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Abstract

In this paper, I examine the role of skill specialization in collaboration network
structure, and individual position in the collaborative community. Using a model
of skill specialization and collaboration network formation, I show that as disci-
plines become less insular, the collaboration network becomes increasingly domi-
nated by a small number of individuals. I compare specialists and generalists with
the same number of skills and show that specialists will tend to have more links in
the network than generalists with the same number of skills. However, I the show
that generalists are more likely than specialists to occupy key central positions in
the network.

1 Introduction

Problem solving and innovation are important in many contexts, including academic research,
policy-making, product development, and entrepreneurship. Broadly speaking, innovators come
in two varieties: specialists and generalists. Specialists are people who have a deep knowledge of
a very narrow subject area. Generalists are people whose knowledge ranges across multiple subject
areas.! In this paper, I examine the different roles that specialists and generalists play in collabora-
tive problem-solving communities. Using a model of skills and collaborative connections, I show
that while specialists tend to have more collaborators than generalists, generalists are much more
likely to play a central role, connecting otherwise disparate communities.

Collaboration is a vital part of innovation and problem solving. By collaborating, individuals can
pool their skills and solve problems that none of them could hope to solve alone. This set of collab-
orative interactions bind individual innovators into a collaborative community. One way of studying
this community is by examining a collaboration network, in which any two individuals are connected
if they have collaborated on a project.

Consider the collaboration network pictured in Figure 1.1. It is an academic co-authorship network,
where two authors are connected if they have co-authored a paper together. The nodes are sized
according to the number of connections they have. For a collaboration network, this reflects the
number of collaborations an individual has. This network exhibits a characteristic that is typical of
most collaboration networks, across contexts—the degree distribution of the network is skewed (see
Figure 1.1), meaning that a small number of individuals participate in a large number of projects,
while most individuals participate in relatively few.* The result is what is called a “hub and spoke”

'Isaiah Berlin would call these two types of people “foxes” and “hedgehogs”. Foxes are people who know
many things. Hedgehogs are people who know one thing, but know it well.

“This skewed degree distribution has been observed in a wide range of collaboration networks. Most promi-
nantly, it can be seen in coauthorship networks in a variety of fields. Newman (2001) examines coauthorship
networks for several subdisciplines of physics, biomedical fields, and computer science. Moody (2004) does
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Figure 1.1: Panel A is an example of a collaboration network. This network is an academic coau-
thorship network, in which two indivdiuals are connected if they’ve coauthored a paper together.?
The nodes are sized and colored according to their degree (in this case, the number of collaborators
they have). Note that a few individuals have very high degree in the network, while most individuals
have low degree. Panel B illustrates this degree distribution. This skewed degree distribution can
be seen in a wide variety of collaboration networks. The high degree nodes will tend to have more
power and influence in the community, and will have better access to information.

network, in which a large number of low-degree “spokes” are arrayed around a small number of
high-degree “hubs”. Although we can easily observe this structure empirically, it is an open question
which factors determine how skewed that degree distribution is—in other words, can we identify
characteristics of a collaborative community that will make a collaboration network more centralized
around a few, high-degree individuals? This is an important question, because the structure of the
social network governs many of the other behaviors that we care about—it shapes the nature of
discourse by governing the flow of information and ideas, it can help or hinder communication, and
because social connections guide the process of opinion formation, the social network can affect the
time it take the community to reach a consensus.

Moreover, an individual innovator’s position in the collaboration network is an important determi-
nant of her outcomes. The hubs in the network in Figure 1.1 occupy a central position in the col-
laborative community. This gives them particularly good access to new information. They are also
more likely to be the prestigious members of the community, wielding a disproportionate amount of
influence. Individuals who form bridges between otherwise unconnected communities have a sim-
ilarly special role in collaborative communities. Consider the network pictured in Figure 1.2. This
network pictures two different collaborative communities, which are linked by a few individuals.
Ronald Burt (2004) calls the gaps between different communities “structural holes”. The individu-
als who bridge these structural holes have access to information and ideas from both communities.
Burt also argues that because they control the flow of information between the communities, bridges
have greater power in the community than those who do not bridge structural holes.

the same for sociology. Goyal et al (2006) looks at economists. Acedo et al (2006) present data on researchers
in management and organizational studies, and while they do not directly address the degree distribution, their
data includes more high-degree nodes than would be expected in a random network, suggesting a fat-tailed dis-
tribution. A skewed degree distribution has also been observed in interfirm collaboration (Powell et al (1996),
Iyer et al (2006)), creative artists in broadway plays (Uzzi and Spiro (2005)), film actors (Barabasi and Albert
(1999)), and jazz musicians (Gleiser and Danon (2003)).



Figure 1.2: An example of a collaboration network with two seperate communities. The two nodes
in the middle bridge a structural hole that exists between the two communities. These nodes benefit
from being able to control the flow of information between the two communities.

This heterogeneity of individuals is one of the great strengths of using social networks to model
collaborative communities. However, we do not yet have good models of what determines either the
overall structure of a collaboration network, or an individual’s place in a social network, and thus
their position in the collaborative community. What factors distinguish hubs from spokes? What
determines which innovators will bridge structural holes? In this paper, I consider one of the factors
that contributes to different individuals taking different positions in a collaboration network—the
specialization of that individual’s skills.

Recently, there has been considerable attention given to interdisciplinary and multidisciplinary work.
But is there any reason for an individual to choose an interdisciplinary set of skills? There is evi-
dence that generalists pay a penalty for diversifying their skills—Adamic et al show that the con-
tributions of generalists make less of an impact than the contributions of their more focused peers.
Given that penalty, it is difficult to justify the decision to become a generalist in a non-collaborative
environment. This can lead to an under-supply of generalists in the collaborative community. >

In this paper, I consider whether becoming a generalist confers some kind of network-based benefit
in a collaborative community. In the following, I use a model of collaboration network formation
to look at the positions of specialists and generalists in an endogenously-generated collaboration
network. I show that when problems are uni-disciplinary, specialists will have more links than
generalists with a similar number of skills. However, generalists will tend to occupy more central
positions in the collaboration network. Thus, even when there are no interdisciplinary problems,
being a generalist can provide network-based advantages for an individual problem solver.

2 Models of Collaboration Network Formation

The goal of this paper is to compare the positions of specialists and generalists on an endogenously-
generated collaboration network. Thus, it is worth taking a step back to look at the variety of models
that have been used to generate social network structures. These models can roughly be divided into
two categories: statistical models and decision-based models.

In statistical models, individual nodes are connected via some kind of stochastic process. The most
famous of these models is “preferential attachment”, in which new nodes connect to existing nodes

3 Anderson (2010)



with a probability that is proportional to the number of connections a node already has. These models
are very good at replicating the large-scale structures common to most social networks, including
the skewed degree distribution mentioned above. The disadvantage of these models is that because
individuals are not making decisions about their connections, they do not respond to incentives.
Moreover, the primary factor that distinguishes low-degree nodes from high-degree nodes is age.
Although this undoubtedly captures some of the variation in node degree in collaboration networks,
there is surely some additional variation due to individual skills.

A second class of models, called decision-based models, allow individuals to make their linking
decisions based on optimizing some kind of objective function.® The advantage of these models
is that because individuals make decisions, they can be made to respond to incentives. However,
most decision-based models of network formation assume that individuals are heterogeneous. This
means that the networks formed from these models are symmetric, and bear little resemblance to
empirically-observable collaboration networks. In particular, there are no high-degree nodes. Thus,
these models cannot be used to answer questions about who will end up in what position in the
network.

The model in this paper is a member of a class of decision-based models in which heterogeneity in
individual skill sets is translated into heterogeneity in network structure. (See Anderson (2010). In
these models, individual problem solvers have skills, which are useful for solving a problem. These
skills are pieces of knowledge, abilities, and tools that useful for solving problems, and are not easily
passed from one individual to the next.” Individuals pool their skills by collaborating on problems,
and the result is a collaboration network. Suppose, for example, we are interested in the network of
interactions between entrepreneurs. In this case, the problem being solved is the formation of a new
entrepreneurial firm. If this particular entrepreneurial venture is concerned with the development of
a web application, then the required skills might be computer programming, user interface design,
and marketing.® Although some, gifted individuals might have all of the skills required to start the
venture, conventional wisdom is that most people will have only a small fraction of the required
skills. Individual entrepreneurs collaborate with others who have complementary skills. The result-
ing collaboration is represented by a link between those individuals on the collaboration network.
Thus, this class of models takes as an input a population of problem solvers, with a distribution of
skills, and produces a collaboration network. The number of links that an individual has (her degree
on the collaboration network) is the number of collaborations that she participates in—in this case,
the number of ventures that she has a hand in founding.

3 The Bernoulli Skills Model

The Bernoulli Skills Model Anderson (2010) introduces a special case of this class of models, which
she calls “The Bernoulli Skills Model”, in which the probability of having any given skill is indepen-
dent of the probability of having any other skill. The model in this paper generalizes the Bernoulli
skills model, and thus it will be useful to start with this model before moving on. See Anderson
(2010) for more details of this model.

Suppose there are N problem solvers. Each has a copy of a problem, w, which requires M skills:
S = {s1...spr}. Each individual will have a subset of those skills, A; C S. In the Bernoulli Skills
Model, the skills are distributed independently—an individual has any given skill with probability
p. This means that the skill sets are the result of M Bernoulli random trials. Because skills are
uncorrelated, it makes sense to define an individual’s “ability” to be the number of skills she has,
a; = |A;|. Note that in the limit of large N, the agents’ abilities are distributed binomially, a ~
b(M,p).

An individual may have all of the skills required to solve the problem, but she may not. If she
lacks some of the required skills, she can work with another agent or agents on her problem. A
collaboration is a subset of the problem solvers, C'. An individual and her collaborators can solve
a problem if together they possess all of the required skills—that is, if the problem is solved if w C

%See, for example, Jackson and Wolinsky (1996) and Goyal and Moranga-Gonzalez (2001)

"Note that this latter characterization distinguishes skills from information. Whereas information is easily
passed from one person to another and aggregated across multiple individuals, skills are not.

8This is obviously an over-simplification, but it does illustrate the issues involved.



Degree Distribution for a Bernoulli Skills Network (M =10, p = 0.4)
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Figure 3.1: Panel A is a Bernoulli Random Skills network with 100 agents solving a problem re-
quiring M = 10 skills. The probability of having each skill is independant, with p = .4 of having
any individual skill. Panel B is the degree distribution of that network. Note that the number of
individuals with a given degree is plotted on a log scale for ease of reading.

U jecs A;. If the problem is solved, the collaborators get a payoff of 1. If they cannot solve the

problem, the payoff is 7.° Assume that she chooses a minimal set of collaborators'® that allows
her to solve the problem.!! If there are multiple minimal sets of collaborators, she chooses one at
random. By linking individuals who work together on a problem, we form a collaboration network.

Figure 3.1 illustrates both a network and the degree distribution for a simulation of a Bernoulli
Random Skills network with 100 individuals, M = 10 skills, and p = .4 probability of having each
skill.

4 Modifying the Bernoulli Skills Model-2 disciplines, 1 problem

In the Bernoulli skills model, skills are completely uncorrelated among problem solvers. In order
to answer questions about specialists and generalists, we need to modify the distribution of skills in
the community so that skills cluster together into disciplines. To model this kind of collaborative
community, I divide the skills into two disciplines: A and B. The agents are divided into type A and
type B according to whether they belong to discipline A or discipline B. The agents in discipline A
face a problem requiring only type A skills and those in discipline B face a problem requiring only
type B skills. The agents in each discipline have an easier time acquiring skills within their discipline
than outside of it. In particular, agents in discipline A have the skills in discipline A with probability
Pown and skills in discipline B with probability potper < Pown. Similarly, agents in discipline B have
skills in discipline B with probability p,.,, and those in discipline A with probability pother < Down-

“This particular production function could be written as

payoff ifw C U cq, 4;
0 otherwise

f(Aivvai) = {

!0There are many reasons that a problem solver might want to choose a minimal set of collaborators. Sup-
pose, for example, there is a payoff to solving a problem which is split evenly between the problem solver and
her collaborators. Then a payoff-maximizing problem solver will have an incentive to minimize the number of
people she works with on the problem. A problem solver might also want to minimize the number of collabo-
rators she has for interpersonal reasons (eg: because it simplifies communication or minimizes the possibility
for conflict).

"Because the payoff to solving the problem is non-zero, this is incentive compatible.



Figure 4.1: An example of a simulated collaboration network with two disciplines. In this case,
there are 20 skills total-10 in each discipline. The probability of having a skill is pyyn, = .35 for
skills in the agent’s own discipline and py¢pe = .05 for skills in the other discipline.

The links are formed as in the Bernoulli Skills model—individuals in discipline A choose a minimal
set of collaborators to solve their discipline A problem, and individuals in discipline B choose a
minimal set of collaborators to solve their discipline B problem.

When poyn, is strictly greater than p,.; ¢ the resulting network has two distinct collaborative com-
munities, as illustrated in Figure 4.1

The level of specialization in the network is parameterized by the pair (Pown, Pother). When the
probability of having skills in the other discipline is low, compared with the probability of having
skills in one’s own discipline (pother << Pown), the disciplines are highly codified, and skills are
highly specialized. In the extreme case, if py¢ner = 0, then no individual can have skills in another
discipline, and the collaborative community is divided completely in two. On the other hand, if
Pown = Pother, then skills are uncorrelated, as in the Bernoulli Skills Model-individuals in the two
disciplines still face different problems, but they have similar sets of skills.

The overall structure of the network depends on the level of specialization in the collaborative com-
munity. Figure 4.2 illustrates how the degree distribution changes for different values of p,.,, and
Dother- In each of these networks, individuals have the same number of skills on average (that is,
%pown + %pomer is the same in all cases). However, as po.,n and potner become more dissimilar,
the degree distribution of the network becomes less skewed—that is, as skills become less special-
ized, a larger and larger fraction of the problems are solved by a smaller and smaller fraction of the
problem solving community.'?

This raises the question of who those individuals with the exceptionally high degree will be. Are
they the specialists or the generalists? In the Bernoulli Skills Model, expected degree is strictly
increasing in the ability of an individual. However, in this model, the relationship between degree
and ability is a bit more complex. Even for a given ability level, specialists tend to have more links
than generalists. For example, for the case with M = 10, pown = .35, and pother = .05, the
following is the average degree of specialists and generalists in the network, by ability.

2Note that in the extreme case, where pown = Pother, the tWwo communities have the same distribution of
skills, but half face problem A and half face problem B. In that case, the degree distribution of the network is
the same as in the Bernoulli Skills Model.



Degree Distribution for Differing Levels of Specialization (M=10)
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Figure 4.2: Degree distribution for collaborative communities with different levels of skill special-
ization. AS pother and poyy get further apart, the disciplines become more specialized, and the
degree distribution of the network becomes less skewed. Note that the number of individuals with a
given degree is plotted on a log scale for ease of reading.

| Ability (# skills) | Average Degree, Specialist [ Average Degree, Generalist |

1 0.2 N/AT
2 0.7 0.3
3 24 0.8
4 8.6 23
5 24.9 6.8

Generalists have lower degree than specialists of the same ability because an individual’s desirabil-
ity as a collaborator within a community rises superadditively with the number of skills she can
offer that community (an individual with skills a and b can help anyone who needs skill a, anyone
who needs skill b, and anyone who needs both). By splitting their skills between the two commu-
nities, generalists don’t benefit from the synergies between skills, and end up less attractive to both
communities.

Looking at degree alone, one might wonder why any agent would ever choose to have skills in more
than one discipline. However, degree is only one measure of an individual’s role in the network—we
might also consider a whether a node is central to the collaborative community. One particularly
relevant measure of centrality in this context is a node’s “constraint”. The constraint of a node
measures the extent to which a node’s neighbors are similar to each other. Individuals with low
constraint tend to bridge disparate communities. This is a powerful position in the network, because
they benefit from being able to control the flow of information between communities. Although not
all generalists in this model have low constraint, many of the individuals with the lowest constraint
in these networks are generalists. For example, in the network in Figure 4.1, 5 of the 7 agents who
have low constraint are generalists. This is an intuitive result—generalists have skills to offer to both
collaborative communities, and thus are more likely to bridge those communities.

5 Conclusion

The results of this paper suggest that specialists and generalists will play very different roles in col-
laborative communities. When problems are focused within a single discipline, specialists will tend
to participate in a larger number of collaborations, because their skills are all useful in combination
with one another. Generalists tend to solve fewer problems, because only a subset of their skills are
relevant in any given context. However, generalists are more likely to be the bridging members of
the community, connecting otherwise disparate groups. This central role may provide incentive for
generalists to diversify their skills, despite the apparent penalties they pay for doing so. However,
since not all generalists play this bridging role, diversifying ones skills is still potentially a risky



strategy. Given the extremely important role that these bridges seem to play in the collaborative
process, this indicates that generalists may be providing a benefit to society that they are not being
compensated for, and thus generalists may be undersupplied from a societal perspective.
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