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Strict feedforward form and symmetries of nonlinear control
systems

Witold Respondek and Issa A. Tall

Abstract— We establish a relation between strict feedfor-
ward form and symmetries of nonlinear control systems.
We prove that a system is feedback equivalent to the strict
feedforward form if and only if it gives rise to a sequence
of systems, such that each element of the sequence, firstly,
possesses an infinitesimal symmetry and, secondly, it is the
factor system of the preceding one, i.e., is reduced from the
preceding one by its symmetry. We also propose a strict
feedforward normal form and prove that a smooth strict
feedforward system can be smoothly brought to that form.

I. INTRODUCTION

A smooth single-input nonlinear control system of the
form

ż = F (z, u),

where z ∈ R
n and u ∈ R is in strict feedforward form if

we have

(SFF )

ż1 = F1(z2, . . . , zn, u)
...

żn−1 = Fn−1(zn, u)
żn = Fn(u).

We will be also dealing with control-affine systems

ż = f(z) + g(z)u,

where f and g are smooth vector fields on R
n and we will

say that the system is in affine strict feedforward form if
we have

(ASFF )

ż1 = f1(z2, . . . , zn) + g1(z2, . . . , zn)u
...

żn−1 = fn−1(zn) + gn−1(zn)u
żn = fn + gnu,

where fn, gn ∈ R.
A basic structural property of systems in strict feed-

forward form is that their solutions can be found by
quadratures. Indeed, knowing u(t) we integrate Fn(u(t))
to get zn(t), then we integrate Fn−1(zn(t), u(t)) to get
zn−1(t), we keep doing that, and finally we integrate
F1(z2(t), . . . , zn(t), u(t)) to get z1(t).

Notice that, in view of the above, systems in the strict
feedforward form can be considered as duals of flat sys-
tems. In the single-input case, flat systems are feedback

Witold Respondek is with the Laboratoire de Mathématiques, INSA
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linearizable and are defined as systems for which we can
find a function of the state that, together with its derivatives,
gives all the states and the control of the system [3]. In a
dual way, for systems in the strict feedforward form, we
can find all states via a successive integration starting from
a function of the control.

Another property, crucial in applications, of systems in
(strict) feedforward form is that we can construct for them
a stabilizing feedback. This important result goes back to
Teel [18] and has been followed by a growing literature on
stabilization and tracking for systems in (strict) feedforward
form (see e.g. [5], [9], [12], [19], [2], [10]).

It is therefore natural to ask which systems are equivalent
to (strict) feedforward form. In [8], the problem of trans-
forming a system, affine with respect to controls, into (strict)
feedforward form via a diffeomorphism, i.e., via a nonlinear
change of coordinates, was studied. A geometric description
of systems in feedforward form has been given in [1].
The conditions of [1], although being intrinsic, are not
checkable. Another approach has been used by the authors
who have proposed a step-by-step constructive method to
bring a system into a feedforward form in [15], [17] and
strict feedforward form in [16].

In the present paper we look at the problem in the spirit
of [1] but we focus our attention on vector fields rather
than on invariant distributions. It turns out that feedback
equivalence (resp. state-space equivalence ) to the strict
feedforward form can be characterized by the existence
of a sequence of infinitesimal symmetries (resp. strong
infinitesimal symmetries) of the system.

In [16] we proposed a formal normal form for strict
feedforward systems. In the second part of this paper, we
introduce a smooth counterpart of that normal form and
show that a smooth strict feedforward system can always
be transformed via feedback and coordinate transformation
to our normal form.

The paper is organized as follows. Section II contains
the first main result of the paper, namely a characterization
of the strict feedforward form in terms of infinitesimal
symmetries. For planar systems, the presented result leads
to verifiable conditions, which we present in Section IV. We
will show in Section III how the problem of transforming
a general system to the strict feedforward form can be
reduced by a preintegration to that for affine systems. The
second main result of the paper, namely a smooth feedback
transformation to the strict feedforward normal form is
presented in Section V.
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II. SYMMETRIES AND STRICT FEEDFORWARD FORM

In this section we will establish results relating symme-
tries and strict feedforward forms. To start with, recall two
basic notions of equivalence of control systems. The word
smooth will mean throughout C∞-smooth and all control
systems are assumed to be smooth (except for Section V,
where we also consider analytic systems).

Two control systems

Σ : ẋ = f(x) + g(x)u,

where x ∈ X and

Σ̃ : ˙̃x = f̃(x̃) + g̃(x̃)ũ,

where x̃ ∈ X̃ , are called state space equivalent, shortly
S-equivalent, if there exists a smooth diffeomorphism φ :
X → X̃ , such that

φ∗f = f̃ and φ∗g = g̃;

(we take u = ũ). Recall that for any smooth vector field f
on X and any smooth diffeomorphism x̃ = φ(x) we denote

(φ∗f)(x̃) = dφ(x) · f(x),

with x = φ−1(x̃). Two control systems Σ and Σ̃ are called
feedback equivalent, shortly F-equivalent, if there exists a
smooth diffeomorphism φ : X → X̃ and smooth functions
α, β, satisfying β(·) �= 0, such that

φ∗(f + gα) = f̃ and φ∗(gβ) = g̃.

For the single-input control-affine system

Σ : ẋ = f(x) + g(x)u,

where x ∈ X , an open subset of R
n, and u ∈ U = R,

and f and g are smooth vector fields on X , the field of
admissible velocities is the following field of affine lines

A(x) = {f(x) + ug(x) : u ∈ R} ⊂ TxX.

A diffeomorphism ψ : X −→ X is a symmetry of Σ if
it preserves the field of affine lines A (in other words, the
affine distribution A of rank 1), that is, if

ψ∗A = A.

A local symmetry at p ∈ X is a local diffeomorphism
ψ of X0 onto X1, where X0 and X1 are, respectively,
neighborhoods of p and ψ(p), such that

(ψ∗A)(q) = A(q)

for any q ∈ X1.
We say that a vector field v on an open subset X ⊂ R

n

is an infinitesimal symmetry of the system Σ if the (local)
flow γv

t of v is a local symmetry of Σ, for any t for which
it exists.

We will also be dealing with the following stronger
notions. A diffeomorphism ψ : X −→ X is a strong
symmetry of Σ if it preserves the vector fields f and g

(and not only the affine distribution A spanned by them),
that is, if

ψ∗f = f and ψ∗g = g.

A local strong symmetry is a local diffeomorphism preserv-
ing f and g. We say that a vector field v on an open subset
X ⊂ R

n is an infinitesimal strong symmetry of the system
Σ if the (local) flow γv

t of v is a local strong symmetry of
Σ, for any t for which it exists.

Consider the system Σ and denote by G the distribution
spanned by the vector field g. We have the following char-
acterization of infinitesimal symmetries and strong symme-
tries.

Proposition II.1 A vector field v is an infinitesimal strong
symmetry of Σ if and only if

[v, g] = 0
[v, f ] = 0.

A vector field v, such that v(p) �= 0, is an infinitesimal
symmetry of Σ, locally at p, if and only if

[v, g] = 0 mod G
[v, f ] = 0 mod G.

in a neighborhood of p.

The second statement remains true even if g(p) = 0. In
this case, we have to understand G as the module of vector
fields generated by g over the ring of smooth functions.

A local symmetry ψ at p is called a stationary symmetry
if ψ(p) = p and a nonstationary symmetry if ψ(p) �= p. An
infinitesimal symmetry v is called stationary at p ∈ X if
v(p) = 0 and nonstationary if v(p) �= 0.

Assume that v is a strong infinitesimal symmetry of Σ,
nonstationary at p ∈ X . Then there exist a neighborhood
Xp of p and the factor system Σ/∼v , where the equivalence
relation ∼v is induced by the local action of the 1-parameter
local group defined by v, that is, q1 ∼v q2 if and only if
they belong to the same integral curve of v (more precisely,
to the same connected component of the intersection of an
integral curve of v with Xp).

Theorem II.2 The following condition are equivalent.
(i) Σ is, locally at p ∈ X , S-equivalent to the affine

strict feedforward form (ASFF);
(ii) Each system Σ1, Σ2,. . . ,Σn possesses a strong in-

finitesimal nonstationary symmetry vi, where Σ1 is
the restriction of Σ to a neighborhood Xp and

Σi+1 = Σi/∼vi
,

where ∼vi is the equivalence relation defined by the
local action of the 1-parameter group of vi;

(iii) There exist smooth vector fields w1, . . . , wn, inde-
pendent at p ∈ X , such that locally at p,

[wi, wj ] ∈ Di−1

[wi, g] ∈ Di−1

[wi, f ] ∈ Di−1,
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for any 1 ≤ i ≤ n and j ≤ i, where D0 = 0 and
Di = span {w1, . . . , wi};

(iv) There exist smooth vector fields w̃1, . . . , w̃n, inde-
pendent at p ∈ X , such that locally at p,

[w̃i, w̃j ] = 0

[w̃i, g] ∈ D̃i−1

[w̃i, f ] ∈ D̃i−1,

for any 1 ≤ i ≤ n and j ≤ i, where D̃0 = 0 and
D̃i = span {w̃1, . . . , w̃i}.

In Section III we will show that the problem of trans-
forming a general system to (SFF) can be reduced to the
above theorem by a preintegration.

The above theorem implies that an invariant charac-
terization of the affine strict feedforward form (ASSF)
involves vector fields (forming a sequence of infinitesimal
symmetries) rather than invariant distributions. To be more
precise, a characterization of the affine feedforward form
(AFF )

ż1 = f1(z1, . . . , zn) + g1(z1, . . . , zn)u
ż2 = f2(z2, . . . , zn) + g2(z2, . . . , zn)u

...
żn−1 = fn−1(zn−1, zn) + gn−1(zn−1, zn)u

żn = fn(zn) + gn(zn)u,

was obtained by Astolfi and Mazenc [1] in terms of invariant
distributions as follows:

Proposition II.3 The system Σ is locally equivalent to the
affine feedforward form (AFF) if and only if there exists a
sequence of distributions

D1 ⊂ · · · ⊂ Dn,

where Di is involutive and of rank i, such that

[Di, g] ⊂ Di

[Di, f ] ⊂ Di.

A first guess for a characterization of the affine strict feed-
forward form (ASFF) could be (compare [1]) the existence
of a nested sequence of involutive distributions Di, of
constant rank i, satisfying

[Di, g] ⊂ Di−1

[Di, f ] ⊂ Di−1.

This is not a correct answer for two reasons. Firstly, the
latter conditions are not invariant, that is, even if they are
satisfied for some vector fields w1, . . . , wi spanning Di

then, in general, for other generators of the same distribution
Di, we will have on the right the inclusion in Di (and not in
Di−1). Secondly, the above conditions, even reformulated
in terms of vector fields, are not sufficient for equivalence

to (ASSF). Indeed, the condition that there exist linearly
independent vector fields w1, . . . , wn such that

[wi, g] ∈ Di−1

[wi, f ] ∈ Di−1,

for any 1 ≤ i ≤ n, where D0 = 0 and Di =
span {w1, . . . , wi} are involutive, does not imply S-
equivalence to (ASFF) unless we assume an additional
property on the w′

is: like the first condition of (iii) (which
is the weakest possible) or the first condition of (iv), which
is the strongest one.

Proof. We will prove that (i)⇔(ii) and then that
(i)⇒(iii)⇒(iv)⇒(i).

(i)⇒(ii). Assume that Σ = Σ1 has the affine strict feed-
forward form (ASFF) in an open subset X1 = Xp ⊂ R

n.
Then, clearly, v1 = ∂

∂x1
is a strong infinitesimal symmetry

of Σ1 and the reduced system Σ2 = Σ1/∼v1
is defined on

X2 = π1(X1), where π1(x1, x2, . . . , xn) = (x2, . . . , xn, ),
by

Σ2 :

ẋ2 = f2(x3, . . . , xn) + g2(x3, . . . , xn)u
...

ẋn−1 = fn−1(xn) + gn−1(xn)u
ẋn = fn + gnu.

Obviously, the vector field v2 = ∂
∂x2

on X2 ⊂ R
n−1

is a strong infinitesimal nonstationary symmetry of Σ2.
Repeating this, we easily conclude that each system

Σi+1 = Σi/∼vi
,

for 1 ≤ i ≤ n − 1, possesses a strong infinitesimal
nonstationary symmetry vi+1 = ∂

∂xi+1
.

(ii)⇒ (i). Assume that Σ = Σ1 possesses a strong in-
finitesimal nonstationary symmetry v1. Take a neighborhood
X1 of p ∈ R

n and local coordinates (x1, . . . , xn) such that
v1 = ∂

∂x1
in X1. It follows from the first part of Proposition

II.1 that in X1, the system Σ1 takes the form

ẋ1 = f1(x2, . . . , xn) + g1(x2, . . . , xn)u
ẋ2 = f2(x2, . . . , xn) + g2(x2, . . . , xn)u

...
ẋn−1 = fn−1(x2, . . . , xn) + gn−1(x2, . . . , xn)u

ẋn = fn(x2, . . . , xn) + gn(x2, . . . , xn)u.

The system Σ2 = Σ1/∼v1
is thus well defined on X2 =

π1(X1), where π1(x1, x2, . . . , xn) = (x2, . . . , xn, ) by

Σ2 :

ẋ2 = f2(x2, . . . , xn) + g2(x2, . . . , xn)u
...

ẋn−1 = fn−1(x2, . . . , xn) + gn−1(x2, . . . , xn)u
ẋn = fn(x2, . . . , xn) + gn(x2, . . . , xn)u.

By assumption, Σ2 possesses a strong infinitesimal nonsta-
tionary symmetry v2. There exists an open subset X̃2 ⊂ X2

and a coordinate system (x̃2, . . . , x̃n) = φ2(x2, . . . , xn) on
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X̃2 such that v2 = ∂
∂x̃2

in X̃2. In (x̃2, . . . , x̃n) coordinates
the system Σ2 takes the form

Σ̃2 :

˙̃x2 = f̃2(x̃3, . . . , x̃n) + g̃2(x̃3, . . . , x̃n)u
...

˙̃xn−1 = f̃n−1(x̃3, . . . , x̃n) + g̃n−1(x̃3, . . . , x̃n)u
˙̃xn = f̃n(x̃3, . . . , x̃n) + f̃n(x̃3, . . . , x̃n)u.

Complete the coordinates (x̃2, . . . , x̃n) = φ2(x2, . . . , xn)
by x̃1 = x1. Then in x̃-coordinates the original system Σ
has the form Σ̃1

˙̃x1 = f1(φ−1
2 (x̃2, . . . , x̃n)) + g1(φ−1

2 (x̃2, . . . , x̃n))u
˙̃x2 = f̃2(x̃3, . . . , x̃n) + g̃2(x̃3, . . . , x̃n)u

...
˙̃xn−1 = f̃n−1(x̃3, . . . , x̃n) + g̃n−1(x̃3, . . . , x̃n)u

˙̃xn = f̃n(x̃3, . . . , x̃n) + f̃n(x̃3, . . . , x̃n)u.

Changing successively (xi, . . . , xn) (and completing them
each time by identity on (x1, . . . , xi−1)), we construct the
(ASSF) form for Σ.

(i)⇒(iii) Consider the strict feedforward form (ASSF) on
an open subset X ⊂ R

n. Put

wi =
∂

∂xi
,

for 1 ≤ i ≤ n. Then, clearly [wi, wj ] ∈ Di−1, for j < i, as
well as [wi, f ] ∈ Di−1, and [wi, g] ∈ Di−1.

(iii)⇒(iv) Fix an n-tuple of smooth vector fields
w1, . . . , wn satisfying the three conditions of (iii). Put w̃1 =
w1 and choose local coordinates (x1, . . . , xn) around p ∈ X
such that w̃1 = w1 = ∂

∂x1
. We have w2 =

∑n
j=1 wj

2
∂

∂xj
,

for some smooth functions wj
2. Put w̃2 = w2 − w1

2w1. We
have D2 = span {w1, w2} = D̃2 = span {w̃1, w̃2}. This
and the definition of w̃ imply that [w̃1, w̃2] = 0 and that
[w̃2, f ] ∈ D̃1 and [w̃2, g] ∈ D̃1.

Assume that for some k we have constructed vector
fields w̃1, . . . , w̃k−1 such that, for 1 ≤ i, j ≤ k − 1,
we have [w̃i, w̃j ] = 0 and, moreover, Di = D̃i as well
as [w̃i, f ] ∈ D̃i−1 and [w̃i, g] ∈ D̃i−1. Choose local
coordinates (x1, . . . , xn) around p ∈ X such that w̃i = ∂

∂xi
,

for 1 ≤ i ≤ k − 1. We have wk =
∑n

j=1 wj
k

∂
∂xj

, for

some smooth functions wj
k. Put w̃k = wk −

∑k
j=1 wj

k−1wj .
It follows that Dk = span {w1, . . . , wk} = D̃k =
span {w̃1, . . . , w̃k}. This and the definition of w̃k imply
that for 1 ≤ i ≤ k, we have [w̃i, w̃j ] = 0 as well as
[w̃k, f ] ∈ D̃k−1 and [w̃k, g] ∈ D̃k−1. Now the implication
(iii)⇒(iv) follows by an induction argument.

(iv)⇒(i) There exits a neighborhood Xp of p ∈ X and
local coordinates (x1, . . . , xn) such that w̃i = ∂

∂xi
, for

any 1 ≤ i ≤ n. The conditions [w̃i, f ] ∈ Di−1 and
[w̃i, g] ∈ Di−1 imply that the system Σ takes, in the
coordinates (x1, . . . , xn), the affine strict feedforward form
(ASFF). �

We have an analogous result for feedback equivalence to
strict feedforward form, where the role of strong infinitesi-
mal symmetries is replaced by that of infinitesimal symme-
tries. To state it, we need the following considerations. We
will write Σ(f, g), to denote the system Σ defined by the
pair of vector fields (f, g). Assume that v is an infinitesimal
symmetry of Σ(f, g), nonstationary at p ∈ X , that is, such
that v(p) �= 0. Then the second part of Proposition II.1
implies that there exits a feedback pair (α, β) such that v is a
strong infinitesimal symmetry of the system Σ̃(f̃ , g̃), where
f̃ = f + gα and g̃ = gβ. Thus there exists a neighborhood
Xp of p in which the factor system Σ̃/∼v

system is well
defined, where the equivalence relation ∼v is induced by
the local action of the 1-parameter local group defined by
v. Notice that given a system Σ, there are many systems
Σ̃(f̃ , g̃), feedback equivalent to Σ, and such that v is a
strong infinitesimal symmetry of Σ̃. We will denote by Σ̃
any of those systems. Actually, any two such systems are
equivalent by a feedback pair (α̃, β̃), where the functions
α̃ and β̃ are constant on the trajectories of v.

Theorem II.4 The following condition are equivalent.
(i) Σ is, locally at p ∈ X , F -equivalent to the affine

strict feedforward form (ASFF) satisfying gn �= 0;
(ii) Each system Σ1, Σ2,. . . ,Σn possesses an infinitesi-

mal symmetry vi, where Σ1 is the restriction of Σ to
a neighborhood Xp and

Σi+1 = Σ̃i/∼vi
,

where ∼vi is the equivalence relation induced by
the local action of the 1-parameter group of vi, and
such that vi and the control vector field gi of Σi are
independent, for 1 ≤ i ≤ n − 1;

(iii) There exist smooth vector fields w1, . . . , wn, inde-
pendent at p ∈ X , such that, locally at p,

[wi, wj ] ∈ Di−1

[wi, g] ∈ Di−1 + G
[wi, f ] ∈ Di−1 + G,

for any 1 ≤ i ≤ n and j ≤ i, where D0 = 0
and Di = span {w1, . . . , wi} and, moreover, g(p) /∈
Dn−1(p);

(iv) There exist smooth vector fields w̃1, . . . , w̃n, inde-
pendent at p ∈ X , such that, locally at p,

[w̃i, w̃j ] = 0

[w̃i, g] ∈ D̃i−1 + G
[w̃i, f ] ∈ D̃i−1 + G,

for any 1 ≤ i ≤ n and j ≤ i, where D̃0 = 0
and D̃i = span {w̃1, . . . , w̃i} and, moreover, g(p) /∈
D̃n−1(p).

The assumption g(p) /∈ Dn−1(p) can be dropped (equiv-
alently, we allow for gn = 0) if we understand the
conditions (iii) and (iv) as well as those of the second part
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of Proposition II.1 in the sense of module of vector fields
and not of distributions.

A proof of the above theorem follows the same line
as that of Theorem II.2, the only difference is to show
that in the successive steps, the existence of infinitesimal
symmetries does not depend on the choice of Σ̃i in Σi+1 =
Σ̃i/∼vi

.

III. STRICT FEEDFORWARD FORM: AFFINE VERSUS

GENERAL

In this section we will show that the problem of trans-
forming a general control system to the strict feedforward
form can be reduced to that for affine systems by taking
the preintegration. The same procedure of extension has
been already used for the problems of linearization and
decoupling [13] and equivalence to the p-normal form [11].

Consider a general nonlinear control system

Π : ẋ = f(x, u),

where x ∈ X , an open subset of R
n, u ∈ R. Together with

Σ, we consider its extension (preintegration)

Πe : ẋe = fe(xe) + ge(xe)w,

where xe = (x, u) ∈ X × R
1, w ∈ R, and the dynamics

are given by fe(xe) = f(x, u) + 0 · ∂
∂u and ge(xe) = ∂

∂u .
Notice that Σe is a control-affine system controlled by the
derivative u̇ = w of the original control u.

Recall that L0 denotes the Lie ideal generated by {fu −
fū}, u, ū ∈ U , in the Lie algebra L of the system Π.
Assume that dim L0(p) = n.

Proposition III.1 The system Π is S-equivalent (resp. F -
equivalent), locally at (x0, u0), to the strict feedforward
form (SFF) if and only if the extension Πe is, locally at
xe

0 = (x0, u0), S-equivalent (resp. F -equivalent) to the
affine strict feedforward form (ASFF).

The proof is based on showing that a diffeomorphism
bringing Πe into the (ASFF) is of a special form: states
depend on states only and the control is preserved. In
particular, we show the following statement, which is of
independent interest.

Corollary III.2 If the system Σ is in an affine strict feedfor-
ward form (ASFF) satisfying gn �= 0, then it is S-equivalent
to another (ASFF), for which g1 = · · · = gn−1 = 0.

IV. STRICT FEEDFORWARD SYSTEMS ON THE PLANE

In this section we will describe strict feedforward systems
on the plane. Consider a system Σ on an open subset X of
R

2 and suppose that g(p) �= 0. We define the multiplicity
of Σ at p as the smallest positive integer µ, such that g
and adµ

g f are linearly independent at p. Notice that the
notion of multiplicity is feedback invariant (see, e.g., [4]).
If the multiplicity is µ = 1, then the system is feedback

linearizable and thus feedback equivalent to (ASFF). The
case of multiplicity µ ≥ 2 is described by the following:

Proposition IV.1 Consider a system Σ on open subset X
of R

2 and suppose that g(p) �= 0 and that it has multiplicity
µ ≥ 2 at p.

(i) If f and g are linearly dependent at p, then Σ is
locally F-equivalent to the strict feedforward form
(ASFF) if and only

f = γadgf mod G,

where γ is a smooth function such that the smooth
function ϕ defined by

f = ϕadµ
g f mod G

is divisible by γµ. Moreover, in this case Σ is locally
F -equivalent to

ż1 = zµ
2

ż2 = v.

(ii) If f and g are linearly independent at p, then Σ is
locally F-equivalent to the strict feedforward form if
and only

adgf = γad2
gf mod G,

where γ is a smooth function such that the smooth
function ψ defined by

adgf = ψadµ
g f mod G

is divisible by γµ−1. Moreover in this case Σ is
locally F -equivalent to

ż1 = 1 + εzµ
2

ż2 = v.

In [4] it is proved that any planar system with a finite
multiplicity µ at p is locally feedback equivalent to the
following system around 0 ∈ R

2:

ż1 = zµ
2 + aµ−2z

µ−2
2 + · · · + a1z2 + a0,

ż2 = v,

where the smooth functions ai, for 0 ≤ i ≤ µ − 2, depend
on z1 only and satisfy ai(0) = 0 (except for a0 in the
case f and g independent at p). Moreover, we can always
normalize one of the functions ai (in particular, we can
take a0 = 1 if a0(0) �= 0) and then the infinite jets of
all remaining functions are feedback invariant. Proposition
IV.1 implies that among all planar system only those are F -
equivalent to the affine strict feedforward form for which
all the above invariants are identically zero.

Proof of (i) (Necessity) After applying a local diffeo-
morphism and feedback, the system Σ takes the following
(ASSF)

ż1 = f1(z2) + g1(z2)u
ż2 = u.
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Without loss of generality, we can assume that g1 = 0
(see Corollary III.2 following Proposition III.1). By the
definition of multiplicity, f1 = zµ

2 f̃1, where f̃1 is a smooth
function of z2 such that f̃1(0) �= 0. A direct computation
shows that the conditions of (i) are satisfied for the above
system and, since they are feedback invariant, they are
necessary for bringing the system to the (ASSF).

(Sufficiency) Rectifying the vector field g and applying a
suitable feedback, we get

ẋ1 = f1(x1, x2)
ẋ2 = u.

By the definition of multiplicity and the assumptions of (i),
it follows that

f1 = γµϕ̃,

where the smooth function ϕ̃ satisfies ϕ̃(0) �= 0.
Differentiating the condition f = γadgf mod G µ-times

with respect to g we get

adµ
g f = γadµ+1

g f + µ(Lgγ)adµ
g f +

µ−1∑

i=1

hiadi
gf + h0g,

where the smooth functions hi satisfy hi(p) = 0. Using the
definition of multiplicity we can conclude that Lgγ(p) �= 0.
Put ε = sign(ϕ̃(0)). Introducing coordinates

z1 = εx1

z2 = γ(εϕ̃)1/µ,

followed by a suitable feedback, we get

ż1 = zµ
2

ż2 = v.

Necessity of (ii) is obvious while the proof of sufficiency
follows the same line as for (i). �

V. STRICT FEEDFORWARD NORMAL FORM

Definition V.1 A smooth (resp. analytic) strict feedforward
normal form is a smooth (resp. analytic) strict feedforward
form

ż1 = F̂1(z2, . . . , zn, u)
...

żn−1 = F̂n−1(zn, u)
żn = F̂n(u)

for which
(SFNF )

F̂j(z, u) = âj(zj+1) +
n+1∑

i=j+2

z2
i P̂j,i(zj+1, · · · , zi)

for any 1 ≤ j ≤ n−1, where âj and P̂j,i are smooth (resp.
analytic) functions of the indicated variables and zn+1 = u.

The above strict feedforward normal form (SFNF) was
introduced by the authors in [16] (see also [15]), where we
proved that any strict feedforward system can be brought

formally (see [6], [7], and [14] for a study of formal feed-
back transformations) to that form. In this section we will
give a smooth version of this result. We will suppose that the
linearization, around the equilibrium point, is controllable
for the class of systems under consideration.

Theorem V.2 A smooth (resp. analytic) system Π is feed-
back equivalent to a smooth (resp. analytic) strict feedfor-
ward form (SFF) if and only if it is feedback equivalent
to a smooth (resp. analytic) strict feedforward normal form
(SFNF).
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