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Normal forms for two-inputs nonlinear control systems

Issa Amadou Talll

Abstract

We study the feedback group action on two-inputs non-
linear control systems. We follow an approach proposed
by Kang and Krener which consists of analyzing the
system and the feedback group step by step. We con-
struct a normal form which generalizes that obtained
in the single-input case. We also give homogenecus m-
invariants of the action of the group of homogeneous
transformations on the homogeneous systems of the
same degree. We illustrate our results by analyzing the
normal form and invariants of homogeneous systems of
degree two.

Keywords: normal forms, feedback transformation,
homogeneous systems, invariants.

1 Introduction

During the last twenty years, the problem of transform-
ing the nonlinear control system

E (=10 +e(Qu (R, uek™,

by a feedback transformation

Cu = el + B0

to a simpler form has been extensively studied using
various techniques. The transformation T brings £ to
the system

T &= f(x) + glav,

whose dynamics are given by

#(f + ga)
#.(93),

where for any vector field f and any diffeomorphism ¢
we denote

(¢ f)(z) = de(o () - S ().
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A natural question to ask is whether we can find a trans-
formation T" bringing ¥ into a linear system, that is,
whether we can linearize the system ¥ via feedback.
Necessary and sufficient geometric conditions for feed-
back linearizability have been given in [6] and [10].
Those conditions are, except for the planar control
affine case, restrictive and a natural problem that arises
is to find normal forms for non linearizable systems.
Although being natural, this problem is very involved
(because it necessarily involves functional invariants)
and has been extensively studied during the last twenty
years. Four basic methods have been proposed to study
feedback equivalence problems. The first method is
based on the theory of singularities of vector fields
and distributions, and their invariants, and using that
method a large variety of feedback classification prob-
lems have been solved, see e.g. [7], [10], [11], [15], [18],
i19], {24]. The second approach, proposed by Gard-
ner [3], uses Cartan’s method of equivalence and de-
scribes the geometry of feedback equivalence, see [4],
[5], 17]. The third method, inspired by the hamiltonian
formalism for optimal control problems, has been de-
veloped by Bonnard and Jakubczyk [2], [8], [9] and has
led to a very nice description of feedback invariants in
terms of singular extremals. Finally, a very fruitful ap-
proach was proposed by Kang and Krener {14] and then
followed by Kang [12], [13]. Their idea, which is closely
related with classical Poincaré’s technique for lineariza-
tion of dynamical systems (see e.g. [1]), is to analyze
the system ¥ and the feedback transformation I' step
by step and, as a consequence, to produce a simpler
equivalent system ¥ also step by step.

Recently, the results of Kang and Krener [12], {13], [14}
have been completed by the authors [20], [21] who ob-
tained canonical forms and dual canonical forms for
single-input nonlinear control systems with controllable
linearization. The authors also obtained normal forms
for single-input nonlinear control systems with uncon-
trollable linearization [22] (see also [16]), as well as the
corresponding homogeneous invariants. Thus the feed-
back classification of single-input nonlinear control sys-
tems is almost complete and the aim of this paper is
to deal with the multi-input nonlinear control systems.
We will study two-inputs control systems and the gen-
eral case will be given elsewhere.

In this paper we construct a2 normal form for two-
inputs nonlinear control systems with controllable lin-
earization. We will state our result for the case of
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equal controllability indices and involutive distribu-
tion G spanned by the control vector fields ¢; and go.
The general case (of unequal controllability indices, of
noninvolutive distribution G, and of general systems
* = f(z,u) that are not affine with respect to con-
trols) reduces to the problem considered in this paper
by a suitable prolongation of the system and is treated
in [23]. For the class of systems considered in this paper,
we rectify the involutive distribution G and we group all
non removable nonlinearities in the drift. This proce-
dure leads to a normal form that generalizes, in the case
of two-inputs, those obtained in the single-input case
[12}, [14], [20], [21]. Indeed, the normal form obtained
in this paper exhibits, similarly to the single-input case,
a triangular structure.

The second contribution of the paper is to give m-
invariants of the feedback equivalence of homogeneous
systems under homogeneous feedback transformations
of the same degree. For proofs and for a detailed anal-
ysis of feedback equivalence of two-inputs systems, the
reader is sent to [23].

The paper is organized as follows. In Section 2, we give
basic definitions and fix notations. In Section 3 we con-
struct our normal form for two-inputs nonlinear control
systems with controllable linearization. In Section 4, we
discuss invariants of the action of homogeneous trans-
formations on homogeneous systems of the same degree.
Finally, in Section 5 we consider quadratic systems and
give a geometric interpretation of their invariants.

2 Notations and definitions

All objects, that is, functions, maps, vector fields, con-
trol systems, etc., are considered in a neighborhood of
the point ¢ € R™ and assumed to be C*-smooth. Let h
be a smooth R-valued function. By

R(¢) = KO + R () + RO - = i RIM(¢)

we denote its Taylor series expansion at 0 € R",
where ™ (¢) stands for a homogeneous polynomial of
degree m.

Similarly, for a map ¢ of an open subset of R* to R"
(resp. for a vector field f on an open subset of R™)
we will denote by @™ (resp. by f™) the term of de-
gree m of its Taylor series expansion at 0 € R®, that
is, each component qbgml of ¢™ (resp. fJ!m] of fim) is
a homogeneous polynomial of degree m in (.

We will denote by HI™(¢) the space of homogeneous
polynomials of degree m of the variables (3,...,¢, and
by HZ™(¢) the space of formal power series of the vari-
ables (1,...,C, starting from terms of degree m. Anal-
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ogously, we will denote by R[™ () the space of homo-
geneous vector fields whose components are in H™(()
and by RZ™(() the space of vector fields formal power
series whose components are in HZ™(().

We consider nonlinear control systems, with two-inputs,
defined by
N (= F0) +9(Cu = F(O) + n(Qur + g2(us,

where { € B® and u = {u1,u9)7 € R?. Throughout
the paper we assume that 0 € R™ is an equilibrium
for the drift f, that is f(0) = 0, and that the linear
approximation at {0,0) € R™ x R2, given by

¢ = FC+ Gu = FC + Gruy + Gaua, (1)

where
a
F= 5%(0), G1=g0(0), G2 = 92(0),

is controllable, and that the matrix G is of rank 2, which
means that G3 A Gz # 0. The integers 1 < r; < 7q,
with r1 + r2 = n, forming the largest pair (r1,72), in
the lexicographic ordering, such that

span {FIG;, 0<j<r—1, 1<i<2}=R" (2)

are called the controllability indices of the linear ap-
proximation (1). Throughout the paper they are as-
sumed to be equal, that is, 71 = ro = r, where 2r = n.

The linear controllability assumption (2) implies
span {ad}gi(0), 0<j<r—1, 1<i<2}—R"

In particular, the distribution ¢ = span{g,g2},
spanned by the vector fields g; and gs, is of constant
rank 2 in a neighberhood of the point 0 € R™.

Our aim is to give a normal form for ¥ under invertible
feedback transformations of the form

r. = = ¢9
Cu a(¢) + B(()v,

where v = (v1,12)7, and « and 3 are, respectively, R*-
valued and GI(2,R)-valued smooth functions.

i

Consider the Taylor series expansion of the system ¥
given by

B2 1 (= FerGut Y (70 + g™ o). @)
m=2

Consider also the Taylor series expansion I'*® of the
feedback transformation ' given by

T

7¢+ 3 ¢mig)

u = KLt 3 (a0 +gmi0w),
) (4)

ree -
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where T and L are invertible matrices. Let us analyze
the action of I’ on the system %%,

We will use an approach proposed by Kang and
Krener [14], (see also [12], [13], [20}, {21]), which con-
sists of applying the feedback transformation '™ step
by step.

We first notice that, because of the controllability as-
sumption (2), with r; = vy = r, there always exists a
linear feedback transformation

x = 1¢
v = K{+ILv

.
bringing the linear part
¢:FC+GH=FC+G1U1 + Gaug
into the Brunovsky canonical form

&= Ar+ Bv = Az + Byv; + Bavs,

where

A4, 0 B 0
A:( ! ) ,B=(Bl,Bg):( 1 )
0 A2 nxn O b2 nx2

with (A;,b1) and (Ag,b2) being Brunovsky canonical
single-input forms, each of dimension .

Then we study, successively for m > 2, the action of
the homogeneous feedback transformations

T = C + d)[ml(C) (5)
u = v+am(Q)+ 8N

on the homogeneous systems

= AC+ Bu+ [ + g™ U(Ou. (6)

rm .

A feedback transformation defined as a‘series of suc-
cessive compositions of I'™, m = 1,2,... will also be
denoted by I'*® because, as a formal power series, it is
of the form (4). We will not address the problem of
convergence and we will call such a series of successive
compositions a formal feedback transformation.

We say that the homogeneous system L™, given by (6),
is feedback equivalent to the homogeneous system

M i = Azt Bu+ ) + d Ve (7)

if there exists a homogeneous feedback transforma-
tion T™, of the form (5), which brings £ into ™
module terms in RZ™+{z, v).

We will say that the homogeneous system E!™ has an
involutive distribution GU™ if the distribution
gl = span { By + o™, By + "1}

is involutive modulo terms in RZ™1(¢).
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3 Main Results.

In this section we will establish our main results. For
any k=1,2 and for any 1 € ¢ < r, we denote
T = (Th,1, ,-’Ek,i)T-

Together with the distribution G = span{g1,g2}, we
will consider

) oo
G* = span {Bl + Z ggm—llle + Z ggm—ll} )

m=2 m=2

The following result gives normal forms for two-inputs
control-affine systems with equal controllability indices
and involutive control distribution.

Theorem 1 (i) The two-inputs homogeneous sys-
tem T, defined by (6), with involutive distribu-
tion ¢, is equivalent, by a homegeneous feedback
transformation I'™ of the form (5), to the following nor-
mal form

EB{,“}- &= Az + By + fiml(x),

where, for any m > 2, we have

i =5

) e+ g ) ®)

j=t 6:::2,]-
with
* e kim—2
o) = % 22 PEM a5, 505)
t=jF+2
T klm—2
+ 2 f":th m= ](1'11 1 E24)
i=j42
. P
+ 3 miaxe Ry (BrEa)
i=j42

T klm—2], . n
+ 2 %18y (Fri-1,%2,4-1)

9
foranyl<ji<r-2 andanyk=12

(ii) The two-inputs nonlinear control affine system ¥,
defined by (3), with involutive distribution G™ is
feedback equivalent, by e formal feedback transforma-
tion I'°° of the form (4), to the following normal form

o0
Np E=Az+Bv+ Y f[mi(:c),
m=2

where, for any m > 2, the vector field 1™ is given
by (8)-(9).

Notice that, if we take ¥ = 1, and hence r = n,

then (z2,1,22,2,...,%2,) are not present and the poly-
nomials Qk[m 2 RJ{:” 2 Sf[m 2 for k=1,2, are not
present, elther Wthh reduces the equation (9) to

f;[m]($ Zx Pl[m—z] i),

i=j+2
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for 1 € 7 < n—2. This is the normal form of single-
input control systems with controllable linearization ob-

tained by Kang [12].

A proof of Theorem 1 is given in [23], where we also
show that the general case (of unequal controllability
indices, of noninvolutive distribution G, and of general
systems # = f(x,u) that are not affine with respect
to controls) reduces to the problem considered in this
paper by a suitable prolongation of the system.

4 m-Invariants

The aim of this section is to introduce m-invariants
of the action of homogeneous feedback transforma-
tions I'"™ on homogeneous systems

= AC+ Bu+ () + g (Qu
AC + Biuy + Bausg

+ £ (¢) + gy + g5 (O

Recall that we consider systems with equal controllabil-
ity indices and with involutive control distribution ¢l™.
For any 0 <7 < r — 1, we define the polynomial vector
fields X7%*, and XJ%" by

ximl

Xgn,s:_l = (=1) ad‘AGﬂm](Bl +91 11), and
XPTU = (“Diadly pi(Be 4 oM.
We introduce the following homogeneous vector fields

X[m—ll

1
¥ (—Diadi, g™ "
Z(*l 1 kad‘—kadAk—xB‘f[m],
X ( 1)'ad’A [m-1]

+ Z (1) *adi
k=1

+

adAk_lgz f[m]

to be, respectively, the homogeneous parts of de-
gree m — 1 of the polynomial vector fields X{’;’l
and X747t

For any 0 < ¢, j < r, we denote by ##(¢) the projection
on the subspace

Wis={ (=1 GG eR¥:
{r—itr ==, =0, and
Car—jir=-=0C,=0 1},

that is,

ﬂ'j'(() ={¢1,1, 5 Cr—i0,-4,0, 82,1, -, C2,0— 5, 0, -, O)

) _ 1 0 - 000 «-- 0
LetC—(O. 0 oo 010 - 0 bea2 x 2r
matrix whose rows are given by ¢ = (1,0,---,0)
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and Cp {G, ,0), and define the sub-

set A of N2 by

A={(ji)eN:1<j<r-2 05i§r—j—2}.

Now, let us define, for any (4,7) € A, the R?-valued
[mlJ i+2  [ml]ji+2  [mliit+2
y Qo9 y 812 )

and a. to be, respectlvely, the homogeneous parts
of degree m — 2 of the R%-valued functions

homogeneous polynomials a,
lm]J it+2

CAITHXTT, X (nda Q).

CAMXTT XT AW (),
CATTHXT L XTHANE(O), and

CAT X, XTI (O)+

+Laswip, 3 CATXETY, X (i (¢

We will take al l”"“ =0, for any 1 < k,{ < 2 and for
any {f,1) € A.

The R?-valued homogeneous polynomials a["}]J 2 for

1 < k! < 2and (4,7 € A, will be called the m-
invariants of the homogeneous system X" under the
action of the homogeneous feedback transformation I'™,
The following result asserts that m-invariants alml"’”r2
for 1 < k1 < 2 and (4,1) € A, are complete in-
variants of homogeneous feedback and, moreover, il-
lustrates their meaning for the homogeneous normal
form EEQ”IL Consider two homogeneous systems %™
and £I™ and let

{aWF2  (Gi)e A, 1<kI<2} and

{a"P? G eA, 1<kig2)

denote, respectively, their m-invariants. We get the
following result generalizing that proved by Kang for
single-input systems.

Theorem 2 The m-invariants have the following prop-
erties:
(i) Two homogeneous systems 1™ and B gre equiv-
alent via a homogeneous feedback transformation T™ if
and only if

a[":‘l].}sﬂ'? &Lrﬁl:.w?,

forany (j,i)€E A and any 1 < k1 < 2.

(i) The m-invariants &[m’]’ "2 for1 < kI < 2 and
Jor (4,1) € A, of the homageneous normal form

EE{,”IL : & = Az + Bv + f1(z),

with the vector field fI™(x) defined by (8)-(9), are given

Authorized licensed use limited to: Southern lllinois University Carbondale. Downloaded on January 22, 2009 at 14:31 from IEEE Xplore. Restrictions apply.



by
_[m}j,i j— 62ﬁm] i
a7 @) = AT o —(rin(2)),
1,r—i
_Im]4.i — 32f_[ '3
P a) = AT o —(nt )
z2,r‘—z
. 2 flm]
_{m]ji+2 — i1 o f i+1
ey ) = CAT g (i (@),
. . 2 Flm| .
a2y = ot ST iy

01 10T,

(iliy Twe homogeneous normal forms EB{?}], and E-JE,G‘}
are equivalent via o homogeneous feedback transforma-
tion I'™ if and only if

prim=2] _ phlm—2] Kim-2] _ Akm—2)
- iy’ Slg[fn—z’] B g:é’t}‘;_z] ’
Rgm m =800, S5 T =85 T

forany (j,i) € A, and any 1 < k < 2.

(iv) The homogeneous system TI™ is feedback lineariz-
able, modulo terms in RZ™H{z,v), if and only if

[m]ji+2 _
g, s =0,

forany (j,i) e A endany 1 < k, 1 <2

5 Quadratic homogeneous systems

In this section we will illustrate our results by dis-
cussing quadratic homogeneous systems. Theorem 1(i)
implies that the quadratic system T[¥ can be brought
to the following quadratic normal form 25‘3]}-"! consist-
ing of two r-dimensional subsystems, each evolving on

(-Tk.,lamk,Zy e ,.’.'L'k’r), for k = 1, 2,
Lok 2k
Er1 = zee+ p, (2307, + 23 0F;
i=3
+:1:1,1':l:2','73fi + 331,:’-732,;'715)16,1)
. _ 2 Lk
Thk,r—2 = Tk,r—1 + xl,rprw2,r + x%,rQr’fw?,r
k k
+Il.f:’:2,?‘rr—2,r + L1rT2,r-15r. 2y
-'i:k',r—l Lr,r
ik,r - Uiy

(10)
where pf,qf;, 75,55 € R, for (j,4) € A and k =
1,2, are invariants of %% under homogeneous feedback
transformations I'2. Qbserve the triangular structure

Phs pi,q s pz,r
p2,4 pQ,r (11)
pﬁ—Z,r‘
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of the invariants p;-“i (of course, q;fi, r;?,i, 3’?’:- exhibit
analogous triangular structure). Notice that if we take
k = 1, and hence r = n, then (32’1,32’2,...,$2’r) are
not present and q;“,i, r;f";, S?,i are not present either. In
this case, we thus rediscover in (10}, the normal form
constructed by Kang and Krener [14] in the single-input

case and in (11) we rediscover their invariants.

Now we will discuss a geometric meaning of the invari-
ants pk;, g5, r&,, s¥., in particular, why the number
of invariants grows so rapidiy when passing from one
to two inputs. To this end, comnsider the two-inputs
system T2 in the simplest case of n = 6 and 7 = 3:

Era = Tre+T3apFs +25a0fs

+21,3%T2377 3 + $1,3$2,2ij,3 12)
Txa = Tk3
Tk3 = Uk,

for ¥ = 1,2. Theorem 2(iv) implies that the system (12)
is feedback linearizable if and only if p¥; = g%, =r¥, =
sk, =0, for all (j,i) € A and k = 1,2. Let us con-
sider (12} as a perturbation of the system in Brunovsky
canonical form on R®, with the parameters pf ,, g5, r¥ .,

3?,;‘ measuring the distance from the Brunovsky form.

It is well known (see e.g [6] or [10]) that (12) is feedback
linearizable if and only if the distribution

G» = span{g1, g2, adsg, adsga}

is involutive (clearly, G; = G is involutive). Now the
crucial observation is that the involutivity of G, involves
actually four conditions: {g:,adsg1] € G2, [g2,0ds92] €
Gz, [g1,adsg2] € Gz, and [adsgq,adsgs] € G». We have

lo1.adsan] = -2pi, 6::?1,1 ~2is axae,1

92,adrg2] = —2615 e 2035 5;;92_1

(91, 0dfg2] = _T},S% - ?%35%
ladsgi,adsgs] = —sig 3%1 —sla aziﬂ

(last equality holds mod RZ1(z)). Therefore the invari-
ants pf;, ¢F;, r%;, 5, correspond to the four indepen-
dent ways of possible violating the involutivity of Gs.
Notice a slightly different role played by the invari-
ants 5?,5 with respect to the remaining ones. Firstly, in-
stead of [g1, adsgo| € G2 we can ask for (g2, adsg1] € Go
and the two conditions are equivalent by the Jacobi
identity. This implies that in the normal form )353]1},
instead of terms Ilygzz)gsie‘, we could have terms of
the form .1:1,2.?:2‘33,1‘:‘3 (the same remains true for any
dimension and any degree of homogeneity).

Secondly, the condition [gi,adfg:] € Go implies
that & is linear with respect to %13, the condition
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lg2,adsg2) € G2 implies that %% is linear with respect
to T3, and together with [g1,adsga] € Go, the three
conditions imply that L is linear with respect to the
pair (z1,3,z2,3). Therefore under these three condi-
tions, we can consider % as the prolongation (via pre-
integration of each input zx s, k = 1,2) of the system

Tk,1
T2

L2 + T1,3%2,2
Tk,3

(13)

on B? and controlled by (z1s,223). Now we
can observe that the fourth involutivity condition
ladsg1,adpgs] € Go for (12} is just the condition of the
involutivity of the control distribution G of the reduced
system (13), which gives its geometric interpretation.
Analogous interpretation holds in any dimension and
for any degree of homogeneity m.
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