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Analytic procedures allow auditors (or forensic accountants) to identify the presence of 

unexpected relationships among financial data, including unusual transactions or events, and to 

develop the scope of audit planning or investigation (Corbett and Clayton 2006, Bhattacharjee and 

Machuga 2004, Asare and Wright 2001).The effectiveness of analytic techniques e.g., trend analysis, 

ratio analysis, or a regression analysis depends on the precision of expectations developed (Kenyon 

and Tilton 2006).However, there is a caveat associated with these expectations. Specifically, Hitzig 

(2004) notes that “…because the expectation is specified by the auditor, and because the expectation’s 

parameters are estimated from data that may be misstated [or contain fraudulent transactions], there is 

a risk that reasonable expectations are incorrect…” (p. 34). As such, the risk of failing to detect the 

presence of suspicious trends, patterns, or anomalies within the financial data likely exists. This 

problem is referred to herein as the risk of Type II error. 

On the other hand, analytic procedures infer propriety of individual transactions based on the 

reasonableness of aggregated account balances or classes of transactions (Stringer and Stewart 1986, p. 

16). The percentage of misdiagnosis associated with these procedures ranges from 15% to 50% (Kogan 

et al. 2010) and research indicates that the use of daily or monthly disaggregated data improves the 

effectiveness of analytic techniques (Kogan et al. 2010, Hoitash et al. 2006, Leitch and Chen 2003, 

Chen and Leitch 1998, 1999, Dzeng 1994). Nonetheless, assessing for the presence of unusual 

transactions may be difficult or costly when the volume of disaggregated data becomes considerably 

large such as tens or hundreds of thousands (or even millions) of observations. In this case, analytic 

procedures may be used to focus the audit planning or investigation on certain areas of concern 

(Corbett and Clayton 2006). The effectiveness of this approach also depends on the precision of the 

initial suspicion. In addition, the results of traditional statistical analytic techniques such as a 
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regression or time series analysis associated with disaggregated data may be problematic when the 

amount of data to examine increases or when several analytic procedures are used. These problems are 

referred to herein as excessive power (Nigrini 2000, p. 75) and the risk of Type I error, respectively. 

To address the issues described above, this study introduces a new bootstrap regression 

(BREG) procedure in the context of Benford’s Law to identify unusual patterns of data using the first 

two digits of financial data. The BREG procedure is based on simple regression analysis, which is a 

commonly used technique by practitioners (Kogan et al. 2010, Corbett and Clayton 2006, Hoitash et 

al. 2006, Leitch and Chen 2003, Chen and Leitch 1998, 1999, Dzeng 1994, Stringer 1986, Kinney and 

Salamon 1982).Further, the BREG procedure is related to the technique introduced by Suh and 

Headrick (2010) insofar as it is an overall analysis (rather than a digit-by-digit analysis), which 

addresses the concern for Type I error (Cleary and Thibodeau 2005), and it is based on bootstrapping 

conventional statistics such as a mean or variance.  

Furthermore, the Benford parameters associated with these statistics are independently derived 

of any implicit or explicit financial data subject to audit and the use of these parameters addresses the 

concern for Type II error. Moreover, the BREG procedure, unlike other conventional statistical 

procedures (e.g., chi-square goodness of fit test or the Nigrini distortion factor index 1996), can be 

inexpensively applied to large disaggregated financial data sets without requiring any initial suspicions 

about potential misstatements or fraud in specific account balances or classes of transactions. It also 

mitigates the excessive power problem by making use of exact (Benford) bootstrap confidence 

intervals that are based on the specific sample size of any given financial data set subject to audit. 

To demonstrate the effectiveness and efficiency of the BREG procedure, we examined four 

different types of data sets: (a) customer purchasing and credit card debt transactions referred to as 

non-fraudulent data, (b) fabricated data referred to as non-Benford-like data, (c) Federal Election 

Commission (FEC) in-kind contributions referred to as allegedly fraudulent data, and (d) 

inventory/purchasing and revenue/cash receipt transactions from a Mexican retail company located in 

Mexico City. A priori, we were aware of the nature of each data set except for the Mexican retail 

company’s data. The results associated with the first three data sets were consistent with our prior 

knowledge and demonstrate that the proposed BREG procedure provides accurate diagnoses. 

Applications of the BREG procedure to the Mexican retail company data revealed unusual 

transactions in specific accounts such as cash sales and inventory. Based on the diagnostic reports, the 

Mexican retail company initiated further investigations and confirmed the presence of unusual 
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activities across its divisions. For example, the retail company commented that “the results of the study 

[diagnostic reports from the BREG procedure] corresponding to Division 3 reflect the reality. That is, 

we were able to determine the existence of unusual transactions in inventory and cash sales. Additional 

investigations confirm that these transactions were fraudulent. Currently, we are acting on this critical 

situation.” 

In the next section, the methodology for the proposed BREG procedure is developed and 

explained in terms of how bootstrapping techniques are used in conjunction with regression analysis to 

assess whether financial data likely contain unusual transactions or events. In the subsequent section 

we present applications of the BREG procedure to non-fraudulent, fabricated non-Benford-like, 

allegedly fraudulent, and the Mexican retail company data sets. In the last section, we discuss 

applications of the BREG procedure in the context of Benford’s Law and make suggestions for further 

research. We also discuss other statistical analytic techniques and the problems associated with these 

techniques in the context of the Mexican retail company data. 

METHODOLOGY 

The Bootstrap and Regression (BREG) 

The proposed bootstrap regression (BREG) procedure can be described by first generally 

expressing a linear population regression model in terms of its parameters as 

0 1i i iY X      (1) 

where iY  is the dependent variable, iX  is the independent variable, i  is the error term, and where

1,..., .i N  The estimates ( 0̂  and 1̂ ) associated with the parameters 0 and 1  are obtained based on 

the method of ordinary least squares. In the context of hypothesis testing, one of the assumptions is 

that the error term in (1) is normally distributed. However, a common problem is that real-world data 

often fail to meet the normality assumption such as the case with discrete Benford-like data. In such 

situations, nonparametric tests have demonstrated to be appropriate in terms of controlling Type I error 

and power (e.g., Mooney and Duval 1993). For example, the bootstrap can be used to make 

appropriate inferences associated with the population parameters ( 0 and 1 ) without having to make 

distributional assumptions regarding the error term i  in (1) (Efron and Tibshirani, 1998). 

A fundamental description of the bootstrap in the context of the regression model in (1) begins 

with randomly generating T bootstrap samples from the initial data set as  1 1,i iX Y ,  2 2,i iX Y ,…, 
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 ,iT iTX Y  for 1,..., .i N  Each of the T samples contains the same number of N cases which are drawn 

with equal probability and with replacement from the initial data set. The estimates of 0̂  and 1̂  are 

computed for each of the T samples and subsequently ordered from minimum to maximum as 

       1

0 0 0 0
ˆ ˆ ˆ ˆmin ,...,max

T
      and        1

1 1 1 1
ˆ ˆ ˆ ˆmin ,...,max

T
      to construct the bootstrap 

confidence intervals (CIs). For example, if the specified Type I error rate was 0.05  and 25,000T   

then the 95% CIs would appear generally as     625 24,375

0 0 0
ˆ ˆ    and     625 24,375

1 1 1
ˆ ˆ    . For 

further details on the theory and practice of the bootstrap in the context of regression analysis see 

Efron and Tibshirani (1998) and Mooney and Duval (1993). 

Benford’s Law and the BREG procedure 

Benford (1938) proposed formulae to determine the exact probabilities for the first digits ( 1d ) 

and the second digits ( 2d ) for certain kinds of data. Using a variety of large data sets, Benford (1938) 

empirically demonstrated that the leading first digits closely follow their associated exact probabilities. 

See Appendix A and Appendix B for tabled values of Benford probabilities and for formulae to 

compute exact Benford probabilities, respectively. 

The specific forms of the population regression models for the proposed BREG procedure 

based on (1) and Benford’s Law are expressed in terms of the first digits 1d  and the second digits 2d  

as 

1 0 1 2 1i i id d    
 

(2) 

2 0 1 1 2i i id d     . (3) 

Using the regression models in (2) and (3), the following two sets of null hypotheses can be 

formulated to test whether financial data follow Benford’s Law as 

10, 0:   3.239170dH    and 1 0.048018   (4) 

20, 0:   3.962264dH   and 1 0.065439  . (5) 

These two sets of parameters in (4) and (5) are referred to as “Benford parameters” because they were 

derived under the assumption that the probability distributions associated with the first digits and the 

second digits of a data set follow their exact Benford probabilities. See Appendix B for the derivations 

of the Benford parameters in (4) and (5). Failing to reject the null hypotheses in (4) and (5) suggests 

that financial data are unlikely to contain suspicious trends, patterns, or anomalies. 
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The hypotheses in (4) and (5) are stated for both regression models in (2) and (3) because both

1d  and 2d  are considered to be random variables (Pedhazur, 1997; p. 38). Further, the bootstrapping 

sampling procedure considers the two sets of hypotheses in (4) and (5) as independent of each other.
1
 

However, within each regression model, there is a strong negative correlation between the estimates of 

the intercept term and the slope coefficient i.e., 
0 1 0 1, , 0.82       . As a result, a Bonferroni 

adjustment to the conventional Type I error rate of 0.05(i.e., 0.05 2 0.025 ) is used with 

acorresponding 97.5% CIs for each parameter. This approach mitigates auditors from concluding 

evidence of unusual transactions when there is none. 

Given the specified Benford parameters in (4) and (5), the steps taken to evaluate for potential 

variations in plausible relationships among financial data are: (a) obtain the leading first two digits 

from the actual data under investigation and the exact first and second digits associated with Benford-

like (or fraud-free) data, (b) run the BREG procedure for the actual data digits and the exact (Benford-

like) data digits and obtain the 97.5% bootstrap CIs for the parameters in (2) and (3), and (c) evaluate 

for the potential existence of unusual patterns of transactions by assessing financial data conformity to 

Benford’s Law. 

The decision criteria for part (c) are as follows: If all four bootstrap CIs associated with (4) and 

(5) contain their respective Benford parameters or overlap with their corresponding exact (or Benford) 

CIs then conclude that the digit patterns of the actual financial data follow Benford’s Law and that the 

financial data unlikely contain unusual fluctuations that may signal potential misstatements or fraud. 

Otherwise, if any one (or more) of the four CIs does not contain their respective Benford parameters or 

does not overlap with their corresponding exact CIs, then infer that the financial data are suspicious 

enough to initiate further detailed test of transactions (or investigation).We note that the use of CIs as 

the decision criteria to infer the propriety of accounts balances or classes of transactions is consistent 

with prior analytic procedure studies (e.g., Kogan 2010, Kinney 1979). For example, the presence of 

potential anomalies is inferred if the predictive variable associated with the data exceeds either the 

upper or lower limits of the prediction interval (Kogan, 2010,p. 27). 

We would also note that the bootstrap CIs for the Benford parameters in(4) and (5) can be 

obtained using TIBCO SpotfireS+ (Version 8.1, 2008). See Figure 1 for the S+ notations and an 

illustration of the BREG procedure and the decision criteria. Note also that the bootstrap CIs can be 

                                                 
1
The independent relationship between the two sets of hypotheses in (4) and (5) is based on the fact that the initial random 

seed numbers used to conduct the two bootstrap regression analyses are different. 
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obtained using SPSS (PASW) statistics (Version 18.0, 2009) with the bootstrap add-on package. In 

addition, the exact first and second digits are generated based on the specific N size of the actual data 

and the exact probabilities for the first two digits are given in Suh and Headrick (2010)Table A.3. The 

algorithms and instructions for generating exact digits are available at the following website: 

http://www.siuc.edu/~epse1/headrick/Benford/ExactDigits.doc. The executable file to compute the first 

two digits can be downloaded by using the following link: 

http://www.siuc.edu/~epse1/headrick/Benford/D1D2.exe (Suh and Headrick 2010, p. 149). 

To demonstrate the decision criteria in Figure 1, consider a hypothetical checking account with 

the 97.5% bootstrap CIs of  02.778 3.519  **,  10.034 0.0461   *,  02.965 3.561  *, 

and  10.110 0.057   *.One asterisk (*) indicates that the CI overlaps with the Benford CI but 

does not contain the parameter and two asterisks (**) denote that the CI contains the Benford 

parameter. Inspection of these CIs indicates that the checking account transactions unlikely contain 

suspicious patterns of data because one CI contains its respective Benford parameter and the remaining 

CIs overlap with the following exact (or Benford) CIs for each parameter:  02.578 3.309  , 

 10.017 0.061   ,  03.128 3.995  , and  10.021 0.087   . Alternatively, given the same 

exact CIs, if the 97.5% CIs associated with the checking account were (3.364 0 3.586), 

 10.064 0.035   *,  02.965 3.561  *, and  10.110 0.054   *, then these results suggest 

data are suspicious because one CI neither contains its Benford parameter nor overlaps with exact CI. 

We would also note that bold numbers indicate that the CIs neither contain the Benford parameters nor 

overlap with Benford CIs. 

APPLICATIONS 

Data 

Four different kinds of data sets were used in this study. The first data set consisted of two 

samples of individuals’(non-fraudulent) purchasing transactions targeted by a marketing campaign and 

credit card debt transactions (SPSS, 2008). The second data set is fabricated non-Benford-like data 

(Hill, 1988). We replicated the first digits and the second digits of the non-Benford-like data based on 

the digit probabilities provided by Hill (1988, p. 969) who instructed his 742 undergraduate students to 

write a six-digit number “out of their heads” (See Tables A.1 and A.2 in Appendix A). The third data 

set consists of the 1994, 1996, and 2004 Federal Election Commission (FEC) committee-to-committee 

http://www.siuc.edu/~epse1/headrick/Benford/ExactDigits.doc
http://www.siuc.edu/~epse1/headrick/Benford/D1D2.exe
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in-kind contributions and allegedly contains fraudulent transactions (Cho and Gaines, 2007). The FEC 

in-kind contributions are cash, donated services, or bills paid by a third party on behalf of a campaign 

committee. These contributions are not subject to a maximum threshold of donations mandated by the 

government. The last data set includes inventory/purchasing and revenue/cash receipt transactions of a 

retail company located in Mexico City. The Mexican retail company’s records were examined on a 

daily basis and for each of three divisions during 2007-2009. The specific records are credit/cash sales, 

cash collection, check/cash deposits, inventory, purchases, and purchase returns. We would note that 

the exact (Benford) CIs associated with each of the four data sets are not tabulated in the following 

section, but are available from the first author. 

Results 

Table A.1 and Table A.2 in Appendix A give the empirical probabilities associated with the 

first digits and the second digits of the non-fraudulent Amount data (SPSS, 2008). These data represent 

purchasing transactions of 24,067N   individuals targeted by a marketing campaign. The empirical 

probabilities of the Amount data are juxtaposed with the exact Benford probabilities in Figure 2 and 

Figure 3. Inspection of Tables A.1 and A.2 and Figures 2 and 3 suggests that the leading first digits and 

second digits for the purchasing transaction data closely approximate Benford’s Law.  

To validate our observations, the BREG procedure was conducted on the Amount data. The 

results in Table 1 indicate that the Amount data conform to Benford’s Law. That is, all four bootstrap 

CIs contain their respective Benford parameters in (3) and (4) or overlap with exact (or Benford) CIs. 

In contradistinction, the results of the traditional statistical procedures on the first digits suggest that 

the Amount data likely contain significant fluctuations that signal misstatements. Specifically, both the 

chi-square test (
2 16.073, 0.041p   ) and the Nigrini (1996) distortion factor index (

2.295, 0.022Z p   ) are statistically significant using a Type I error rate of 0.05 . The primary 

reason for this discrepancy is the excessive power problem associated with these statistical tests as the 

number of purchasing transactions becomes large ( 24,067N  ). This excessive power problem was 

confirmed by a Monte Carlo simulation where we used the probabilities associated with the Amount 

data in Table A.1 as a basis to generate observed frequencies and the exact Benford probabilities for 

the first digits as a basis to generate expected frequencies for the chi-square test statistic. The results of 

the simulation (not tabulated) showed that the rejection rate was intolerably high .830.This result was 

based on a Type I error rate of 0.05 , 24,067N  , and 25,000 independent chi-square sample statistics. 
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The empirical rate of .830 is the proportion of rejections (i.e. 0.05p  ) associated with the 25,000 chi-

square statistics. Thus, for large sample sizes, the chi-square goodness-of-fit test is not recommended. 

The BREG procedure was also applied to another non-fraudulent data set (SPSS 2009) 

consisting of 5,990N  credit card debt transactions and the Hill (1988) fabricated non-Benford-like 

data with the same number of observations as the sample size of the Amount data ( 24,067N  ). The 

results in Table 1 show that the leading first digit and second digit probabilities of the credit card debt 

transactions follow Benford-like distributions because all bootstrap CIs contain Benford parameters or 

overlap with exact CIs. In contrast, all bootstrap CIs associated with the fabricated non-Benford-like 

data do not contain the Benford parameters or do not overlap with exact (or Benford) CIs. Thus, these 

results are consistent with our prior knowledge on the nature of the data sets. In summary, the results in 

Table 1 demonstrate that the BREG procedure ameliorates the excessive power problem in the context 

of Benford’s Law. 

In addition, the BREG procedure was applied to the Federal Election Commission (FEC) data 

for the years 1994, 1996, and 2004.Inspection of Table 2 indicate that all four bootstrap CIs do not 

contain Benford parameters or do not overlap with exact CIs for the 1994 and 2004 data. In terms of 

the 1996 data, one of the four CIs  0  neither contains nor overlaps with exact CIs. As such, these 

results provide evidence of addressing the Type II error problem because they corroborate with the 

findings of Cho and Gaines (2007) who suggest that potential irregularities with the “soft” money 

contributions exist in the 1994, 1996, and 2004 FEC data. 

Finally, we examined the Mexican retail company’s daily transactions for each one of the 

following accounts of Divisions 1, 2, and 3 from 2007 to 2009: (a) credit/cash sales, (b) cash 

collection, (c) check/cash deposits, (d) inventory, and (e) purchase/purchase returns. The results 

presented in Table 3 suggest that none of the accounts of Division 1 likely exhibits unusual patterns of 

transactions except for the inventory account. Other accounts such as adjustments to inventory, sales 

returns, and inventory write-offs were not examined due to an insufficient number of observations 

(e.g., 14N  ). 

Based on our findings, the retail company initiated further investigation and provided the 

following comment
i
:  

[The results of the study—diagnostic reports from Bootstrap regression analyses—for Division 

1 coincide with unusual movements of inventory that we were able to detect based on further 

audit testing. Currently, these transactions are under investigations]. 
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Table 4 and Table 5 present results associated with Division 2 and Division 3, respectively. 

These results suggest presence of unusual transactions in cash sales and inventory accounts as three out 

of the four bootstrap CIs associated with these accounts do not contain their respective Benford 

parameter or do not overlap with their corresponding exact CI. It is likely that these unusual patterns 

are connected to each other because the accounting information system of the Mexican retail company 

is designed in such a manner where inventory records are linked to both cash/credit sales and 

purchase/purchase return records. Another reason of our conjecture relates to a small number of 

observations in purchase/purchase return accounts (e.g., 9N  ) for Division 2 and the results in Table 

3 indicate that data anomalies with purchase/purchase return accounts likely do not exist in Division 

3.Given our diagnostic reports, the retail company initiated further investigations in Division 2 and 

Division 3 and provided us with the following feedback
ii
:  

[The results of the study—diagnostic reports from Bootstrap regression analyses—related to 

Division 2 match with unusual movements of cash sales, and inventory. However, additional 

audit testing results indicate that unusual fluctuations in cash sales relate to promotion periods 

and that the unusual fluctuations in both accounts are immaterial]. 

 

[The results of the study—diagnostic reports from Bootstrap regression analyses—

corresponding to Division 3 coincide with the reality. That is, we were able to determine the 

existence of unusual transactions in inventory and cash sales. Additional investigations confirm 

that these transactions were fraudulent. Currently, we are acting on this critical situation]. 

 

DICUSSION AND CONCLUSION 

The overall results associated with the non-fraudulent, fabricated non-Benford-like, allegedly 

fraudulent, and the Mexican retail company data sets demonstrate that the proposed BREG procedure 

accurately assess for the presence of unusual fluctuations in financial data (i.e., data anomaly).The 

BREG procedure, like other analytic techniques, does not identify the location of unusual patterns of 

transactions, but indicates the presence of these problems i.e., errors or fraud. Other analytic 

techniques such as ratio analyses compare the book value of a ratio in month t ( tR ) to the expected 

audited value of a ratio for month t ( ˆ
tR ) to assess significant deviations from the critical value (Kinney 

1987, p. 64). The problem with this approach is the precision level of ˆ
tR that may be in error due to 

undetected misstatements or fraud in prior audits. 
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Similarly, trend analysis uses arbitrarily selected cut-off values (e.g., 5%, 10% or 15%) to 

balance between Type I and Type II errors. Loebbecke and Steinbart(1987) indicate that this “cut-off 

value” approach is “little better than biased coin flips” (p. 87).Alternative statistical analytic techniques 

(Dzeng 1994, Kinney and Salamon 1982, Kinney 1979) such as regression analysis and the vector 

autoregressive model(VAR) utilize past information of the account under audit and other explanatory 

variable(s) whereas the univariate autoregressive integrated moving average (ARIMA) and the random 

walk model use only past data of the account under audit. Each one of these techniques may be 

efficient and effective if past financial data are not contaminated with unusual fluctuations (Hitzig 

2004).  

In contrast, the effectiveness and efficiency of the BREG procedure is impervious to the quality 

of past financial data. Based on the BREG procedure, we were able to detect the presence of 

misstatements and/or fraud in inventory and cash sales accounts associated with the Mexican retail 

company’s data across three divisions over a time period of 2007-2009.As opposed to the BREG 

procedure, the results associated with a statistical analytic technique such as a standard regression 

analysis
2
were inconsistent. For example, when cash sales were regressed on cost of goods sold, we 

found no evidence of unusual fluctuations in Division 1, but confounding results in Division 2 and 

Division 3. Specifically, given a 95% confidence level, the cash sales overstatement errors were not 

material
3
 in year 2008, but material in year 2009 for Division 3 and vice versa for Division 2.These 

results suggest that the use of the intercepts and slope coefficients corresponding to 2007 or 2007-2008 

financial data was not effective to infer a possible anomaly in cash sales and, thus, conclude a need for 

a further investigation (i.e., committed Type II errors). Furthermore, when inventory was regressed on 

net purchases, the results provide evidence of unusual fluctuations in Division 2 and Division 3, but 

inconsistent results for Division 1. That is, the inventory overstatement errors were not material in year 

2008, but material in year 2009. 

In addition to effectiveness, the BREG procedure efficiently examines, for example, daily or 

monthly disaggregated financial data across different accounts or classes of transactions while 

mitigating Type I error as the number of digits to examine increases or the excessive power problem as 

the volume of transactions becomes large. Unlike other statistical analytic techniques, the BREG 

                                                 
2
We could not conduct a ratio analysis because the Mexican retail company is small and private and the industry benchmark 

information available for the ratio analysis only pertains to big listed retail companies. 
3
The overstatement accounting errors is considered material if the 1- upper precision limit is less than a material amount. 

See Kinney (1979) or Kinney and Salamon (1982) for more information.  
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procedure allows an auditor to minimize the Type I error problem because (a) digit patterns are 

examined on an overall basis rather than a digit-by-digit basis and (b) the diagnostics are insensitive to 

large volumes of transactions unlike other inferential procedures e.g., the chi-square goodness of fit 

test or the Nigrini (1996) Distortion Factor Index. This was demonstrated with the SPSS (2009) new 

customer purchasing transactions ( 24,067N  ). 

We believe that applications of the BREG procedure can be extended to a continuous auditing 

system which allows auditors to examine the entire population rather than to just mere samples of 

business transactions. Implementing the BREG procedure as part of continuous auditing system is 

feasible because most of financial data are recorded electronically and the majority of these records are 

not backed-up with paper documentation (Corbett et al. 2006) and because accessible statistical 

software (e.g., TIBCO SpotfireS+ or SPSS[PASW] statistics with the bootstrap add-on package) 

allows practitioners to conduct bootstrap regression analyses in a computationally efficient manner. 

The advantage of applying the BREG procedure to the entire population data or part of a 

continuous auditing system on a daily, weekly, or monthly basis is an opportunity for auditors (or 

forensic accountants) to minimize the material cost of concluding absence of unusual fluctuations 

when in fact these fluctuations exist—i.e., Type II error. Timely assessments of financial data propriety 

per account or classes of transactions would indeed allow firms to make adequate corrections or take 

appropriate actions and improve the quality of financial reporting (Kogan et al. 2010). Nevertheless, 

we suggest that the BREG procedures be applied to different financial data sets and different 

companies to test the robustness of the proposed procedure and incorporate this procedure as part of 

the Computer Assisted Auditing Tools and Techniques (CAATTs) e.g., ACL (2006).  

We would also note that certain conditions of financial data make applications of the BREG 

procedure not recommendable. Examples of these conditions relate to (1) non-randomly generated data 

(e.g., check numbers, zip codes or invoice numbers), (2) data with maximum or minimum thresholds, 

(3) data with specific assigned amounts, or (4) non-existing records. For more information see Durtschi 

et al. (2004, p. 24) and Rodriguez (2004). Thus, we recommend that readers of this study interpret our 

results with care and auditors or forensic accountants apply the BREG procedure given a preliminary 

understanding of the nature of financial data under audit or investigation. 
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APPENDIX A 

 

Table A.1. First digit probabilities.  

First Digits  1d  

 1 2 3 4 5 6 7 8 9 

Exact Benford 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 
Empirical Benford 0.289 0.195 0.127 0.091 0.075 0.064 0.054 0.055 0.051 
Amount 0.308 0.179 0.125 0.094 0.075 0.066 0.056 0.051 0.047 
Fabricated Data 0.147 0.100 0.104 0.133 0.097 0.157 0.120 0.084 0.058 
 

Exact Benford = Theoretical probabilities and are computed using equation B.1 in Appendix B. 

Empirical Benford = Empirical first digit probabilities estimated by Benford (1938) who used a sample of 

20,229 observations. 

Amount = Empirical first digit probabilities associated with dollar amount of purchases for each 

individual targeted by a marketing campaign (SPSS 2009).Amount probabilities are 

based on N=24,067. 

Fabricated Data = First digits generated by MINITAB based on the first digit probability distribution 

provided by Hill(1988). 

 

 

Table A.2. Second digit probabilities. 

Second Digits  2d  

 0 1 2 3 4 5 6 7 8 9 

Exact Benford 0.120 0.114 0.109 0.104 0.100 0.097 0.093 0.090 0.088 0.085 
Amount 0.118 0.116 0.109 0.102 0.100 0.094 0.095 0.092 0.087 0.085 
Fabricated 

Data 
0.058 0.106 0.117 0.109 0.105 0.100 0.112 0.128 0.073 0.092 

 

Exact Benford = Theoretical probabilities and are computed using equation B.1 in Appendix B. 

Amount = Empirical first digit probabilities associated with dollar amount of purchases for each 

individual targeted by a marketing campaign (SPSS 2009).Amount probabilities are 

based on N=24,067. 

Fabricated Data = First digits generated by MINITAB based on the first digit probability distribution 

provided by Hill(1988). 
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APPENDIX B 

The exact Benford probabilities ( P ) for the first digits 1d , second digits 2d , and the first and second 

digits 1 2d d  are, respectively 

 
1 10 1log 1 1dP d   where 1 1,...,9d   (B.1) 

 
2 1

9

10 1 21
log 1 1d d

P d d


   where 2 0,...,9d   (B.2) 

 
1 2 10 1 2log 1 1d dP d d   where 1 2 10,...,99d d   (B.3) 

The Benford parameters in (4) and (5) can be expressed as (e.g. Pedhazur, 1997; p. 102) 

1

1 2

2

1 0.048018
d

d d

d


 


   

(B.4) 

1 20 1 3.239170d d       (B.5) 

2

1 2

1

1 0.065439
d

d d

d


 


   

(B.6) 

2 10 1 3.962264d d       (B.7) 

where
1 2d d is the Pearson correlation, 

1d  and
2d  are means, and

1d and
2d  are standard deviations 

associated with the first digits ( 1d ) and second digits ( 2d ). 

The population means for the first digits and the second digits are 
1 11

9

11
3.44024d dd

d P


 

and 
2 22

9

20
4.18739d dd

d P


  . The population standard deviation for the first digits is based on 

1 1

2 2 2

1d dE d     where the expected value
11

92 2

1 11
17.89174dd

E d d P


      and thus
1

2.46100d  . 

Analogously, the population standard deviation for the second digits is 
2

2.87294d   where the 

expected value
22

92 2

2 20
25.78802dd

E d d P


      . The population correlation is based on 

    
1 2 1 2 1 21 2d d d d d dE d d      . The expected value of the first two digits is 

     
1 21 2

9 9

1 2 1 21 0
14.80195d dd d

E d d d d P
 

   .  
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Figure 1. The bootstrap regression (BREG) procedure and the decision criteria. 

  

1. Under the command resample using 25,000resamples, compute the estimates  for 

the regression model and their bootstrap CIs using the following 

notations: Model → Expression [coef(lm(V1~V2))] based on the Bias-corrected (BCa) CI 

default option and 97.5% confidence level. 

2. Under the command resample using 25,000resamples, compute the estimates for the 

regression model and their bootstrap CIs using the following 

notations: Model → Expression [coef(lm(V2~V1))] based on the Bias-corrected (BCa) CI 

default option and 97.5% confidence level. 

Decision Criteria: 

Do all four bootstrap CIs contain Benford’s 

parameters 

or overlap with exact (or Benford) 

CIs? 

Infer that the financial data are 

suspicious and initiate further 

detailed test of transaction or 

investigations. 

No Yes 

Start 

Select the first digits and 

the second digits of the 

Actual Data(e.g., cash 

sale transactions). 

Execute algorithms to generate Exact 

Benford first digits and second digits 

given the sample size (N) of the actual 

data. 

Select and input the first digits ( V1) and the second digits 

( V2)of the actual data (e.g., cash sale transactions) into 

the TIBCO Spotfire S+ (Version 8.1, 2008)spreadsheet. 

Stop and 

conclude that no 

data anomalies 

exist. 
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Figure 2.First digits exact (Benford) probabilities versus first digits empirical probabilities 

associated with the Amount data (SPSS, 2008, File: customer_new.sav) 
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Figure 3.Second digits exact (Benford) probabilities versus second digits empirical probabilities 

associated with the Amount data (SPSS, 2008, File: customer_new.sav) 
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Table 1. The 97.5% Bootstrap Confidence Intervals (CIs) for the Benford parameters of Purchasing and 

Credit Debt Transactions 
(a)

 and Fabricated (Non-Benford) Financial Data. 
(b)

Bold type indicates that all four 

null hypotheses are rejected for the Fabricated Data. 

Type of Data N 
0 3.23917   

1 0.04802   
0 3.96226   

1 0.06544   

Amount 24,067 (3.144, 3.269)** (0.034, 0.059)** (3.901, 4.042)** (0.049, 0.083)** 

Credit Card 

Debt 

Transactions 

5,990 (3.108, 3.355)** (0.021, 0.070)** (3.787, 4.068)** (0.029, 0.095)** 

Fabricated 

Data 

24,067 (4.551, 4.690) (-0.006, 0.020) (4.451, 4.621) (-0.008, 0.025) 

** Indicates the CI contains the Benford parameter. 

(a) Purchasing and credit debt transactions are obtained from SPSS(2008). 

(b) First digits and second digits are generated in MINITAB based on the probability distribution provided by Hill (1988). 

 

Table 2. The 97.5% Bootstrap Confidence Intervals (CIs) for the Benford parameters of the Federal Election 

Commission In-Kind Contributions.
(c)

 Bold type indicates the null hypotheses are rejected for 1994, 1996, and 

2004 data and that all three data sets would require further investigation.
 

Type of 

Data 

N     

1994 9,290 (2.955, 3.107) (-0.021, 0.015) (3.402, 3.618) (-0.036, 0.023) 

1996 11,513 (3.206, 3.336)** (0.003, 0.034)* (3.005, 3.240) (0.007, 0.067)** 

2004 8,861 (3.364, 3.585) (0.081, 0.129) (3.432, 3.669) (0.099, 0.156) 

* Indicates the CI overlaps with the Benford CI but does not contain the parameter. 

** Indicates the CI contains the Benford parameter. 

(c) Data are accessed at the Federal Election Commission (FEC) website http://www.fec.gov/finance/disclosure/ftpdet.shtml. 

 

Table 3. The 97.5% Bootstrap Confidence Intervals (CIs) for the Benford parameters of Credit/Cash Sales, 

Cash Collection, Check/Cash Deposits, Inventory, Purchases and Purchase Returns associated with Division 

1 (2007-2009).
(d)

Bold type indicates that all four null hypotheses are rejected for the Inventory account and 

this data set would require further investigation. 

 

Type of Data N  1 0.04802   
0 3.96226   

1 0.06544   

Credit Sales 538 (2.711, 3.555)** (-0.037, 0.136)** (3.225, 4.168)** (-0.047, 0.193)** 

Cash Sales 925 (3.393, 4.015)* (-0.004, 0.115)** (3.590, 4.440)** (-0.008, 0.182)** 

Cash 

Collection 

455 (2.526, 3.418)** (-0.021, 0.165)** (3.047, 4.046)** (-0.021, 0.245)** 

Check 

Deposits 

NA NA NA NA NA 

Cash Deposits 925 (2.961, 3.650)** (0.031, 0.161)** (3.519, 4.290)** (0.046, 0.222)** 

Inventory 1,095 (4.444, 4.768) (-0.145, -0.086) (6.306, 7.519) (-0.739, -0.448) 

Purchases  107 (2.102, 3.951)** (-0.052, 0.333)** (2.304, 4.242)** (-0.064, 0.378)** 

Purchase 

Returns 

109 (2.377, 4.111)** (-0.242, 0.068)** (3.180, 5.046)** (-0.329, 0.154)** 

* Indicates the CI overlaps with the Benford CI but does not contain the parameter. 

** Indicates the CI contains the Benford parameter. 

(d) Data obtained from a retail Mexican company located in Mexico City. 

NA Small sample size (i.e., N=14 or 59) or non-existent observations. 

0 3.23917  1 0.04802  0 3.96226  1 0.06544 

0 3.23917 

http://www.fec.gov/finance/disclosure/ftpdet.shtml
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Table 4. The 97.5% Bootstrap Confidence Intervals (CIs) for the Benford parameters of Credit/Cash Sales, 

Cash Collection, Check/Cash Deposits, Inventory, Purchases and Purchase Returns associated with Division 

2 (2007-2009).
(d)

 Bold type indicates that three of the four null hypotheses are rejected for both the Cash 

Sales and Inventory Accounts and that these two data sets would require further investigation. 

 

Types of Data N     

Credit Sales 483 (2.723, 3.645)** (0.005, 0.191)** (3.204, 4.180)** (0.013, 0.246)** 

Cash Sales 907 (2.018, 2.747) (0.178, 0.349) (2.804, 3.381) (0.135, 0.266)* 

Cash 

Collection 

299 (2.429, 3.527)** (-0.009, 0.224)** (2.905, 4.088)** (-0.011, 0.281)** 

Check 

Deposits 

837 (2.850, 3.479)** (-0.069, 0.052)** (4.090, 4.890)* (-0.116, 0.094)** 

Cash Deposits 907 (2.627, 3.389)** (0.105, 0.260)* (3.070, 3.720)* (0.095, 0.235)* 

Inventory 1,095 (2.445, 3.042)* (0.659, 0.754) (0.353, 0.675) (0.527, 0.610) 

Purchases  NA NA NA NA NA 

Purchase 

Returns 

NA NA NA NA NA 

* Indicates the CI overlaps with the Benford CI but does not contain the parameter. 

** Indicates the CI contains the Benford parameter. 

(d) Data obtained from a retail Mexican company located in Mexico City. 

NA Small sample size (i.e., N=14 or 59) or non-existent observations. 

 

 

Table 5. The 97.5% Bootstrap Confidence Intervals (CIs) for the Benford parameters of Credit/Cash Sales, 

Cash Collection, Check/Cash Deposits, Inventory, Purchases and Purchase Returns associated with Division 

3 (2007-2009).
(d)

 Bold type indicates that one null hypothesis is rejected for both the Cash Sales and 

Inventory Accounts and that these two data sets would require further investigation. 

 

Types of Data N     

Credit Sales 184 (2.005, 3.802)** (-0.034, 0.248)** (2.887, 4.513)** (-0.033, 0.375)** 

Cash Sales 909 (3.236, 3.714)** (-0.092, 0.001)* (4.458, 5.429) (-0.272, -0.007)* 

Cash 

Collection 

331 (2.547, 3.621)** (-0.116, 0.106)** (3.434, 4.572)** (-0.141, 0.148)** 

Check 

Deposits 

361 (2.555, 3.629)** (-0.091, 0.116)** (3.547, 4.686)** (-0.118, 0.169)** 

Cash Deposits 909 (2.730, 3.202)* (-0.054, 0.040)* (4.055, 4.875)* (-0.129, 0.103)** 

Inventory 1,095 (5.642, 6.128) (-0.069, 0.015)* (4.137, 5.909)* (-0.254, 0.034)* 

Purchases  201 (2.734, 3.907)** (-0.081, 0.134)** (3.472, 4.880)** (-0.135, 0.209)** 

Purchase 

Returns 

82 (1.791, 3.615)** (-0.037, 0.411)** (1.509, 3.534)* (-0.045, 0.505)** 

* Indicates the CI overlaps with the Benford CI but does not contain the parameter. 

** Indicates the CI contains the Benford parameter.  

(d) Data obtained from a retail Mexican company located in Mexico City. 

NA Small sample size (i.e., N=14 or 59) or non-existent observations. 

 

 

0 3.23917  1 0.04802  0 3.96226  1 0.06544 

0 3.23917  1 0.04802  0 3.96226  1 0.06544 
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iWe translated the Mexican retail company’s comments from Spanish to English. The following statement is the original 

comments in Spanish for Division 1: “Los resultados que arroja el estudio con relación a la División 1, si coinciden con los 

movimientos anormales detectados en los inventarios con base en nuestra auditoria. Actualmente, estos movimientos son 

investigados para descartar posibles fraudes en el inventario.”  

 
iiWe translated the Mexican retail company’s comments from Spanish to English. The following statements are the original 

comments in Spanish for Division 2 and Division 3: “Los resultados que arroja el estudio con relación a la División 2, 

también coinciden con los movimientos anormales en las ventas al contado y en el inventario. Sin embargo, nuestras 

investigaciones indican que las fluctuaciones en las ventas al contado tienen que ver con los periodos de promoción y que 

no existe alguna posibilidad de error material en ambas cuentas.”  

 

“Los resultados que arroja el estudio con relación a la División 3 si coinciden con la realidad. Efectivamente, hemos 

detectado la existencia de transacciones anormales en las cuentas de inventario y ventas al contado. Nuestras 

investigaciones confirman que estas transacciones son fraudulentas. Actualmente, estamos tomando medidas con respecto a 

esta situación crítica”  
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