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STRUCTURE OF PARASITE COMPONENT COMMUNITIES OF DIDELPHID MARSUPIALS:

INSIGHTS FROM A COMPARATIVE STUDY

F. Agustı́n Jiménez, François Catzeflis*, and Scott L. Gardner�
Department of Zoology, Southern Illinois University, Carbondale, Illinois 62501-6501. e-mail: agustinjz@zoology.siu.edu

ABSTRACT: The parasite fauna of the gray four-eyed opossum, Philander opossum (Linnaeus, 1758), and the common opossum,
Didelphis marsupialis Linnaeus, 1758, in Camp du Tigre, French Guiana, is characterized. Nine species from the gastrointestinal system
were recovered from both species, which shared 80% of their parasites. The parasite fauna comprised several monoxenous species
(63%) and was dominated by Aspidodera raillieti Travassos, 1914, which exhibited high levels of prevalence and abundance in both
communities. Only 2 species (Moennigia sp. and Spirura guianensis) had been recorded in other species of mammals. Both species
richness and taxonomic composition at the level of component communities from this locality were compared against 11 communities
present in the Virginia (Didelphis virginiana), white-bellied (Didelphis albiventris), and common opossum from Argentina, Brazil,
Mexico, and the United States. Neither host phylogeny nor taxonomy accounted for statistical differences in species richness. There
was no statistical difference among species richness values among the 9 localities studied. Taxonomic similarity was analyzed by means
of the Jaccard’s similarity index, including all, and only common species (occurring in prevalence .10%). The results suggest that
sympatric species of marsupials share more species of parasites than parasite communities occurring in conspecific marsupials from
different localities. As a consequence, taxonomic composition of these parasite communities varied depending on the locality.
Probably, marsupials of the monophyletic Didelphini offer the same compatibility toward their parasites, by presenting them with
similar habitats. Subtle differences in lifestyles of the marsupials may determine the chance of encounter between the symbionts and
prevent some parasites from completing their life cycles. Further and more rigorous tests are necessary to determine the roles of
encounter and compatibility filters, as well as the role of chance, in the structuring of parasite communities in marsupials.

A parasite community is the summation of parasite populations

sharing a spatiotemporal unit (Bush et al., 1997). The structuring

of a parasite community results from the interplay between

evolutionary, physiologic, ecologic, geographic, and stochastic

factors (Combes, 1991; Janovy et al., 1992; Choudhury and Dick,

2000; Poulin, 2007). The establishment of each parasite in its

host, however, is determined by the chances of the parasite of

encountering a host and by their compatibility (Combes, 1991),

which determines the growth and reproduction of the parasite in

the host. In addition, extrinsic factors, e.g., temperature and

moisture, may determine the distribution of these parasites by

favoring the survival of some, or all, the stages of the parasites in

a geographic location (Pavlovsky, 1966).

Species composition and richness of parasite communities in a

population of potential hosts varies across space (Dogiel, 1964;

Pence, 1990; Jiménez-Ruiz et al., 2002; Poulin, 2003; González

et al., 2006; Poulin and Dick, 2007). This variation has been

studied at 3 levels of community organization—infracommunity,

component community, and compound community—especially in

freshwater and marine fish (Poulin and Dick, 2007). For

mammals, the helminth component communities are variable,

with taxonomic similarity negatively correlated with geographic

distance (Pence, 1993; Poulin, 2003; Krasnov et al., 2005).

However, Krasnov et al. (2005) found that the ectoparasite

species richness was constant for taxonomically related species of

hosts in sympatry. In a comparison of helminth communities of 7

species of macropodid marsupials, Beveridge et al. (1998), found a

relatively high taxonomic similarity among communities occur-

ring in sympatry, higher than similarity among communities in

closely related hosts.

In vicariance biogeography, the reconstruction of area clado-

grams allows the interpretation of historic processes that resulted

in the current distribution of species (Nelson and Platnick, 1981).

Inference of relationships among parasite communities is also

possible by the optimization of the distribution of parasites into

the phylogeny of the hosts (Brooks and McLennan, 2002). The

interpretation of the resulting reconstruction would allow

inferring the factors that may have shaped the structure of these

communities.

The 91 species in the monophyletic Didelphidae originated and

diversified in South America (Voss and Jansa, 2009). This

evolutionary event resulted in the diversification of some

anatomical features that enabled marsupials to specialize in

aquatic, terrestrial, scansorial, and arboreal lifestyles (Astúa,

2009). This allowed habitat segregation and the use of different

dietary resources even in species occurring in sympatry (Julien-

Laferrière, 1991; Cáceres et al., 2002; Cunha and Vieira, 2002;

Gentile et al., 2004). A very well-supported clade in the phylogeny

of Didelphidae includes species of Chironectes Illiger, Lutreolina

Thomas, Didelphis Linnaeus, and Philander Brisson that include

the largest marsupials in the New World, commonly referred as

large-sized opossums (Voss and Jansa, 2009). Some species in this

clade show a wide geographic distribution (Wilson and Reeder,

2005; Gardner, 2007) and are locally common across their habitat

(Fleming, 1972).

The parasite faunas of 3 species of Didelphis and 1 of Philander

have been reported from 8 localities (Navone and Suriano, 1992;

Alden, 1995; Cañeda-Guzmán, 1997; Ellis et al., 1999; Silva and

Costa, 1999; Monet-Mendoza et al., 2005; Richardson and

Campo, 2005). Up to the present time, there have been no

published comparisons of the helminth faunas of marsupials from

the Americas and only 1 study on 2 sympatric species of small-

sized opossums, illustrating the negative correlation between

parasite burdens and allelic diversity in the major histocompat-

ibility complex (Meyer-Lucht et al., 2010).

In the present study, our 2 main goals include (1) character-

ization of the parasite communities found in the gray four-eyed

opossum, Philander opossum (Linnaeus, 1758), and the common

opossum, Didelphis marsupialis Linnaeus, 1758, from French

Guiana; and (2) comparison of the structure and species richness

of 13 parasite communities present in 9 different localities across
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the Americas. The aim of the latter goal is to contrast the role of

geographic locality versus marsupial phylogeny on the structure

of parasite communities. By comparing parasite communities that

occur in sympatry and in phylogenetically related hosts, we may

determine whether parasite species richness is a variable or a

constant attribute of a host taxon, i.e., species name, and whether

taxonomic similarity is greater among parasite communities

occurring in phylogenetically related hosts or among parasite

communities occurring in the same locality. As seen in studies

comparing parasite communities of closely related hosts (Bever-

idge et al., 1998; Jiménez-Ruiz et al., 2002), we anticipate that

sympatric species of marsupials would share a large number of

species of parasites because of the similarity of lifestyles, food

items, and their exposure to the same pool of parasites.

MATERIALS AND METHODS

Specimens were collected 1–15 March 2001 in old mature secondary
forests within the same locality (Camp du Tigre, near Cayenne, French
Guiana; 04u549300N, 52u189300W). Preserved specimens of hosts (P.
opossum) were deposited at the Museum National Histoire Naturelle,
Paris, France (catalog numbers 2001-1346–1350, 2001-1352 and -1353, and
2001-1374–1376), and at the University of Montpellier, Montpellier, France
(collection of F. Catzeflis under field numbers V-1241, V-1246–1248, V-
1254, V-1262, V-1298, V-1314, V-1315, V-1330, V-1331, V-1337, V-1344, V-
1347, V-1348, and V-1359–1362). The gastrointestinal contents were
preserved in 4% formalin and transported to the laboratory to be examined
for helminths. Preservation, staining, clearing, and mounting of parasites
followed Pritchard and Kruse (1982). Vouchers for this study were
deposited in the HWML and the Collection Parasitologique du Museum
d’Histoire Naturelle (Paris, France). Definitions of prevalence, abundance,
mean intensity, and other ecologic descriptors follow Bush et al. (1997).

Helminthologic surveys with sample sizes of at least 10 individuals were
used in the comparisons of parasite communities. These included Didelphis
albiventris, Didelphis virginiana, D. marsupialis, and P. opossum from 8
localities across the distribution of these species (Cordell, 1974; Navone
and Suriano, 1992; Alden, 1995; Cañeda-Guzmán, 1997; Ellis et al., 1999;
Silva and Costa, 1999; Monet-Mendoza et al., 2005; Richardson and
Campo, 2005). The parasite community of each marsupial species per
locality (component community) was considered a community. Based on

the difference in species richness and species composition an exception was
made for 2 surveys separated by 20 yr (D. virginiana from southern Illinois
in the United States; Table I).

The presence of parasites in 4 species of large sized marsupials collected
across 9 different localities was tabulated into a binary table (Table II).
Qualitative taxonomic similarity of these parasite communities was
measured by means of the Jaccard’s similarity index as implemented in
SAS (SAS Institute Inc., 2009). To evaluate the effect of phylogeny on the
taxonomic similarity of the parasite communities, the matrix was analyzed
in PAUP* b4.10 (Swofford, 2003), enforcing the phylogeny of the hosts.
The phylogenetic tree (((D. albiventer: 0.0023, D. marsupialis: 0.0026):
0.0012, D. virginiana: 0.0061): 0.0011, P. opossum: 0.0053) (Voss and Jansa,
2009), was used as a constraint for the phylogenetic relationships among the
species. This constraint also served to test for correlations between parasite
species richness (log-transformed values) and the 4 species of marsupials by
means of the independent contrast approach (Felsenstein, 1985) as
implemented in PHYLIP version 3.69 (Felsenstein, 2009).

Species richness of parasites was compared among the 13 different
communities sampled. First, the effect of host phylogeny on values of
species richness was examined by linear regression under an independent
contrast frame (Felsenstein, 1985). This allowed testing the hypothesis that
parasite species richness is an attribute of each of the 4 species of
marsupials studied. Second, the effect of each of the 9 localities on the
species richness was assessed using Welch’s analysis of variance (Welch,
1947); this test was chosen because of the unequal variances among the
samples and different sample sizes of both localities and species studied.
This approach treats each of the variances separately, by reducing the
impact of heteroscedasticity on the analysis.

All analyses and tests were performed on 2 different treatments to the
data set; the first treatment included all species of parasites in the
communities. For the second treatment, rare species occurring in low
prevalence (,10%) were removed (Table III). This resulted in the
exclusion of 0 to 5 species of helminths per component community.

RESULTS

In total, 10 species of parasites was recovered from the digestive

system of the gray four-eyed opossums collected in Camp du

Tigre. From that total, 5 species were collected from the small

intestine, 3 from the cecum and large intestine, and 1 from the

stomach. An additional species (Cherylia guyanensis Bain, Petit,

Jacquet-Vallet and Houin, 1983) was recovered from the body

TABLE I. Comparison of species richness in 13 communities of marsupials considering all gastrointestinal species, rare species occurring in prevalence
.10%, and specific species occurring in prevalence .10%. (n) Number of opossum examined. (S) Parasite species richness.

Species Locality n S (Overall) S (.10%) S (Specific)

Didelphis albiventris .Santiago del Estero, Argentina* 42 5 3 1

.Minas Gerais, Brazil{ 22 9 7 5

Didelphis marsupialis .Los Tuxtlas, Mexico{ 12 11 9 8

.Camp du Tigre, French Guiana 4 9 9 7

Didelphis virginiana .Los Tuxtlas, Mexico{ 10 13 9 7

.Southern Illinois, USA} 35 18 14 9

.Southern Illinois, USAI 46 12 11 7

.Guerrero, Mexico# 14 16 5 3

.Colima, Mexico# 16 5 5 3

.Georgia, USA" 30 11 11 7

.Connecticut, USA** 30 6 6 3

Philander opossum .Los Tuxtlas, Mexico{ 21 12 8 7

.Camp du Tigre, French Guiana 26 10 9 7

* Navone and Suriano, 1992.
{ Silva and Costa, 1999.
{ Cañeda-Guzmán, 1997.
} Cordell, 1974.
IAlden, 1995.
# Monet-Mendoza et al., 2005.
" Ellis et al., 1999.
** Richardson and Campo, 2005.
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cavity. All gastrointestinal parasites, except Moennigia sp., were

found with prevalence .25%. Travassostrongylus paraquintus

Durette-Desset, 1974 reached maximum values of prevalence and

mean abundance, whereas A. raillieti exhibited the highest mean

intensity (Table IV). The parasite fauna of D. marsupialis in the

same locality also includes 9 species, with A. raillieti showing the

highest values of both prevalence and mean intensity. The

tapeworm Mathevotaenia bivittata (Janicki, 1904) was collected

from the common opossum exclusively, whereas Moennigia sp.

and Oligacanthorhynchus microcephala (Rudolphi, 1819) were

only recorded in the gray four-eyed opossum.

In the comparison of 13 parasite communities present in large-

sized opossums, the minimum value for species richness was 5 and

the maximum was 18, with the maximum value found in southern

Illinois (Table I). The minimum values of species richness

corresponded with D. albiventris in Santiago del Estero,

Argentina, and D. virginiana in Colima, Mexico. After removing

rare species from the analysis, species richness at Santiago del

Estero and southern Illinois dropped to 3 and 14, respectively.

The last column in Table I shows the parasite species richness for

only marsupial-specific parasites.

The results show no correlation between parasite species

richness and host species (F 5 0.44; 3, 2.78 df; P 5 0.74). No

correlation was detected between parasite species richness and

locality (F 5 4.81; 2.0, 1.96 df; P 5 0.18). Parasite species richness

among localities shows no difference when only communities

occurring in D. virginiana were compared (x2 5 5.54, df 5, P 5

0.35). When all species of parasites were considered, no significant

correlation was found between richness and host sample size

among all 13 communities (r 5 0.11, P 5 0.73; n 5 13). This

pattern persisted when statistical tests were framed onto an

independent contrast approach (H 5 0.34, df 3, P 5 0.95).

Because D. virginiana included the largest sample size (7 parasite

communities collected in 6 localities), we tested for significant

correlation between sample size per locality and parasite species

richness. No correlation was found among these communities for

these 2 variables (r 5 0.39, P 5 0.38; n 5 7), which suggested that

sample size had no effect on parasite species richness.

The comparisons of parasite communities across geographic

localities resulted in low qualitative taxonomic similarity for all

samples. Only parasite communities from sympatric hosts showed

similarity .60%, irrespective of the host species. These include

communities present in Camp du Tigre; Los Tuxtlas, Mexico; and

southern Illinois (Fig. 1). The cladogram resulted in 2 trees, 62

steps long, with a rescaled consistency index of 56%. These trees

group sympatric communities irrespective of the phylogenetic

affinities of their hosts (data not shown). The analysis of the

dataset enforcing the phylogenetic relationships among the

species of hosts resulted in 9 longer trees (89 steps), with a

rescaled consistency index of 20%.

When rare species of parasites (present in ,10% of the hosts)

were excluded from the analyses, richness was independent of the

host taxon (F 5 0.82; 2.0, 2.39 df; F 5 0.54), and no significant

differences were found among localities (F 5 0.37; 1, 1.2534 df;

F 5 0.37). In addition, no significant correlation was found

between host sample size and parasite species richness either

globally (r 5 0.13, P 5 0.66; n 5 13) or among communities present

exclusively in D. virginiana (r 5 0.67, n57, p 5 0.1). The pattern

persisted for the former group when the analysis was framed into

an independent contrast analysis (H 5 0.92, 3 df, P 5 0.82).

High taxonomic similarity among parasite communities occur-

ring in sympatric hosts persisted even when rare species were

excluded (data not shown). The only exception was found in Los

Tuxtlas. In this locality, the similarity among communities

occurring in P. opossum and the 2 species of Didelphis dropped

to ,60%. Low levels of similarity (,60%), characterized 92% of

the pairs compared, including 17% of pairs that showed values of

similarity 5 0. The grouping of the component communities

based on their similarity values is shown in Figure 2. The 4

resulting cladograms for this data set were 52 steps long with a

rescaled consistency index of 56%. Enforcing the monophyly of

the hosts on the relationships among parasite communities

resulted in a tree 19 steps longer.

Finally, the analysis of taxon-specific species of parasites

occurring with a prevalence of ,10% resulted in no significant

correlation among log transformed values of species richness and

species of host (F 5 2.44; 2.0, 2.24 df; P 5 0.27).

DISCUSSION

Parasites of opossums in French Guiana

The parasite communities of both P. opossum and D.

marsupialis collected in French Guiana seemed to be dominated

by parasites with direct patterns of transmission. This is indicated

by the highest values of prevalence and mean intensity of T.

paraquintus, V. viannai, Travassostrongylus reesali, and A. raillieti.

From this locality, 5 of the species collected are indirectly

transmitted. These species occurred in low prevalence, with

relatively low mean intensities. This may be the result of either

low prevalence of these parasites in their intermediate hosts or the

wide spectrum of food items used by these marsupials (Carvalho

et al., 2005). Both would reduce their chances of ingesting infected

intermediate hosts. It has been shown that a higher diversity of

prey items may reduce the chances of the definitive host becoming

infected by parasites with a high degree of specialization in their

use of intermediate hosts (Combes, 1991). We lack the empirical

evidence to test and compare these 2 hypotheses.

The communities present in both species of marsupials shared a

great number of parasite species, most of which are specialists to

marsupials (64% for P. opossum and 78% for D. marsupialis).

These results are congruent with the generalist lifestyles and, to a

lesser extent, the overlapping diets of both species of opossums

(Julien-Laferrière and Atramentowicz, 1990). Both marsupial

species may be equally exposed to the parasites present in that

locality and may be similarly compatible with them, because of

the relatedness of the 2 marsupial species (Combes, 1991). The

inclusion of other species of this monophyletic tribe in the locality

(Chironectes minimus and Didelphis imperfecta) and the contrast

with species from other clades in the phylogeny of marsupials, i.e.,

species of Marmosa, Marmosops, Metachirus, and Monodelphis

may help in testing this hypothesis.

The values of parasite species richness were similar between

both communities. Those values were 10 in the gray four-eyed

opossum and 9 for communities in the common opossum.

However, those values dropped to 9 in both cases when rare

species were removed from the comparisons and to 7 when only

specialists remained. These differences are caused by 4 species

(Mathevotaenia bivittata, Moennigia sp., O. microcephala, and S.

guianensis).
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Species richness across hosts and localities

Parasite species richness was not statistically different across

the geographic distribution of a single species of marsupial, as

seen in the parasites of D. virginiana across 7 localities. The

overall parasite species richness for these communities fluctuated

between 5 and 18. Even when only host-specific species of

parasites were considered, the values of species richness fluctuated

between 1 and 9 (Table I). In contrast, the pairs of parasite

communities present in D. marsupialis and P. opossum had very

similar values of species richness, especially when only specific

List of parasite species: 1, Brachylaima virginianum; 2, Diplostomum variabile; 3, Fibricola crater; 4, Fibricola lucidus; 5, Paragonimus mexicanus; 6, Paragonimus westermani;
7, Rhopalias coronatus; 8, Rhopalias macracanthus; 9, Mathovataenia argentinensis; 10, Mathevotaenia bivittata; 11, Mesocestoides sp.; 12, Thaumasioscolez didelphis;
13, Capillaria aerophila; 14, Capillaria eberthi; 15, Capillaria longicauda; 16, Cruzia americana; 17, Cruzia tentaculata; 18, Didelphonema sp.; 19, Gnathostoma turgidum;
20, Gongylonema mexicanum; 21, Longistriata didelphis; 22, Aspidodera raillieti; 23, Physaloptera turgida; 24, Spirura guianensis; 25, Travassostrongylus orloffi;
26, Travassostrongylus paraquintus; 27, Trichuris didelphis; 28, Trichuris minuta; 29, Trichuris reesali; 30, Viannaia didelphis; 31, Viannaia hamata; 32, Viannaia sp.;
33, Viannaia viannaia; 34, Oligacanthorhynchus tortuosa; 35, Oligacanthorhynchus microcephala; 36, Oncicola campalunata; 37, Oncicola luhei; and 38, Porrorhynchus nickoli.

TABLE II. Distribution of 46 species of parasites in 13 parasite communities across the Americas. All species of enteric helminths were included. Number
of opossums examined (n) and parasite species richness per component community (S) are indicated. Helminths are labeled as having indirect (I) or
direct (D) patterns of transmission and as being specific (P) or generalist (G) to didelphid marsupials.

Host Locality n S

Parasite species

1 2 3 4 5 6 7 8 9 10 11 12 13

Didelphis albiventris .Santiago del Estero, Argentina 42 5 0 0 0 0 0 0 0 0 0 0 0 0 0

.Minas Gerais, Brazil 22 9 0 1 0 0 0 0 0 0 0 0 1 0 0

Didelphis marsupialis .Los Tuxtlas, Mexico 12 11 0 0 0 0 0 0 0 0 0 0 1 1 0

.French Guiana 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0

Didelphis virginiana .Los Tuxtlas, Mexico 10 13 0 0 0 0 0 0 0 1 0 0 1 1 0

.Southern Illinois 1, USA 35 18 0 0 1 1 1 1 1 0 1 0 0 1 1

.Southern Illinois 2, USA 46 12 0 0 1 1 1 0 0 0 1 0 0 1 0

.Guerrero, Mexico 14 16 0 0 1 0 1 0 0 0 1 0 0 1 0

.Colima, Mexico 16 5 0 0 0 0 0 0 0 1 0 0 0 0 0

.Georgia, USA 30 11 0 0 1 1 0 0 0 0 0 0 0 1 0

.Connecticut, USA 30 6 0 0 1 1 0 0 0 0 0 0 0 0 0

Philander opossum .Los Tuxtlas, Mexico 21 13 1 0 0 0 0 0 0 1 0 1 1 1 0

.French Guiana 26 10 0 0 0 0 0 0 0 0 0 0 0 0 0

.Pattern of transmission I I I I I I I I I I I I I

.Specificity P G G P G G G G G P P P P

List of parasite species: 1, Amphimerus cauditestis; 2, Brachylaima migrans; 3, Brachylaima virginianum; 4, Diplostomum variabile; 5, Echinoparyphium contiguum; 6, Fibricola
crater; 7, Fibricola lucidus; 8, Paragonimus mexicanus; 9, Paragonimus westermani; 10, Philandrophilus magnicirrus; 11, Rhopalias coronatus; 12, Rhopalias macracanthus;
13, Linstowia sp.; 14, Mathovataenia argentinensis; 15, Mathevotaenia bivittata; 16, Mesocestoides sp.; 17, Thaumasioscolez didelphis; 18, Capillaria aerophila; 19, Capillaria
eberthi; 20, Capillaria longicauda; 21, Cruzia americana; 22, Cruzia tentaculata; 23, Didelphonema sp.; 24, Gnathostoma turgidum; 25, Gongylonema sp.; 26, Gongylonema
mexicanum; 27, Longistriata didelphis; 28, Aspidodera raillieti; 29, Moennigia sp.; 30, Physaloptera turgida; 31, Pterygodermatites kozeki; 32, Spirura guianensis;
33, Travassostrongylus orloffi; 34, Travassostrongylus paraquintus; 35, Trichuris didelphis; 36, Trichuris minuta; 37, Trichuris reesali; 38, Viannaia didelphis; 39, Viannaia
hamata; 40, Viannaia sp.; 41, Viannaia viannaia; 42, Oligacanthorhynchus tortuosa; 43, Oligacanthorhynchus microcephala; 44, Oncicola campalunata; 45, Oncicola luhei; and
46, Porrorhynchus nickoli.

TABLE III. Distribution of 38 species of enteric parasites occurring in prevalence .10% in 13 parasite communities across the Americas. Number of
opossums examined (n) and parasite species richness per component community (S) are indicated. Helminths are labeled as having indirect (I) or direct
(D) patterns of transmission and as being specific (P) or generalist (G) to didelphid marsupials.

Host Locality n S

Parasite species

1 2 3 4 5 6 7 8 9 10

Didelphis albiventris .Santiago del Estero, Argentina 42 3 0 0 0 0 0 0 0 0 1 0

.Minas Gerais, Brazil 22 7 0 0 0 0 0 0 1 0 0 0

Didelphis marsupialis .Los Tuxtlas, Mexico 12 9 0 0 0 0 0 0 1 1 0 0

.French Guiana 4 9 0 0 0 0 0 0 0 0 0 1

Didelphis virginiana .Los Tuxtlas, Mexico 10 9 0 0 0 0 0 0 1 1 0 0

.Southern Illinois 1, USA 35 14 1 1 1 1 0 0 0 1 0 0

.Southern Illinois 2, USA 46 11 1 1 0 0 0 1 0 1 0 0

.Guerrero, Mexico 14 5 1 0 0 0 0 0 0 0 0 0

.Colima, Mexico 16 5 0 0 0 0 1 0 0 0 0 0

.Georgia, USA 30 11 1 1 0 0 0 0 0 1 0 0

.Connecticut, USA 30 6 1 1 0 0 0 0 0 0 0 0

Philander opossum .Los Tuxtlas, Mexico 21 8 0 0 0 0 1 0 1 1 0 0

.French Guiana 26 9 0 0 0 0 0 0 0 0 0 0

.Pattern of transmission I I I I I I I I I I

.Specificity G P G G G G P P P P
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species of parasites were considered. Similar results were obtained

when rare species were excluded from the comparisons.

In Los Tuxtlas, the 3 sympatric species of opossums, which

constitute 3 parasite communities, show similar values of parasite

species richness (Table I). In this locality, a set of parasites with

indirect patterns of transmission appeared in different frequencies

in the sympatric marsupials. This set may be divided into specific

(Thaumasioscolex didelphidis and Porrorchis nickoli) and non-

specific species (Paragonimus mexicanus, Turgida turgida, and

Oligacanthorhynchus tortuosa). All of these species use an

intermediate host to complete the transmission to their final host.

Also, with the exception of P. mexicanus, all parasite species

showed low prevalence in the gray four-eyed opossum and

relative high values of prevalence in both species of Didelphis. The

wider spectrum of food resources used by both species of

Didelphis relative to P. opossum, which forages on aquatic

arthropods, may help explaining this difference (Cañeda-Guz-

mán, 1997). Both the common and the Virginia opossum would

TABLE II. Extended.

Parasite species

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

1 .0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 .0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0

0 .0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1

0 .1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0

0 .0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1

0 .0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

0 .0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 .0 1 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0

0 .0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 .0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0

0 .0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 .0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1

0 .0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 ? 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0

I .I I I D D D I I I I I I D D D I I I D D D D D D D D D I I I I I

P .P G P P P P P P P G P P P G A G P G P P P P P P P P P P P P G P

Parasite species

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

0 .0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 .0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0

0 .1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1

0 .0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0

0 .1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0

1 .0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

1 .0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 .0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 .0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 .0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0

1 .0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 .0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

0 .0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0

I .I D D D D D I I I D D I I D D D D D D D D D I I I I I

G .P P P P P P P G P P G G G P P P P P P P P P P P P G P

TABLE III. Extended.

0
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be exposed to intermediate hosts carrying the infective stages of

those species, via frequent ingestion of terrestrial invertebrates.

Species composition

Most of the parasite species present in these communities were

specialists; however, some of the communities sampled close to

the edge of the host distribution showed a high proportion of

generalist species. Eighty per cent of the parasite species in D.

albiventris in Santiago del Estero, Argentina, were generalists
(Navone and Suriano, 1992). Overall, the parasite communities
present in D. virginiana in southern Illinois seem to be richer
than all the others; yet, 50% of those species are generalists and
usually infect other species of mammals (Anderson, 2000). A
similar trend was observed in the community present in the
Virginia opossum from Connecticut. The phenomenon of loss of
diversity, i.e., species richness, toward the extremes of the host
distribution of the host species has been observed in other groups of

TABLE IV. Characterization of infection of gray four-eyed opossum, Philander opossum (n 5 26) and common opossum, Didelphis marsupialis (n 5 4) in
Camp du Tigre, District of Cayenne, French Guiana. ± SD follows mean intensity and mean abundance.

Parasite taxa

Site of

infection

Philander opossum Didelphis marsupialis

Prevalence

%

Mean

intensity

Mean

abundance

Prevalence

%

Mean

intensity

Mean

abundance

Cestoda

Mathevotaenia bivittata .Small intestine — — — 25 4 ± N/A* 1 ± 2

Nematoda

Aspidodera raillieti .Cecum and large intestine 42 70.6 ± 65 29.9 ± 54.3 100 566.3 ± 388.7 566.3 ± 388.7

Capillaria eberthi .Small intestine 42 7.1 ± 7.4 3 ± 5.9 50 4.5 ±3.5 2.3 ± 3.3

Cruzia tentaculata .Cecum and large intestine 42 12.6 ± 23.6 5.3 ± 16.2 25 4 ± N/A 1 ± 2

Moennigia sp. .Small intestine 4 27 ± N/A 1 ± 5.3 — — —

Spirura guianensis .Stomach 42 3.7 ± 4 1.6 ± 54.4 50 2.5 ± 2.1 1.3 ± 1.9

Travassostrongylus

paraquintus

.

Small intestine 100 59.6 ± 69 59.6 ± 69 100 41.5 ± 16.6 41.5 ± 16.6

Trichuris reesali .Cecum and large intestine 81 13.3 ± 20.4 10.7 ± 19 100 24.5 ± 19.2 24.5 ± 19.2

Viannaia viannai .Small intestine 69 31.4 ± 32.6 21.7 ± 30.7 100 47 ± 22.3 47 ± 22.3

Acanthocephala

Oligacanthorhynchus

microcephala

.

Small intestine 35 2.5 ± 1.9 0.9 ± 1.6 — — —

Oncicola campanulata .Small intestine 38 2 ± 1.9 0.8 ± 1.5 50 6 ± 4.2 3 ± 4.2

* N/A, not applicable.

FIGURE 1. Similarity based on Jaccard’s similarity index among parasite communities of 4 species of didelphid marsupials across 9 different localities.
All the species of parasites present in the digestive tract have been included in the analysis.
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vertebrates (Dogiel, 1964; Poulin and Dick, 2007). Although this
phenomenon seems to occur here, additional analyses are necessary
to test it.

One could expect that the parasites of primarily tropical

marsupials are not adapted to the seasonal changes occurring

in Boreal and Austral temperate localities of the New World.

This could be particularly important for the geohelminths,

species with direct patterns of transmission in which survival of

at least 1 stage of their life cycles (usually the eggs) depends on

the external environment. An example includes A. raillieti and

Viannaia sp., 2 common parasites of the opossums across the

Neotropics, but they also are present in southern Illinois. These

species were collected in low prevalence in this locality, even

though they may be quite prevalent in other geographic

localities through the range of their host(s). As is the case for

other heterakoids, the embryonated eggs of A. raillieti are

voided with the feces and remain in the soil until ingested by

the host. However, to remain infective, they require relatively

constant temperature and humidity (Anderson, 2000). A direct

consequence of this requirement would be the disappearance of

the parasites from localities where seasonality would induce

drastic changes in both temperature and humidity. This would

explain the changes in species composition due to the loss

of A. raillieti, Viannaia sp., and Linstowia sp. in southern

Illinois in 2 surveys separated by 2 decades (Cordell, 1974;

Alden, 1995).

Taxonomic similarity

Parasite communities occurring in the same locality showed

higher levels of taxonomic similarity than communities of

conspecific species of marsupials. This was the case for

communities present in French Guiana, Los Tuxtlas, and the 2

communities of the Virginia opossum from southern Illinois. This

pattern is concordant with the 1 found in helminth communities

of macropodids (Beveridge et al., 1998), in that taxonomic

similarity is higher among communities in hosts occurring in

sympatry.

Only parasite communities from the United States formed a

cluster with biogeographic meaning in that they belong to the

Nearctic region (Fig. 1). The values of similarity among these

communities seemed to be higher than the values of similarity

for communities present in the Neotropical region, even when

communities in the latter region were geographically closer.

The communities present in marsupials from Mexico illustrate

this point, suggesting that linear/geographic distance does not

seem to play a preponderant role in the similarity among these

communities. The 3 localities in the United States are

separated by 940 to 1,400 km and they share at least 50% of

species of parasites. In contrast, communities analyzed in

Mexico share ,25% of parasite species even though they are

separated by 498 to 922 km. Geographic barriers and drastic

changes in the biomes may provide a better explanation for

these differences.

Similarity among communities always decreased when rare

species were removed from the analysis. In Los Tuxtlas, the

similarity between communities in P. opossum compared with D.

marsupialis and D. virginiana dropped to approximately 50% (55

and 42%, respectively). The different diet composition of the 2

species of Didelphis relative to the gray four-eyed opossum may

account for this difference (McManus, 1974; Castro-Arellano

et al., 2000; Astúa, 2009).

Applying constraints by enforcing phylogenetic relationships

of the marsupials on the distribution of species of parasites

resulted in trees 27 and 19 steps longer than in the non-

constrained trees. These results suggest that many parasites are

not species specific (to host) and that they are compatible with

any of the species of sympatric marsupials studied. The

detection of some species that are not known to occur in other

FIGURE 2. Similarity based on Jaccard’s similarity index among parasite communities of 4 species of didelphid marsupials across 9 different localities.
Only species of endoparasites present with a prevalence .10% were included in the analysis.

JIMÉNEZ ET AL.—HELMINTH COMMUNITIES IN DIDELPHID MARSUPIALS 785



mammals suggests that this compatibility may be exclusive to

this group of marsupials, possibly in a form of specificity of the

parasites towards members of a clade (Choudhury and Dick,
2001). This hypothesis could be tested by including sympatric

species of mouse opossums in the analysis, because they belong

to different clades in the phylogeny of the marsupials (Voss and

Jansa, 2009).

General conclusions

Our results suggest the following: (1) species richness is a

variable attribute for any given species of host, (2) species

composition is variable across localities, and (3) sympatric species

of marsupials share more species of parasites than sister species do

across the localities compared. As a consequence, the comparison

among localities did not allow us to detect any statistically

significant differences among species richness, species of hosts,

and locality. This suggests that the parasites present in 1 locality

are capable of infecting sympatric species of marsupials with

similar ecology.

The study of parasite communities occurring in sympatric

and closely related species of marsupials over geographic space

is an excellent system with which to test interactions among the

filters that allow species, populations, and perhaps individuals

of mammals or other vertebrates to become infected with

various parasites. The study of the parasites comprising the

communities in both species of hosts and in geographic areas

would help in detecting trends in modes of infection and in

compatibility among symbionts. In our study, it seems that

marsupials of the monophyletic Didelphini offer the same

resources to their parasites by sharing similar morphologic,

behavioral, and physiologic traits. Mostly, the marsupials

would acquire parasites of the same set of species present in a

given area, resulting in high taxonomic similarity among

sympatric communities. The subtle differences in lifestyles of

the marsupials may determine the chance of encounter between

the symbionts and prevent some parasites from completing

their life cycles. Further and more rigorous tests to determine

the role of encounter and compatibility filters, as well as the

role of chance in the structuring of parasite communities in

marsupials, are necessary.
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2002. Helminth infracommunity structure of the sympatric garter
snakes Thamnophis eques and Thamnophis melanogaster from the
Mesa Central of Mexico. Journal of Parasitology 88: 454–460.
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