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On Counting Rules in Distributed Detection 

R .  VISWANATHAN A N D  V .  AALO 

Abstract-A network of n sensors receiving independent and iden- 
tical observations in R", regarding certain hinarj hypotheses, pass their 
decisions to a fusion center which then decides which one of the two 
hypotheses is true. We consider the situation where each sensor em- 
ploys a likelihood ratio test with its own observation and a threshold, 
which is the same for all the sensors, and the fusion center decision 
based on k out of n decision rule. The asymptotic ( n  + 0 0 )  behavior 
of k out of n rules for finite k and finite n - k are considered. For these 
rules, the error probability of making a wrong decision does not tend 
to zero as n + m, unless the probability distributions under the hy- 
potheses satisfy certain conditions. For a specific detection example, 
the asymptotic performances of the OR ( k  = 1 )  rule and the AND ( k  
= n )  rule are worse than that of a single sensor. 

I. INTRODUCTION 
In decentralized processing involving a large number of sensors, 

each sensor processes its own observation and transmits condensed 
information to a fusion center. For the target detection problem, 
the fusion center decides the presence or the absence of the target 
based on the information received from different sensors (1]-[7]. 
If the problem is target tracking, the fusion center updates its es- 
timates of the target position, velocity, etc., based on the received 
information. The decentralized detection problems are known to 
exhibit some surprise results such as the one that identical sensors 
receiving identical observations employ nonidentical tests in order 
that the performance at the fusion center is optimized [2], [ I  I ] .  
Also, certain rules, by any means not absurd, could have worse 
than anticipated performance (see [3] which shows AND is only as 
good as a single sensor; also see Section Ill). 

In the distributed network shown in Fig. I ,  each sensor receives 
observations which are identical and independently distributed 
given the hypothesis. We assume that each sensor employs the like- 
lihood ratio test based on its own observation and a threshold, which 
is the same for all the sensors. The performance criterion is to min- 
imize the probability of a miss for a given false alarm probability 
at the fusion center. Although the identical threshold may be sub- 
optimal for finite n, Tsitsiklis has shown this to be optimal as n + 

[2], [ 1 I ] .  With identical tests and identically distributed obser- 
vations at the sensors, the optimal fusion rule is nothing but a 
counting rule. That is, if k or more of the sensors decide in favor 
of H i ,  then the fusion center decides Hi  [7]. The specific value of 
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Fig. I 

GO 

Distributed decision fusion. 

k depends in general on the specified false alarm probability at the 
fusion center and the probability distribution under H0 and H , .  

The purpose of this correspondence is to show that i) asymptot- 
ically the counting rules k out of n for finite k and finite ( n  - k )  
are not optimal, ii) the probability of a miss for these rules need 
not approach 0 as n + 03 unless the distributions under H0 and HI  
satisfy certain conditions, and i i i )  to provide an example where the 
OR and the AND rules perform worse than a single sensor. In Sec- 
tion 11, the asymptotic error rates for the k out of n rules for finite 
k and finite ( n  - k )  are derived. A particular detection problem is 
considered in Section 111. 

11. ASYMPTOTIC PERFORMANCE OF k OUT OF n RULE 
Let us denote the observation at the ith sensor as X ,  E R N ,  i = 

1, . . . , I I  and the probability density functions of X ,  under H,  and 
Ho as f i  ( ) and fo( 1, respectively. I t  is assumed that the support 
of the two density functions are identical. The likelihood ratio test 
at the ith sensor is given by 

For the test ( l ) ,  define the following probabilities: 

Probability of a detection, 0 = smh ( x  1 HI) Q!X 

CY = jm f A ( x ( H 0 )  dw Probability of a false alarm, 

Probability of a miss, p =  1 - 8 .  ( 2 )  

The performance of ( I )  is characterized by the plot of 0 versus CY, 

known as the receiver operating curve (ROC). Denote the ROC as 
0 = g ( a ) .  The concavity and other properties of continuous ROC 
are well known [9]. 

For the k out of n rule at the fusion center, the false alarm and 
the detection probabilities at the fusion center are given by 

00 = , = A  i (;) [ g(CY)]' [ 1 - g(CY) ] - '  

( 3 )  
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As n + 03, it is optimal to have identical thresholds at the sensors 
[2]. The optimal threshold is arrived at by maximizing the Kull- 
back-Liebler information number K L ,  corresponding to the proba- 
bility distributions of a decision U,  under the hypotheses H,) and 
H , .  That is, each sensor operates with a false alarm of a E (0, 1 ), 
as n + W .  From (3), by applying Demoivre Laplace Theorem [SI, 
the optimal k for a fixed false alarm a. at the fusion center is given 
by 

k = &h + n a  (4 )  

where h is a constant that depends on a and ao. Therefore, the k 
out of n rules for finite k and finite ( n  - k )  are only suboptimal. 
In fact, the optimal fusion center rule (4) has Po -+ exp ( -K,n), 
as n -+ W .  For finite k and finite ( n  - k)  rules, Po need not ap- 
proach zero as the following results show. 

i) Necessary and sufficient condition f o r k  out of n rules for fi- 
nite ( n  - k )  (finite k )  to have vanishingly small Po as n -+ W .  

Consider the k out of n rule with n - k = K < W .  Equation (3) 
can be rewritten as 

K equals zero implies AND rule and for this rule a equals ah'". 
For K > 0, guess a solution to (5) of the form 

an = CO, 0 < CO < (Yo. (6 )  

Upon denoting the ratio of thejth term to the ( j - 1 )th term inside 
the summation of ( 5 )  as RI, and using (6), 

1-c:'" n - j + l  
RI = ~. -. c;'" j 

As n -+ 03, RI tends to the limit, 

(-In Co)/ j ,  f o r j  = 1, . * . , K. 
Hence, the right-hand side of ( 5 )  equals 

CO + RICO + RZRlCO + . . . + RKRK-1 . . . RICW 

Therefore, a solution CO of the following equation is sought: 
K 

/ = I  
a. = C, + C, C (-In Co)' / j ! .  ( 7 )  

Rewriting (7) gives 
K 

/ = I  
a. = e-* + e-* d / j !  where a = -In C,. (8)  

The right-hand side of (8) is a monotone decreasing function of a 
and has a value greater than a. at a = -In ao. Hence, a unique 
solution of (8) exists. The probability of detection Oo is given by 

(9)  

As n -+ 00, since g ( a )  2 a and a" -+ CO, let [ g ( a ) ] "  approach 
a constant do 2 Co. Proceeding as before, 

Lt Bo = e-' + e-' C W / j !  
K 

where b = -In do. ( I O )  

The right-hand side of (10) is a monotone decreasing function of b 
and assumes the largest value of 1 when b equals 0. This requires 
that -n In ( g( a ) )  tends to zero or a necessary and sufficient con- 
dition for the k out of n rules with finite ( n  - k)  to have vanishingly 
small Po is that 

n - m  I =  I 

For the finite k case, a similar derivation yields a necessary and 
sufficient condition as 

ii) An example of the signal detection problem follows. 
Consider the detection of a constant signal in Generalized 

Gaussian noise [ I O ] .  This noise density function is given by 

For c = 2, f (x )  becomes the standard Gaussian, c = 1 ,  the density 
is Laplacian or double exponential and for c < I ,  f ( x )  represents 
a much heavier tail density. Without loss of generality, the vari- 
ance of (13) is taken as unity. Assume a sample of size one at each 
sensor. T h e n h l x )  equalsf(.r) andf,  ( x )  equals f (x  - s ) ,  where 
s is the constant signal. For c = 1 and c = 2, the likelihood ratio 
is a monotonic function ofx .  Hence, for these cases, the conditions 
(11) and (12) can be checked easily. For other values of c ,  it is 
difficult to determine d g l d a .  Hence, 

c = 2  

c = 1 finite, nonzero constant 

c = 2  
(14) 

111. CONSTANT SIGNAL I N  DOUBLE EXPONENTIAL NOISE 
With a sample of size one at each sensor, the ROC for the de- 

tection of a constant signal in double exponential noise is given by 

for a 5 1 /2  

[ I  -e a > 1/2 

where y = exp ( h s ) .  Therefore, the probabilities of detection for 
the AND and the OR rules are given by the following. 
AND 

where a = a,!,'". 
OR 

1 - ( 1  - ay)'' y 5 - 1 
2a 

O o = [  1 - ( & ) ' I  . v 2 -  2 a  1 

for a 5 1 / 2  

[ I  - (e)" a > 1/2  (17 )  

where a = 1 - ( 1  - a0)l/".  
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Fig. 2.  Probability of detection versus signal level for the AND rule with 
CYo = 0.1. 
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Fig. 3. Probability of detection versus signal level for the AND rule with 
CY,, = 0.25. 

As n -+ 03, (16) and (17) become 

AND Bo = ah’y (18) 

OR eo = 1 - (1  - a o ) y .  (19) 

Plots of (15)-(19) are shown in Figs. 2-5, for some values of a. 
and n. There exist regions of y where the asymptotic performances 
of both OR and AND rules are worse than that of a single sensor. 
In the case of OR, this holds even for low values of ao, which are 
usually of interest. Also, the asymptotic performance is reached 
even with a moderate number of sensors. Although OR is expected 
to be not optimal for large n, the poor performance of OR as com- 
pared to a single sensor is rather surprising. This shows that a sub- 
optimal fusion center rule must be evaluated carefully for its per- 
formance. An example where a suboptimal test at the sensor leads 
to a poor performance at the fusion center is given in [2]. 

IV. CONCLUSIONS 
A distributed network of n identical sensors sending their binary 

decisions to a fusion center is studied. The asymptotic performances 

i r l  101 io 1 _ _  j r  , 4:) ~. 

\ 

Fig. 5 .  Probability of detection versus signal level for the OR rule with a, 
= 0.01. 

of k out of n rules at the fusion center for finite k [finite ( n  - k ) ]  
are evaluated. When condition (12) [ ( l  l)] is not met, these rules 
do not give vanishingly small error probability even when n tends 
to infinity. In the example considered, the approach to asymptotic 
performance occurs even with moderate n values. Moreover, the 
performances of these rules could be below that of a single sensor. 
Hence, caution must be exercised in using k out of n rules with 
extreme k values near 1 (near n )  when the condition (12) [ ( l  l)]  is 
not satisfied. 
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Distributed Detection of a Signal in Generalized 
Gaussian Noise 

R. VISWANATHAN A N D  ARIF ANSARI 

Abstract-The problem of distributed detection of a signal in incom- 
pletely specified noise is considered. The noise assumed belongs to the 
generalized Gaussian family and the sensors in the distributed network 
employ the Wilcoxon test. The sensors pass the test statistics to a fusion 
center, where a hypothesis testing results in a decision regarding the 
presence or the absence of a signal. Three monotone and admissible 
fusion center tests are formulated. Restricted numerical evaluation over 
a certain parameter range of the noise distribution and the range of 
signal level indicates that these tests yield performances at comparable 
levels. 

I .  INTRODUCTION 
The problem of detection of a signal using a distributed network 

of sensors has been analyzed in the literature. In order to save 
transmission bandwidths, the sensors process the information they 
receive and pass condensed information, such as the test statistics 
or the decisions with regard to the presence or the absence of a 
signal, to the fusion center. For the best performance, it is essential 
that the processing at the sensors and at the fusion be optimized 

So far, the problem analyzed in the literature assumes a complete 
statistical knowledge of the received signal. However, in sonar and 
other underwater detection problems, the signal is embedded in a 
noise whose characteristics are not completely known and are 
changing with time. In such situations, the sensors’ statistics must 
be based on some general characteristics of the noise density func- 
tion rather than on some specific form of noise density function. In 
this correspondence, we consider the distributed detection of a con- 
stant signal in generalized Gaussian noise. Such a noise density 
function approximates physical noise encountered in different sit- 
uations [ lo] ,  [ l l ] .  

In Section I1 we discuss test statistics at the sensors and at the 
fusion. In Section 111 we present the performance analysis of three 

[11-[91. 
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different tests at the fusion center. Numerical results are shown for 
a three sensors network with three samples per sensor. We con- 
clude our discussion in Section IV. 

11. THE GENERALIZED GAUSSIAN NOISE A N D  DISTRIBUTED 
TESTS 

The problem of detection of a constant signal in additive noise 
is described by the following hypotheses testing: 

Ho: XI = nl 

( 1 )  Hi: X ,  = n, + 8 ,  j an integer. 

We assume that the noise nl has a symmetric density function 
described by the following equation [ 1 I]: 

The noise has unit variance and hence a satisfies the relation 

a 2 / c  = r ( 3 / c ) / r ( i / c ) .  (3)  
By varying the parameter c ,  we can control the tail of the noise 

density. When c equals 2 the noise reduces to the Gaussian, and 
for c equals 1 it becomes Laplace. In general, smaller values of c 
represent heavy tails. For detecting a signal in symmetric noise at 
a sensor, a variety of nonparametric tests such as the sign test and 
the Wilcoxon test exist [12]. Our choice of the Wilcoxon test is 
motivated by the fact that i) the Wilcoxon test is nonparametric, i i )  
its performance is comparable to other nonparametric tests, i i i )  it 
performs better than the sign test in most cases, and iv) the Wil- 
coxon statistic takes on a finite number of discrete values. 

Fig. 1 shows the distributed network of sensors and the fusion 
center. The statistics T, ,  T I ,  . . . , TN are the Wilcoxon statistics, 
and the test at the fusion is given as follows: 

HI 

Hii 
S ( T , ,  . . . , TN) s f. (4) 

Here S is a statistic based on T , ,  . . . , Tw. The observations XI 
. . . X ,  at each sensor are assumed to be independent and identi- 
cally distributed according to (1). Hence, the Tk’s are i.i.d. A se,.- 
sor performs the Wilcoxon test by ranking the absolute values of 
the X,’s and summing the ranks of the absolute values which are 
due to positive observations. The performance of the Wilcoxon test 
is well understood [ 121. It is possible to obtain the distribution of 
Tk under Ho and H ,  by enumeration. For large values of n ,  it is 
difficult to obtain the distribution. However, the mean and the 
variance can be found [12]: 

A, = N ( ”  - ’) [ F ( u )  - F ( - u ) ] ‘ - l  
i - 1  

. [ 1 - F ( u )  + F (  -u)]”-’f(u) du ( 7 )  

wheref( ) is the density of the observation X ,  and F (  ) is the cor- 
responding CDF. 

We consider three different statistics at the fusion. The minimum 
test is given by the rule 

HI 

Ho 
(8)  Min [Ti ,  . . . , TN] 3 t ,  

where t ,  is chosen to obtain a specific false alarm probability at the 
fusion center. However, when Tk’s given the hypothesis are i.i.d., 
if any order statistic of { Tk’s}  is used as a test statistic at the fu- 
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