

5. Draw γ(l) ~ p(γ |y, W(l)); 

6. Draw µξ(l) ~ p(µξ|ξ(l),Σ ξ
(l–1)); 

7. Draw Σ ξ
(l) ~ p(Σ ξ|ξ(l), µξ(l)). 

This iterative procedure produces a sequence of (θ(l), ξ(l), 
γ(l)), l =1,…, L. To  reduce the effect of the starting values, 
early iterations in the Markov chain are set as burn-ins to be 
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discarded. Samples from the remaining iterations are then 
used to summarize the posterior density of the item 
parameters ξ , γ and person parameters θ. As with standard 
Monte Carlo, with large enough samples, the posterior 
means of ξ, γ and θ are considered as estimates of the true 
parameters. However, their Monte Carlo standard errors 
cannot be calculated using the sample standard deviations 
because subsequent samples in each Markov chain are 
autocorrelated (e.g.[10, 23]). One approach to calcu lating the 
standard errors is through batching[24]. Specifically, with a 
long chain of samples being separated into contiguous 
batches of equal length, the Monte Carlo  standard deviation 
for each parameter is then estimated to be the standard 
deviation of these batched means. And the Monte Carlo 
standard error of the estimate is a ratio o f the Monte Carlo 
standard deviation and the square root of the number of 
batches.  

2.2. The Fortran Subroutine 

The subroutine (see the Appendix) init ially sets the 
starting values for the parameters such that θi

(0) = 0, αj
(0) = 1, 

βj
(0) = 1, γj(0) = .2,[16], and, µα(0) = µβ(0) = 0, σ2

α
(0) = σ2

β
(0) =1. 

The subroutine then iteratively draws random samples for 
W, Z, θ, ξ, and γ from their respective full condit ional 
distributions specified in (5) through (9) with µ = 0, σ2 =1, 
and s = 5, t = 17. Samples associated with the 
hyperparameters for ξ are simulated from either (10) 
through (13), where uniform noninformat ive priors are 
assumed for µξ and Σ ξ, or from (14) through (17), where 
conjugate priors are adopted for them with τα = τβ = 100, ε1 
= ς1 = 2, and ε2 = ς2 = .001. We would note that the 
conjugate priors specified in this manner are weakly 
informat ive. The algorithm continues until all the L samples 
are simulated. It then discards the early burn-in samples, 
and computes the posterior estimates and standard errors for 
the model parameters, θ, α, β, and γ, using the batching 
scheme described above.  

Table 1.  Posterior estimates and Monte Carlos standard errors (MCSEs) 
for α with noninformative and conjugate priors assumed for µξ and Σξ 

 Posterior estimates 
Noninformative priors Conjugate priors 

Parameter Estimate MCSE Estimate MCSE 

.0966 .0835 .0018 .0901 .0028 

.0971 .0860 .0039 .0818 .0023 

.4589 .4671 .0048 .4669 .0036 

.9532 .9197 .0136 .9091 .0131 

.0771 .1062 .0044 .1128 .0033 

.4891 .4459 .0060 .4885 .0157 

.8599 .8033 .0229 .7553 .0085 

.9427 .8570 .0238 .9288 .0416 

.2727 .3496 .0079 .3577 .0107 

.6532 .6669 .0200 .6805 .0131 

Table 2.  Posterior estimates and Monte Carlos standard errors (MCSEs) 
for β with noninformative and conjugate priors assumed for µξ and Σ ξ 

 
Posterior estimates 

Noninformative priors Conjugate priors 
Parameter Estimate MCSE Estimate MCSE 

-.7997 -.8640 .0182 -.7657 .0376 
-.5321 -.5792 .0237 -.5532 .0218 
.8583 .8638 .0133 .8623 .0057 
.7237 .7111 .0114 .6913 .0091 
-.8184 -.8571 .0238 -.7776 .0386 
-.5834 -.8935 .0151 -.7923 .0339 
.3629 .1315 .0231 .0922 .0124 
-.9010 -.9853 .0238 -.9255 .0320 
-.9339 -.8394 .0225 -.7953 .0341 
-.3978 -.4629 .0292 -.4424 .0210 

Table 3.  Posterior estimates and Monte Carlos standard errors (MCSEs) 
for γ with noninformative and conjugate priors assumed for µξ and Σ ξ 

 
Posterior estimates 

Noninformative priors Conjugate priors 
Parameter Estimate MCSE Estimate MCSE 

.3497 .2639 .0144 .3445 .0268 

.2913 .2636 .0169 .2891 .0164 

.0473 .0550 .0035 .0550 .0014 

.0497 .0511 .0021 .0458 .0017 

.3113 .2582 .0213 .3226 .0316 

.4948 .2735 .0138 .3413 .0193 

.2453 .1486 .0105 .1316 .0061 

.4687 .3708 .0243 .4189 .0262 

.1720 .2739 .0198 .3114 .0265 

.3001 .2472 .0205 .2615 .0143 

For example, for a 4000-by-10 (i.e., n = 4,000 and k  = 10) 
dichotomous (0-1) data matrix simulated using the item 
parameters shown in  the first column of Tab les 1 to 3, the 
Gibbs sampler was implemented so that 10,000 samples 
were simulated with the first 5,000 taken  to be burn-in. The 
remain ing 5,000 samples were separated into 5 batches, each 
with 1,000 samples.  

Two sets of the posterior means for α , β, and γ, as well as 
their Monte Carlo standard errors, were obtained assuming 
the noninformative or weakly informative hyperpriors 
described previously, and are d isplayed in the rest of the 
tables. We note that the item parameters were estimated with 
enough accuracy and the two sets of posterior estimates 
differ only slightly from each other, signifying that the 
results are not sensitive to the choice of prior distributions for 
the hyperparameters µξ  and Σ ξ. In  addition, the small values 
of the Monte Carlo standard errors suggested that the 
Markov chains with a run length of 10,000 and a burn-in 
period of 5,000 reached the stationary distribution. 

3. Conclusions 
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The Fortran subroutine leaves it to the user to choose 
between uniform and conjugate priors for the 
hyperparameters for item slope and intercept parameters, µξ 
or Σ ξ. Further, the user can change the source code so that the 
prior d istribution for θi assumes a different location µ, or 
scale σ2. Similarly, the values of s and t can be modified to 
reflect different prior beliefs on the distribution for the 
pseudo-chance parameter. One can also change the values 
for τα, τβ, ε1, ε2, ς1 or ς2 to specify different prior densities for 
the hyperparameters µξ and Σ ξ. It is noted that convergence 
can be assessed by comparing the marginal posterior mean 
and standard deviation of each parameter computed for every 
1,000 samples after the burn-ins. Similar values provide a 
rough indication of similar marg inal posterior densities, 
which further indicates possible convergence of the Gibbs 
sampler[25, 26]. 

Appendix 
SUBROUTINE GSU3(Y, N, K, L, BURNIN, BN, PRIOR, ITEM, 

PERSON) 

c*********************************************c 

c Y is the n-by-k binary item response data   c                            

c N is the number of subjects       c                                        

c K is the test length (number of items)       c                        

c L is the number of iterations using Gibbs   c 

c   sampling                         c 

c BURNIN is the first number of iterations    c 

c that are to be discarded         c 

c BN is the number of batches       c                                        

c PRIOR is a 1-2 indicator with 1 = uniform  c 

c  priors for item slope & intercept hyper-  c 

c parameters and 2 = conjugate priors    c   

c ITEM is a k-by-6 matrix of posterior    c 

c estimates and standard errors for item   c 

c parameters                                     c            

c PERSON is a n-by-2 matrix of posterior    c 

c estimates and standard errors for person   c 

c abilities              c                                          

c*********************************************c 

  INTEGER  L, COUNT, IRANK, Y(N,K), BURNIN, 

  & PRIOR, INDX(2), BN, BSIZE, W(N,K) 

     REAL A(K), G(K), TH(N), LP, MU, VAR,  

& AV(L,K), GV(L,K),THV(N,L), S, T, U,   

 & Z(N,K), V, MN, MSUM, PVAR,PMEAN, TT,  

& X(N,2), XX(2,2), IX(2,2), ZV(N,1), 

& XZ(2,1), AMAT(2,2), BZ(2,1), AMU,   

 & GMU, AVAR, GVAR, AGMU(2,1), AGVAR(2,2), 

& SIGMA(2,2), BETA(1,2), BI(1,2), 

& ITEM(K,4),PERSON(N,2), SUM1, SUM2, 

& SUM3, SUM4, M1, M2, M3, M4, TOT1, TOT2,  

& TOT3, TOT4, SS1, SS2, SS3, SS4, PIN, 

 & QIN, GP2, SA, SG, SSA, SSG, AMM, GMM, 

& AMV, GMV, AV1, AV2, GV1, GV2, RAG(2) 

    REAL C(K), NP, P, CV(L,K), IR, SD, TD, AP0,  

& GP0, AP1, GP1, AP2  

DOUBLE PRECISION   BB, TMP 
c*********************************************c 

c Connect to external libraries for normal    c 

c (RNNOR),  uniform (RNUN), beta (RNBET) and  c 

c gamma (RNGAM) random number generator,    c 

c inverse (ANORIN, DNORIN) and CDF (ANORDF,   c 

c DNORDF) for the standard normal distribution c  

c and Cholesky factorization (CHFAC) routines  c             

c*********************************************c 

  EXTERNAL  RNNOR, RNSET, RNUN, ANORDF, ANORIN,  

& CHFAC, DNORDF, DNORIN, RNBET, SSCAL,  

& RNGAM 

c*********************************************c 

c Set initial values for item parameters    c 

c alpha(A), beta(G), gamma(C), and person   c 

c abilities theta(TH) so that alpha=1, beta=0, c 

c gamma=.2 for all k items, and theta=0 for  c 

c all n persons           c 

c*********************************************c 

     DO 10 I = 1, K 

  A(I) = 1.0 

  G(I) = 0.0 

  C(I) = 0.2 

   10 CONTINUE 

     DO 20 I=1, N 

  TH(I)=0.0 

   20 CONTINUE 

c*********************************************c 

c Set initial values for the prior means  and  c 

c variances for alpha and beta        c 

c*********************************************c 

 AMU = 0.0 

 GMU = 0.0 

 AVAR = 1.0 

 GVAR = 1.0 

c*********************************************c 

c MU and VAR are the mean and standard    c 

c deviation for the prior distribution of   c 

c theta                                             c 

c*********************************************c 

 MU = 0.0 

 VAR = 1.0 

c*********************************************c 

c Specify the hyperparameters in the conjugate c  

c prior distributions for AMU, GMU, AVAR and  c 

c GVAR            c 

c*********************************************c 

 IF (PRIOR == 2) THEN 

AP0 = 100.0 

  GP0 = 100.0 

  AP1 = 2.0 

  GP1 = 2.0 

  AP2 = 0.001 

  GP2 = 0.001 

 END IF 

c*********************************************c 

c Set values for the hyperparameters (SD, TD)  c  
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c in the beta prior distribution for gamma       c 

c*********************************************c 

 SD = 5.0 

 TD = 17.0 

c*********************************************c 

c Start iteration         c 

c*********************************************c 

 COUNT = 0 

 DO 30 IT = 1, L 

  COUNT = COUNT + 1 

c*********************************************c 

c Update samples for W and Z from their    c 

c posterior distributions             c 

c*********************************************c 

  DO 40 I = 1, N 

  DO 40 J = 1, K 

   W(I,J)=0.0 

   LP = TH(I)*A(J) - G(J) 

   NP = ANORDF(LP) 

   P = NP/(NP + C(J)*(1-NP)) 

   IF (Y(I,J) == 1) THEN 

    CALL RNBIN(1,1,P,IR) 

    W(I,J) = IR 

   END IF 

   BB = ANORDF((0.0-LP)) 

   CALL RNUN (1, U) 

TMP = (BB*(1-W(I,J))+ 

      (1-BB)*W(I,J))*U+BB*W(I,J) 

   Z(I,J) = DNORIN(TMP) + LP 

   40   CONTINUE 

 

c*********************************************c 

c Update samples for theta from its normal   c   

c posterior distributions          c 

c*********************************************c 

  V = 1/SUM(A*A) 

  PVAR = 1/(1/V + 1/VAR) 

  DO 50 I = 1, N 

   MSUM = 0.0 

   DO 60 J = 1, K 

     MSUM = MSUM + A(J)*(Z(I,J) + G(J)) 

   60  CONTINUE 

   MN = MSUM*V 

   PMEAN = (MN/V + MU/VAR)*PVAR 

   CALL RNNOR(1,TT) 

   TH(I) = TT*SQRT(PVAR) + PMEAN 

   THV(I,COUNT) = TH(I) 

   50   CONTINUE 

c*********************************************c 

c Update samples for item parameters, alpha   c 

c and beta, from their multivariate normal    c  

c posterior distributions                         c    

c*********************************************c 

       DO 70 J = 1, 1 

       DO 70 I = 1, N 

   X(I,J) = TH(I) 

   70  CONTINUE 

       DO 80 J = 2, 2 
       DO 80 I = 1, N 

   X(I,J) = -1 

   80  CONTINUE 

c*********************************************c 

c Put the prior item means and variances in   c 

c vector or matrix format           c 

c*********************************************c 

       AGMU(1,1) = AMU 

       AGMU(2,1) = GMU 

       AGVAR(1,1) = AVAR 

       AGVAR(2,2) = GVAR 

c*********************************************c 

c Call the matrix inversion routine.           c                          

c Invert matrix AGVAR with the inverse    c 

c stored in SIGMA                         c 

c*********************************************c 

       CALL MIGS(AGVAR, 2, SIGMA, INDX) 

       XX = MATMUL(TRANSPOSE(X),X)+SIGMA 

c*********************************************c 

c Call the matrix inversion routine.            c                         

c Invert matrix XX with the inverse stored in c 

c IX                               c 

c*********************************************c 

       CALL MIGS(XX,2,IX,INDX) 

c*********************************************c 

c Call the Cholesky factorization routine.    c 

c Compute the Cholesky factorization of the   c  

c symmetric definite matrix IX and store  the   c 

c result in AMAT                                 c                          

c*********************************************c 

CALL CHFAC (2, IX, 2, 0.00001, IRANK, AMAT, 2) 

       DO 90 J = 1, K 

   DO 100 I = 1, N 

    ZV(I,1) = Z(I,J) 

  100  CONTINUE 

  XZ = MATMUL(SIGMA,AGMU)+ 

MATMUL(TRANSPOSE(X),ZV) 

   BZ = MATMUL(IX,XZ) 

   A(J) = 0 

   DO WHILE (A(J).LE.0) 

    CALL RNNOR (2, BI) 

  BETA = MATMUL(BI,AMAT) + TRANSPOSE(BZ); 

    A(J) = BETA(1,1) 

    G(J) = BETA(1,2) 

   END DO 

   AV(COUNT,J) = A(J) 

   GV(COUNT,J) = G(J) 

   90 CONTINUE 

c*********************************************c 

c Update samples for gamma from its beta    c 

c posterior distributions            c 

c*********************************************c 

  DO 110 J = 1, K 

   T = 0.0 

   S = 0.0 

   DO 120 I = 1, N 
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    IF (W(I,J) == 0) THEN 

     T = T + 1 

     S = S + Y(I,J) 

    END IF 

  120  CONTINUE 

   PIN = S + SD 

   QIN = T – S + TD 

   CALL RNBET (1, PIN, QIN, TT) 

   C(J) = TT 

   CV(COUNT,J) = TT 

  110 CONTINUE 

c*********************************************c 

c Update samples for the hyperparameters  AMU, c 

c GMU, AVAR and GVAR from  their  posterior  c 

c distributions                          c                   

c*********************************************c 

  SA = 0.0 

  SG = 0.0 

  SSA = 0.0 

  SSG = 0.0 

  DO 130 J = 1, K 

   SA = SA + A(J) 

   SG = SG + G(J) 

   SSA = SSA + (A(J)-AMU)*(A(J)-AMU) 

   SSG = SSG + (G(J)-GMU)*(G(J)-GMU) 

  130 CONTINUE 

  IF (PRIOR == 1) THEN 

   AMV = 1.0/(K/AVAR) 

   GMV = 1.0/(K/GVAR) 

   AMM = AMV*SA/AVAR 

   GMM = GMV*SG/GVAR 

   AV1 = K/2.0 

   GV1 = K/2.0 

   AV2 = SSA/2.0 

   GV2 = SSG/2.0 

  ELSE IF (PRIOR == 2) THEN 

   AMV = 1.0/(K/AVAR+1.0/AP0) 

   GMV = 1.0/(K/GVAR+1.0/GP0) 

   AMM = AMV*SA/AVAR 

   GMM = GMV*SG/GVAR 

   AV1 = K/2.0 + AP1 

   GV1 = K/2.0 + GP1 

   AV2 = SSA/2.0 + AP2 

   GV2 = SSG/2.0 + GP2 

  END IF 

  CALL RNNOR(2,RAG) 

  AMU = RAG(1)*SQRT(AMV) + AMM 

  GMU = RAG(2)*SQRT(GMV) + GMM 

  CALL RNGAM (1, AV1, TT) 

  CALL SSCAL (1, AV2, TT, 1) 

  AVAR = 1.0/TT 

  CALL RNGAM (1, GV1, TT) 

  CALL SSCAL (1, GV2, TT, 1) 

  GVAR = 1.0/TT 

   30 CONTINUE  

c*********************************************c 

c Calculate the batch means and mcse's for   c 
c alpha, beta, gamma and theta and store them  c 

c in ITEM and PERSON                         c           

c*********************************************c 

 BSIZE = (L-BURNIN)/BN 

 

  DO 200 J = 1, K 

  COUNT = BURNIN 

  TOT1 = 0.0 

  TOT2 = 0.0 

  TOT3 = 0.0 

  SS1 = 0.0 

  SS2 = 0.0 

  SS3 = 0.0 

  DO 210 M = 1, BN 

   SUM1 = 0.0 

   SUM2 = 0.0 

   SUM3 = 0.0 

   DO 220 I = 1, BSIZE 

    COUNT = COUNT + 1 

    SUM1 = SUM1 + AV(COUNT,J) 

    SUM2 = SUM2 + GV(COUNT,J) 

    SUM3 = SUM3 + CV(COUNT,J) 

  220   CONTINUE 

    M1 = SUM1/BSIZE 

    M2 = SUM2/BSIZE 

    M3 = SUM3/BSIZE 

    TOT1 = TOT1 + M1 

    TOT2 = TOT2 + M2 

    TOT3 = TOT3 + M3 

    SS1 = SS1 + M1*M1 

    SS2 = SS2 + M2*M2 

    SS3 = SS3 + M3*M3 

  210  CONTINUE 

  ITEM(J,1) = TOT1/BN   

  ITEM(J,2) = SQRT((SS1-(TOT1*TOT1/BN))/ 

   (BN-1))/SQRT(FLOAT(BN)) 

  ITEM(J,3) = TOT2/BN 

ITEM(J,4) = SQRT((SS2-(TOT2*TOT2/BN))/ 

     (BN-1))/SQRT(FLOAT(BN)) 

  ITEM(J,5) = TOT3/BN   

ITEM(J,6) = SQRT((SS3-(TOT3*TOT3/BN))/ 

(BN-1))/SQRT(FLOAT(BN)) 

  200 CONTINUE 

 

 DO 230 J = 1, N 

  COUNT = BURNIN 

  TOT4 = 0.0 

  SS4 = 0.0 

  DO 240 M = 1, BN 

   SUM4 = 0.0 

   DO 250 I = 1, BSIZE 

    COUNT = COUNT + 1 

    SUM4 = SUM4 + THV(J,COUNT) 

  250     CONTINUE 

   M4 = SUM4/BSIZE 

   TOT4 = TOT4 + M4 
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   SS4 = SS4 + M4*M4 

  240  CONTINUE 

  PERSON(J,1) = TOT4/BN 

  PERSON(J,2)=SQRT((SS4-(TOT4*TOT4/BN))/ 

     (BN-1))/SQRT(FLOAT(BN)) 

  230 CONTINUE 

      

 RETURN 

 END 
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