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Optimal Distributed Decision Fusion 

Correspondence 
The problem of decision fusion in distributed sensor system 

is comidered. Distributed selrsors pass their decisionr about the 

same hypotheses to a fusion center that cornbines them into a 

final decision Assuming that the semor decisions are independent 

from each other conditioned on each hypothesis, we provide a 

general proof that the optimal decision scheme that maximizes 

the probability of detection at the fusion for fixed false alarm 

probability comists of a Neyman-Pearson test (or a randomized 

N-P test) at the fusion and likelihood-ratio tests at the sensors 

I. INTRODUCTION 

Systems of distributed Sensors monitoring a 
common volume and passing their decisions into a 
centralized fusion center which further combines 
them into a final decision have been receiving a lot of 
attention in recent years [l]. Such systems are expected 
to increase the reliability of the detection and be fairly 
immune to noise interference and to failures. In a 
number of papers the problem of optimally fusing 
the decisions from a number of Sensors has been 
considered. Tenney and Sandell [2] have considered 
the Bayesian detection problem with distributed 
Sensors without considering the design of data fusion 
algorithms. Sadjadi [3] has considered the problem of 
hypothesis testing in a distributed environment and has 
provided a solution in terms of a number of coupled 
nonlinear equations. The decentralized sequential 
detection problem has been investigated in [4, 51. 
In [6] it was shown that the solution of distributed 
detection problems is nonpolynomial complete. Chair 
and Varshney [7l have solved the problem of data 
fusion when the a-priori probabilities of the tested 
hypotheses are known and the likelihood-ratio (L-R) 
test can be implemented at the receiver. Thomopoulos, 
Viswanathan, and Bougoulias [S, 91 have derived the 
optimal fusion rule for unknown a-priori probabilities 
in terms of the Neyman-Pearson (N-P) test. 

For the “parallel” Sensor topology of Fig. 1, 
Srinivasan [lo] has shown that the globally optimal 
solution to the fusion problem that maximizes the 
probability of detection for fmed probability of false 
alarm when sensors transmit independent, binary 
decisions to the fusion center, consists of L-R tests 
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fusion c e n t e r  

Fig. 1. Distributed sensor fusion. Parallel topology. 

Fig. 2 Example of singularity of Lagrangian approach used in 
[lo] for decision fusion. Three identical sensors in slow-fading 

Rayleigh channel. Paradigm taken from [ll]. 

at all sensors and a N-P test at the fusion center. 
This test will be referred to as N-P/L-R hereafter. 
The proof of the optimality of the N-P/L-R test in 
[lo] is based on the (first-order) Lagrange multipliers 
methods which does not always yield the optimal 
solution as it is shown by example in [ll]. For the 
paradigm in [ll], the Lagrangian approach fails to 
yield to optimal solution. Instead, it yields a solution 
which is by far inferior to the optimal solution, see Fig. 
2. A detailed description and analysis of this singular 
case is given in [ l l ,  121. A theoretical explanation of 
the failure of the Lagrange multipliers method can be 
found in [13, ch. 5, and 14, 151. 

In general, if the optimal solution lies on the 
boundary of the domain of x (as in the decision fusion 
paradigm in [ll]), the Lagrangian formulation fails 
to guarantee the convexity of the objective function, 
and thus, the optimality of the solution obtained 
using the Lagrange multipliers method. In that sense, 
the proof of optimality of the N-P/L-R test for the 
parallel sensor topology in [lo], which is based on 
a Lagrangian formulation, is incomplete. We give a 
complete proof of the optimality of the N-PL-R test 
for the distributed decision fusion problem that does 
not depend on the Lagrangian formulation. 

II. OPTlMALlTY OF N-P/L-R TEST IN DISTRIBUTED 
DECISION FUSION 

A number of sensors N receive data from a 
common volume. Sensor k receives data rk and 
generates the first stage decision U k ,  k = 1,2,. . . , N .  
The decisions are subsequently transmitted to  the 
fusion center where they are combined into a final 
decision uo about which of the hypotheses is true, Fig. 
1. Assuming binary hypothesis testing for simplicity, 
we use ui = 1 or 0 to designate that sensor i favors 
hypotheses H1 or &, respectively. In order to derive 
the globally optimal fusion rule we assume that the 
received data rk at the N sensors are statistically 
independent, conditioned on each hypothesis. This 
implies that the received decisions at the fusion center 
are independent conditioned on each hypothesis. 
Improvement in the performance of conventional 
diversity schemes is based on the validity of this 
assumption [16]. Given a desired level of probability 
of false alarm at the fusion center, PF, = ( Y O ,  the test 
that maximizes the probability of detection Po, (thus, 
minimizes the probability of miss PM,, = 1 - I'D,,) is 
the N-P test [17, 181. Because of the comparison to a 
threshold this test is referred to as a threshold optimal 
test. 

Next, we prove that the optimal solution to the 
fusion problem involves an N-P test at the fusion 
center and L-R tests at the sensors. 

Let d(ul,u2, ..., UN) be the (binary) decision 
function (rule) at the fusion. Since d(ul,u2, ..., U N )  
is either 0 or 1, and all the possible combinations 
of decisions { u1, uz,.. . ,UN} that the fusion center 
can receive from the N sensors is 2N the set of all 
possible decision functions contain 2$ d functions. 
However, not all these functions d can be threshold 
optimal as the next Lemma states. 

LEMMA 1. Let the sensors individual decisions uk 
be independent front each other conditioned on each 
hypothesis. Let PF, = P(u; = 1 I Ho) be the false alarm 
probability and Poi = P(ui = 1 I H I )  be the probability 
of detection at the ith sensors, Assuming, without loss of 
generality, that for every sensor Poi 2 PF,, a necessary 
condition for ajksionfinction d(ul,u2 ,...,UN) to be 
threshold optimal is 

d(Ak,U - A k )  = 1 + d(A,,U - A f l )  = 1 

if A n  > A k  (1) 

where U = { u I , u ~ ,  ..., U N }  denotes the set of the 
peripheral sensor decisions, A k  is a set of decisions 
with k sensors favoring hypothesis H1 (whereas the 
complement set of decisions U - A k  favors hypothesis 
&), and A,, is any set that contains the decisions 
from these k sensors. [The symbol ' I > "  is used to 
indicate "greater than" in the standard multidimensional 
coordinate-wise sense, i.e., A, > A k  if and only if 
U,; 2 uk,t/i, i = 1,2,. . . , N ,  with at least one holding as 
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a strict inequality, where U,,, ( U k , )  indicates the decision 
of the same ith sensor in the A, (Ak)  decision set.] 

(3) 

since, under the assumption that Poi 2 PE.;. for every 
sensor i ,  

P(Uj = 1 I HI) Poi P(u;  = 0 I H I )  1 - Poi 
* (4) = - 2  -- 

P(Ui = 1 I Ho) PF; P ( u ~  = 0 I Ho) 1 - PE.;. 
- 

From (3), it follows that d ( A n , U  - A , )  = 1. 

REMARK 1. Functions that do not satisfy (2) cannot 
lead to the set of optimal thresholds. A function d that 
satisfies Lemma I, is called a monotone increasing 
function in the context of switching and automata 
theory, Table I, [19]. 

REMARK 2. 
the fusion is degenerated to one, identically for any 
combination of the peripheral decisions [9]. Hence, 
for any likelihood test, the false alarm probability 
PF, and the detection probability Po, at the fusion are 
either a) both one, if the threshold is less or equal to 
one, or b) both zero, if the threshold is greater than 
one, In the first case, the fusion rule always favors 
hypothesis one, independent of the combination of 
sensor decisions, i.e., d ( U )  = 1 for all Us, which is 
a monotone increasing function satisfying Lemma 
1. In the second case, the fusion rule always favors 
hypothesis zero, independent of the combination of 
sensor decisions, i.e., d ( U )  = 0 for all Us, which is a 
monotone increasing function satisfying Lemma 1. 

If Poi = PF; for all sensors, the L-R at 

REMARK 3. 
inequality in (3) is reversed, and Lemma 1 still holds 
with all threshold optimal decisions at the fusion 
being monotonically increasing functions of the sensor 
decisions. 

If Poi 5 PF; for all sensors, the 

REMARK 4. 
for some others Poj 5 P F ~ ,  Lemma 1 does not hold. 

If for some sensors Po, 2 PE.;. while 

However, this is an uninteresting case, for if we wish 
to maximize the detection probability at the fusion, we 
would either ignore the sensors for which Poj 5 P F ~ ,  
or, randomize their decisions by flipping coins and 
deciding with probability 1E for either one of the two 
hypotheses. 

LEMMA 2. For any jixed threshold Xo and any 
jixed monotonic function t(u1, u2, ..., U N ) ,  Poo is an 
increasingfunctwn of the Pop, i = 1,2,. . . , N .  

PROOF. The decision function that corresponds to 
the likelihood test at the fusion is contained in the 
set of monotone functions of N variables. Consider 
one such monotone increasing decision function 
d(u1, u2,. .. , U N ) .  The function d ,  when expressed 
in sum of product form in the Boolean sense [19], 
contains only some of the literals u1, ..., U N  in the 
uncomplemented form and none of the complemented 
variables ( i i l ,  222,. . . , i i~ ) .  Since the random variables 
~ 1 , 2 4 2 , .  . . , U N  are statistically independent, it is possible 
to compute Poo knowing the PQS [9, eq. (20)-(22)]. 
Taking partial derivatives of the Po, w.r.t. PD,s,  one 
obtains that (i3Po,/aPoi) > 0 Vi, i.e., the desired result. 
(As an illustration, consider the function d(u1, u2, u3) = 
u1 + ~ 2 ~ 3 .  For this function Po, = Po, + PozP,, - 
PD,(PD,PD,), from which, ( ~ P D , / ~ P D , )  > 0, i = 1,2,3.) 

THEOREM 1. Under the assumption of statistical 
independence of the sensor decisions conditioned on 
each hypothesis, the optimal decision fusion rule for the 
parallel sensor topology consists of an N-P test (or, a 
randomized N-P test) at the fusion and L-R tests at all 
sensors. 

PROOF. Given the decisions u1,u2,. . . , U N  at the 
fusion center, the best fusion rule which achieves 
maximum Po, for fixed PF, = QO is the N-P test 
(assuming that the false alarm probability (YO is 
realizable by an N-P test at the fusion; the randomized 
case is treated separately afterwards). Call the best test 
at the fusion center t(u1, ..., U N )  2;: XO. From Lemma 
1, it follows that the decision function that corresponds 
to the above test must be one of the monotone 
increasing functions d(u1, u2,. . . , U N ) .  Assume that the 
individual sensors use some test other than the L-R 
test and are operating with { ( P e ,  Po , )  V i }  such that 
the condition PF = cy0 is met. From [S, 91 it is seen 
that PF, is a function of the P E S  only, and that Po, is 
a function of the PD,S only. Furthermore, from Lemma 
2, Poo is a monotonic increasing function of the Po,s.  
Therefore, the L-R tests at the sensors which operate 
with (P;, = P F , , P ~ ~ )  lead to the best performance 
at the fusion, since in this case, the achieved PI;, is 
greater than or equal to Po, that can be achieved with 
any other test at the sensors. 

by an N-P test, a randomized N-P maximizes the 
If the false alarm probability (YO is not achievable 
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TABLE I 
Number Of Monotone Increasing Functions And Percentage of 

Reduction 

W L E  I1 
Tbtal Number Of Functions Searched For The Set Of Optimal 

Thresholds 

Number of 
Number of Monotone Number of all Percent age 
Sensors N Functions Possible 22N Functions Reduction 

1 3 4 25 
2 6 16 62.5 
3 U )  256 92.19 
4 168 65,536 99.74 
5 7,581 4.2949673 x 109 99.99982 
6 7,828,354 1.8446744 X lOI9 100 

LN (is number 
Number of of Monotone Total Number of Percentage 
Sensors N Functions -2) Functions RN Reduction 

1 1 1 0.00 
2 4 2 50.00 
3 18 9 50.00 
4 166 114 31.13 
5 7,579 6,894 9.03 
6 7,828,352 7,786,338 0.54 

probability of detection at the fusion for the given 
false alarm probability. Let the best randomized 
N-P test at the fusion center be t(u1, ..., U N )  2: A0 

w.p. p ,  resulting in false alarm probability P F ~ ,  and 
I ( u I ,  ..., UN) 2% XO w.p. 1 - p ,  resulting in false alarm 
probability & The thresholds A0 and XO are chosen so 
that the total false alarm at the fusion 

Thus, the corresponding detection probability at the 
fusion 

Since the probability p is fixed from the constraint 
(9, the detection probability in (6) is maximized 
if each one of the Po, and &, is maximized. 
But, according to the part of the proof in the 
nonrandomized N-P test above, each one of these two 
detection probabilities is maximized if an L-R test is 
used at the sensors. Hence, the Theorem is also proven 
for the randomized N-P/L-R test. 

A precise characterization of the set of fusion 
functions that satisfy Theorem 1, indicated as RN in 
Bble  11, can be found in [12]. 

Ill. CONCLUSIONS 

A general proof that the optimal fusion rule for 
the distributed detection problem of Fig. 1 involves 
an N-P test (or a randomized N-P test) at the fusion 
and L-R tests at all sensors has been provided. The 
proof does not suffer from the weaknesses of the 
Lagrange-multipliers-based proof in [lo]. 

S. C. A. TIIOMOPOULOS 
R VISWANATHAN 
D. K. BOUGOULIAS 
Dep’t. of Electrical Engineering 
Southern Illinois University 
Carbondale, IL 62901 

*Currently with 
Dep’t. of Electrical Engr. 
The Pennsylvania State Univ. 
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Decoding Techniques in State Estimation for 
Dynamic Systems With Past Histories 

States of discrete dynamic system with past histories are 

first quantized and then estimated by using both the Viterbi 

decoding algorithm and a stack sequenlial decoding algorithm 

State estimation with a stack sequential decoding algorithm is 

faster and more practical than the state estimation with the 

Viterbi decoding algorithm, even though the estimates obtained 

by the Viterbi decoding algorithm are superior to the estimates by 

a stack sequential decoding algorithm 

I. INTRODUCTION 

Researchers have been dealing with recursive 
state estimation of dynamic systems with a first-order 
memory since Kalman's original work [5] .  As a result, 
many estimation schemes have been proposed [5-111, 
and these schemes have been also applied for practical 
systems [12]. These estimation schemes are referred to 
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as the classical estimation schemes. Dynamic models 
of the classical estimation schemes, which are said 
to be the classical dynamic models, must be linear 
functions of a white disturbance noise and (additive) 
observation noise, and they must also have a first-order 
memory. Well-known optimum state estimates have 
been presented for linear dynamic models with white 
Gaussian noise. However, optimum state estimates 
cannot, in general, be given for nonlinear dynamic 
models except for some special cases. An example of 
these cases is the classical nonlinear discrete dynamic 
models with discrete state values and white Gaussian 
noise. The states of these models can be optimally 
estimated (in the mean-square sense) by recursively 
computing the conditional density of a state given the 
observations, and then finding the conditional mean of 
this state [9]. States of nonlinear dynamic models are, 
in general, estimated by linearizing nonlinear models 
by a Bylor series expansion [6, 91. Hence, nonlinear 
functions of nonlinear models must be smooth enough 
for a Bylor series expansion. Linearization errors may 
sometimes cause state estimates to diverge from the 
actual state values (131. 

[2, 31 have considered state estimation of dynamic 
models with a first-order memory, which are more 
general than the models of the classical estimation 
schemes. These dynamic models can be nonlinear 
functions of the states, disturbance noise, and 
observation noise. The resulting estimation schemes 
are based upon the decoding techniques of information 
theory. These schemes have been also applied for 
practical systems [4]. These schemes do not require 
any model linearizations. Therefore, the state estimate 
divergence caused by model linearization errors are 
prevented with these schemes. Thus, these schemes 
are superior to the classical estimation schemes, such 
as the extended Kalman filter, for highly nonlinear 
dynamic systems [4]. 

States of dynamic models with a higher order 
memory (i.e., with a memory of order which is greater 
than one) could be estimated by first representing 
these dynamic models by higher dimensional dynamic 
models with a first-order memory, and then using an 
estimation scheme cited above. But this increases the 
implementation complexity of state estimation. 

Here, states of dynamic models with a higher order 
memory are estimated by using both a stack sequential 
decoding algorithm and the Viterbi decoding algorithm 
(VDA), without higher dimensional dynamic system 
representation. This results in memory reduction for 
state estimate implementation. 

Recently, DemirbaS [l], and DemirbaS and Leondes 

11. PROBLEM STATEMENT 

We treat the state estimation of dynamic systems 
with past histories (i.e., an Mth-order memory), 
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