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K-REGULAR WITT RINGS

Robert W. Fitzgerald

(R, G, q) will denote an abstract Witt ring in the sense of [4]. Nearly all examples of
interest are Witt rings of non-singular quadratic forms over a field of characteristic not
two,however using abstract Witt rings does simplify some proofs. The Witt ring is k-regular
if there exists a 2-power k such that for all 1 6= x ∈ G we have |D〈1,−x〉| = k. Such Witt
rings were first studied in [1] primarily because the block design counting arguments there
were perfectly suited to k-regular rings. However they remain unclassified.

We will always assume that G is finite; set g = |G|. If k = g then R is totally degenerate
and so classified by [4]. If k = g/2 then R is of local type [2] which are again classified in
[4]. If k = 2 then R is a group ring extension of Z2 or Z4. If 2 < k < g/2 then R is not
of elementary type and no examples are known or even expected. We will always assume
that 2 < k < g/2 and call such k-regular Witt rings exceptional.

It was shown in [1] that exceptional k-regular Witt rings satisfy 8 ≤ k and 2k2 ≤ g.
Kula [3] improved both bounds and added an upper bound, showing:

16 ≤ k

8k2 ≤ g ≤ k4/4 if k ≡ 1 (mod 3)

8k2 ≤ g ≤ k4/8 if k ≡ 2 (mod 3).

Here we show that k3 ≤ g and that if k ≡ 1 (mod 3) then g ≡ 1 (mod 3).
We fix some notation, which will agree with Kula’s. G∗ denotes G \ {1}. We set e =

log2 k. For a ∈ G∗ and i ≥ 0 set:

Xi(a) = {x ∈ G : x 6= 1, a and |Q(a) ∩Q(x)| = 2i},

where Q(x) = {q(x, y) : y ∈ G}. Now for x 6= a, |Q(a) ∩ Q(x)| = |D〈1,−ax〉|/|D〈1,−a〉 ∩
D〈1,−x〉| = k/|D〈1,−a〉 ∩D〈1,−x〉|. Thus we also have that:

Xi(a) = {x ∈ G : x 6= 1, a and |D〈1,−a〉 ∩D〈1,−x〉| = 2e−i}.

In particular, we may assume 0 ≤ i ≤ e. We further set ni(a) = |Xi(a)| and write X(a)
for Xe(a). For a 2-fold Pfister form ρ we let ρ′ denote the pure part of ρ.
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2 ROBERT W. FITZGERALD

We will use various equations derived by Kula:

e−1∑

i=0

(2e−i − 1)ni(a) = k2 − 3k + 2(1)

g +
∑

1 6=ρ∈Q(a)

|D(ρ′)| = 1 +
g

k
+

e∑

i=0

2ini(a)(2)

|X(a) ∩X(b)| ≥ g − 2k2 + 6k − 7 ≥ g − 2k2,(3)

where a 6= b in G∗ for (3). Equation (1) is [3,4.3b], (2) is equation (4.5.2) on [3,p.45]
and the first inequality of (3) is equation (4.3.1) on [3,p.43]. The second inequality of (3)
follows from our assumption that k > 2.

We will also use two simple equations:

(4)
e∑

i=0

ni(a) = g − 2

(5) |D(ρ′)| < k2 (if ρ 6= 1).

Both (4) and (5) appear in [3] but direct proofs are quick. (4) follows from G\{1, a} being
the union of the Xi(a). For (5), suppose ρ′ = 〈a, b, ab〉. Then

D(ρ′) = a · ∪x∈D〈1,a〉D〈1, bx〉.

Since 1 occurs in each D〈1, bx〉 we have that |D(ρ′)| < |D〈1, a〉| · k = k2.
Using equation (4) to find ne(a) and equation (1) to find ne−1(a), equation (2) may be

re-written (see [3, pp. 45-46]) as:

(6) g +
∑

1 6=ρ∈Q(a)

|D(ρ′)| = 1+
g

k
+ gk− k3

2
+

3k2

2
−3k +

e−2∑

i=0

2i(2e−i−1−1)(2e−i−1)ni(a).

Proposition 1. If k ≡ 1 (mod 3) then g ≡ 1 (mod 3).

Proof. We may pick an a ∈ G∗ with 〈〈1, 1〉〉 /∈ Q(a) \ {1} (otherwise −G∗ ⊂ D〈1, 1, 1〉
while |D〈1, 1, 1〉| < k2 by (5) and |G∗| ≥ 8k2 − 1 by [3,4.4]. Then for each anisotropic
ρ ∈ Q(a) we have that |D(ρ′)| ≡ 0 (mod 3) by [3,2.9]. Also, since for each i, in equation
(6) one of e− i− 1 or e− i is even, we have that one of 2e−i−1 − 1 or 2e−i − 1 is divisible
bt 3. Assuming k ≡ 1 (mod 3), equation (6) gives:

g ≡ g + 1 + g − 2 (mod 3),

and so 1 ≡ g (mod 3). ¤



K-REGULAR WITT RINGS 3

Theorem 1. g ≥ k3.

Proof. Suppose there exists an exceptional k-regular Witt ring (R,G) with g < k3. Among
all such Witt rings, choose one with minimal h ≡ g/k2. Let a and b be distinct elements of
G∗. Choose x ∈ X(a) ∩X(b), which is possible by equation (3) and the fact that g ≥ 8k2

[3,4.4]. We use the equation (4.3.2) from [3,p.43]:

hk = g/k = |Q(x)| ≥ |(Q(x) ∩Q(a))(Q(x) ∩Q(b)|(7)

=
k2

|Q(x) ∩Q(a) ∩Q(b)|

≥ k2

|Q(a) ∩Q(b)| = k|D〈1,−a〉 ∩D〈1,−b〉|.

A simple consequence of (7) is that |D〈1,−a〉 ∩D〈1,−b〉| ≤ h. Pick minimal s ≥ 0 so that
there exists distinct a and b in G∗ with |D〈1,−a〉∩D〈1,−b〉| = h/2s. Set 2t = |Q(a)∩Q(b)|.
then we have:

(8) g ≥ 2s+2k2 and t− s ≥ 1

Namely, if the first inequality failed then h = g/k2 ≤ 2s+1. But then |D〈1,−a〉∩D〈1,−b〉| ≤
2 for all distinct a and b in G∗. while as noted in the first sentence of [K,p.44] we can always
find distinct a and b in G∗ with |D〈1,−a〉∩D〈1,−b〉| ≥ 4. For the second inequality of (8)
note that:

2t = |Q(a) ∩Q(b)| = k

|D〈1,−a〉 ∩D〈1,−b〉| =
2sk

h
.

Thus 2t−sh = k. By the assumption that g = hk2 < k3 we have 2h ≤ k and so t− s ≥ 1.
For each x ∈ X(a) ∩X(b) we can rewrite (7) as:

(9) hk ≥ k2

|Q(x) ∩Q(a) ∩Q(b)| ≥
k2

|Q(a) ∩Q(b)| =
hk

2s
.

Then
|Q(x) ∩Q(a) ∩Q(b)| ≥ 2t−s

since otherwise |Q(x)∩Q(a)∩Q(b)| < 2t−s = |Q(a)∩Q(b)|/2s and equation (9) becomes:

hk ≥ k2

|Q(x) ∩Q(a) ∩Q(b)| >
2sk2

|Q(a) ∩Q(b)| = hk.

List the elements of Q(a)∩Q(b) as 1, ρ2, . . . , ρ2t . We have that for each x ∈ X(a)∩X(b)
that 2t−s − 1 of the ρi’s lie in Q(x), or equivalently, satisfy −x ∈ D(ρ′i). Set Tx equal to
the number of i’s, 2 ≤ i ≤ 2t, such that −x ∈ D(ρ′i). Then:

(10)
∑

x∈X(a)∩X(b)

Tx ≥ (2t−s − 1)|X(a) ∩X(b)|
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Now this sum counts the number of pairs (i, x) with 2 ≤ i ≤ 2t, x ∈ X(a) ∩ X(b) and
−x ∈ D(ρ′i). We can also count the number of such pairs by first fixing i. Namely:

(11)
∑

x∈X(a)∩X(b)

Tx =
2t∑

i=2

|D(ρ′i) ∩ −(X(a) ∩X(b))|.

Now (11) implies that there exists an i, 2 ≤ i ≤ 2t, such that:

|D(ρ′i) ∩ −(X(a) ∩X(b))| ≥ 1
2t − 1

∑

x∈X(a)∩X(b)

Tx

and hence when combined with (9):

|D(ρ′i)| ≥
2t−s − 1
2t − 1

|X(a) ∩X(b)|.
Applying equations (5) and (3) yields:

(12) k2 >
2t−s − 1
2t − 1

(g − 2k2)

If s = 0 then (12) becomes k2 > g− 2k2 which is impossible as g ≥ 8k2 [3,4.4]. Suppose
then that s ≥ 1. (11) is then:

(2t + 2t−s+1 − 3)k2 > (2t−s − 1)g.

Use g ≥ 2s+2k2 from the first part of (8) to get:

(2t + 2t−s+1 − 3)k2 > (2t+2 − 2s+2)k2

2s+2 + 2t−s+1 − 3 > 3 · 2t.

Lastly, using t− 1 ≥ s from the second part of (8) gives:

2t+1 + 2t−s+1 − 3 > 3 · 2t,

2t−s+1 − 3 > 2t,

which is impossible for s ≥ 1. This contradiction shows g ≥ k3. ¤
We combine these results with Kula’s upper bound on g and bound on k.

Corollary 1. For an exceptional k-regular Witt ring (R,G) with g = |G| : k ≥ 16 and

(1) if k ≡ 1 (mod 3) then g ≡ 1 (mod 3) and

k3 ≤ g ≤ 1
4
k4,

(2) if k ≡ 2 (mod 3) then

k3 ≤ g ≤ 1
8
k4.

¤
We note that the first open case is k = 16 and g = 163 = 4096.
Kula has shown that an exceptional k-regular Witt ring is non-formally real [3,Re-

mark,p.41] so that InR = 0 for some n. We have:
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Corollary 2. If (R,G) is an exceptional k-regular Witt ring then I3R 6= 0. In fact, for
any anisotropic 2-fold Pfister form ρ,D(ρ) 6= G.

Proof. D(ρ) = ∪b∈D(ρ′)D〈1, b〉 so that |D(ρ)| ≤ k|D(ρ′)| < k3 by equation (5). Thus
D(ρ) 6= G by Theorem 1. ¤
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