
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Computer Science

2009

A Novel Low-Overhead Recovery Approach for
Distributed Systems
B. Gupta
Southern Illinois University Carbondale

Shahram Rahimi
Southern Illinois University Carbondale, rahimi@cs.siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/cs_pubs
Published in Gupta, B., & Rahimi, S. (2009). A novel low-overhead recovery approach for
distributed systems. Journal of Computer Systems, Networks, and Communications, 2009, Article
ID 409873 doi:10.1155/2009/409873

This Article is brought to you for free and open access by the Department of Computer Science at OpenSIUC. It has been accepted for inclusion in
Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Gupta, B. and Rahimi, Shahram. "A Novel Low-Overhead Recovery Approach for Distributed Systems." (Jan 2009).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

Hindawi Publishing Corporation
Journal of Computer Systems, Networks, and Communications
Volume 2009, Article ID 409873, 8 pages
doi:10.1155/2009/409873

Research Article

A Novel Low-Overhead Recovery Approach for
Distributed Systems

B. Gupta and S. Rahimi

Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA

Correspondence should be addressed to B. Gupta, bidyut@cs.siu.edu

Received 24 November 2008; Accepted 31 March 2009

Recommended by Urs Bapst

We have addressed the complex problem of recovery for concurrent failures in distributed computing environment. We have
proposed a new approach in which we have effectively dealt with both orphan and lost messages. The proposed checkpointing
and recovery approaches enable each process to restart from its recent checkpoint and hence guarantee the least amount of
recomputation after recovery. It also means that a process needs to save only its recent local checkpoint. In this regard, we have
introduced two new ideas. First, the proposed value of the common checkpointing interval is such that it enables an initiator
process to log the minimum number of messages sent by each application process. Second, the determination of the lost messages
is always done a priori by an initiator process; besides it is done while the normal distributed application is running. This is quite
meaningful because it does not delay the recovery approach in any way.

Copyright © 2009 B. Gupta and S. Rahimi. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

It is known that checkpointing and rollback recovery are
widely used techniques that allow a distributed computing to
progress in spite of a failure [1–11]. A global checkpoint of an
n-process distributed system consists of n checkpoints (local)
such that each of these n checkpoints corresponds uniquely
to one of the n processes. A global checkpoint M is defined
as a consistent global checkpoint (state) if no message is
sent after a checkpoint of M and received before another
checkpoint ofM [4]. That is, there must not exist any orphan
message between any two local checkpoints belonging to
the consistent global checkpoint. The checkpoints belonging
to a consistent global checkpoint (state) are called globally
consistent checkpoints (GCCs).

There are two fundamental approaches for checkpointing
and recovery. One is the asynchronous approach, and
the other one is the synchronous approach [12]. In the
asynchronous approach, processes take their checkpoints
independently. So, taking checkpoints is very simple as
there is no coordination needed among the processes while
taking the checkpoints. After a failure occurs, a procedure
for rollback recovery attempts to build a consistent global

checkpoint. However, in this approach because of the
absence of any coordination among the processes there may
not exist a recent consistent global checkpoint which may
cause a rollback of the computation. This is known as
domino effect. In the worst case of the domino effect, after
the system recovers from a failure all processes may have
to rollback to their respective initial states to restart their
computation again.

Synchronous checkpointing approach assumes that a
single process other than the application processes invokes
the checkpointing algorithm periodically to determine a
consistent global checkpoint. This process is known as
initiator process. It asks periodically all application processes
to take checkpoints in a coordinated way. The coordination
is done in a way so that the checkpoints taken by the
application processes always form a consistent global check-
point of the system. This coordination is actually achieved
through the exchange of additional (control) messages.
It causes some delay (known as synchronization delay)
during normal operation. This is the main drawback of this
method. However, the main advantage is that the set of
the checkpoints taken periodically by the different processes
always represents a consistent global checkpoint. So, after

2 Journal of Computer Systems, Networks, and Communications

the system recovers from a failure, each process knows where
to rollback for restarting its computation again. In fact, the
restarting state will always be the most recent consistent
global checkpoint. Therefore, recovery is very simple. Hence,
compared to the asynchronous approach, taking checkpoints
is more complex while recovery is much simpler. Observe
that synchronous approach is free from any domino effect.
The above discussion is all about determining a recovery
line such that there is no orphan message in the distributed
system. In this work in addition to orphan messages, we also
take care of any lost and delayed messages as well. Before we
go further, we have stated briefly why we need to consider
these messages.

Consider a simple example of a distributed system with
only two processes as shown in Figure 1(a). Process P1 after
taking the checkpoint C1

1 sends the message m to process
P2. The receiving process P2 processes the message and then
takes its checkpoint C2

1 and continues. Now assume that
a failure f has occurred at process P1. After the system
recovers from the failure, assume that both processes will
restart from their respective recent checkpoints C1

1 and C2
1.

However, process P1 will resend the message m again since it
did not have the chance to record the sending event of the
message. Thus process P2 will receive it again and process
it again, even though it did process it once before it took
its checkpoint C2

1. This duplicate processing of the message
will result in wrong computation. This message is called an
orphan because the receiving event of the message is recorded
by the receiving process in its recent local checkpoint C2

1;
where as its sending event is not recorded. Unless proper
care is taken, if the processes indeed restart from these two
checkpoints, the distributed application will result in wrong
computation due to the presence of the orphan message.

Now consider Figure 1(b). As above assume that after
recovery processes restart from their respective checkpoints
C1

1 and C2
1. Note that the sending event of the message m

has already been recorded by the sending process P1 in its
recent checkpoint C1

1, and so it will not resend it, because it
knows that it has already sent the message to P2. However, the
receiving event of the message m has not been recorded by
P2, since it occurred after P2 took its checkpoint. As a result,
P2 will not get the message again, even though for correct
operation it needs the message. In this situation message m
is called a lost message. Therefore, for correct operation any
such lost message needs to be logged and resent when the
system restarts after recovery.

Next consider Figure 1(c). It is seen that because of some
reason the message m has been delayed and P2 did not even
receive it before the failure occurred. Now as in the case of
the lost message, if the processes restart from their respective
checkpoints as shown, process P1 will not resend it and as a
result, process P2 will not get the message again, even though
for correct operation it needs the message. In this situation
message m is called a delayed message. Therefore, for correct
operation any such delayed message needs to be logged and
resent when the system restarts after recovery.

1.1. Problem Formulation. In this paper, we address the
following problem: given the recent local checkpoint of each

C2
1

m

fC1
1

P1

P2

(a) Orphan message

C2
1

m

fC1
1

P1

P2

(b) Lost message

C2
1

m

fC1
1

P1

P2

(c) Delayed message

Figure 1

process in a distributed system, after the system recovers
from a failure how to handle properly any orphan, lost, or
delayed message so that all processes can restart from their
respective recent (latest) checkpoints. It also means that a
process will need to save only its recent checkpoint. We also
handle concurrent process failures, that is, when two or more
processes fail concurrently.

To fulfill our objective, we assume that processes take
checkpoints periodically with the same time period to make
sure the nonexistence of any orphan message. The proposed
checkpointing algorithm is nonblocking. Also it is a single
phase one. We also assume that the time between two
consecutive invocations of the checkpointing algorithm, T ,
is larger than the maximum message passing time between
any two processes in the system. The importance of this last
assumption will be clear when we discuss delayed and lost
messages in Section 2.3. The proposed recovery approach
needs to consider only lost messages with respect to the
recent checkpoints of the processes.

This paper is organized as follows. Section 2 contains the
system model and the necessary data structures. In Section 3,
we have stated some problem associated with nonblocking
approach. In Sections 4 and 5, we have described the
checkpointing and recovery approaches along with their
respective performances. Section 6 draws the conclusions.

2. Relevant Data Structures and System Model

2.1. System Model. The distributed system has the following
characteristics [13]: processes do not share memory and they
communicate via messages sent through channels; processes
are deterministic and fail stop.

Journal of Computer Systems, Networks, and Communications 3

2.2. Relevant Data Structures. The proposed recovery
approach needs the following data structures per process for
its execution.

Consider a set of n processes P1,P2,. . .,Pn involved in
the execution of a distributed algorithm. We assume that
application messages are piggybacked with unique sequence
numbers, that is, the kth application message will have k
as its sequence number. These sequence numbers are used
to preserve the total order of the messages received by each
process. Process Pi’s xth checkpointing interval is the time
between its checkpoints Cix−1 and Cix and is denoted as
(Cix–Cix−1). Each process Pi maintains two vectors, each of
size n at its xth checkpoint Ci

x; these are a sent vector Vi
x(sent)

and a received vector Vi
x(recv). These vectors are initialized to

zero when the system starts. These vectors are stated below.

(i) Vi
x(sent) = [Si1x , Si2x , Si3x , . . . , Sin

x], where S
ij
x represents

the largest sequence number of all messages sent by
process Pi to process Pj in the interval (Cix–Cix−1).
Note that Siix = 0.

(ii) Vi
x(recv) = [Ri1x , Ri2x , Ri3x , . . . , Rin

x], where R
ij
x repre-

sents the largest sequence number of all messages
received by Pi from Pj in the checkpointing interval
(Cix–Cix−1). Also Riix = 0.

2.3. Delayed Message and Checkpointing Interval. We now
state the reason for considering the value of the common
checkpointing interval T to be just larger than the maximum
message passing time between any two processes of the
system. It is known that to take care of the lost and delayed
messages the existing idea is message logging. So naturally
the question arises for how long a process will go on logging
the messages it has sent before a failure (if at all) occurs.
We have shown below that because of the above-mentioned
value of the common checkpointing interval T , a process
Pi needs to save in its recent local checkpoint Cix only
all the messages it has sent in the recent checkpointing
interval (Cix–Cix−1).In other words, we are able to use as
little information related to the lost and delayed messages as
possible for consistent operation after the system restarts.

Consider the situation shown in Figure 2. As before we
will explain using a simple system of only two processes,
and the observation is true for distributed system of any
number of processes as well. Observe that because of our
assumed value of T , the duration of the checkpointing
interval, any message m sent by process Pi during its
checkpointing interval (Cix−1–Cix−2) always arrives before the

recent checkpoint C
j
x of process Pj . Now assume the presence

of a failure f as shown in the figure. Also assume that after
recovery, the two processes restart from their recent xth
checkpoints. Observe that any such messagem does not need
to be resent as it is processed by the receiving process Pj
before its recent checkpoint C

j
x. So it is obvious that such

a message m cannot be either a lost or a delayed message.
Therefore, there is no need to log such messages by the sender
Pi at its recent checkpoint Cix. However, messages, such as
m

′
and m

′′
, sent by process Pi in the interval (Cix–Cix−1)

may be lost or delayed. So in the event of a failure, f , in

C
j
x−1 C

j
x

m m′ m′′

fCix−1 Cix

Pi

Pj

Delayed message

Lost message

Figure 2: Message m cannot be a delayed or a lost message

order to avoid any inconsistency in the computation after
the system restarts from the recent checkpoints, we need
to log only such sent messages at the recent checkpoint Cix
of the sender so that they can be resent after the processes
restart. Observe that in the event of a failure, any delayed
message, such as message m

′′
, is essentially a lost message as

well. Hence, in our approach, we consider only the recent
checkpoints of the processes and the messages logged at
these recent checkpoints are the ones sent only in the recent
checkpointing interval. From now on, by “lost message” we
will mean both lost and delayed messages. Observe that
without such an assumption about the value of the common
checkpointing interval T , the messages logged at Cix may
include not only the ones which a process Pi has sent in its
current interval (Cix–Cix−1), but also those which Pi sent in
the previous intervals as well.

Note that in the above discussion, we have implicitly
assumed the nonexistence of any abnormally excessive
delay in message communication that violates our logical
assumption that any message m sent by process Pi during its
checkpointing interval (Cix−1–Cix−2) always arrives before the

recent checkpoint C
j
x of process Pj .

3. Problems Associated with
Nonblocking Approach

It is known that the classical synchronous checkpointing
scheme has three phases: first an initiator process sends
a request to all processes to take checkpoints; second the
processes take temporary checkpoints and reply back to the
initiator process; third the initiator process asks them to
convert the temporary checkpoints to permanent ones. Only
after that processes can resume their normal computation. In
this paper, our objective is to design a single phase nonblock-
ing synchronous approach that guarantees the nonexistence
of any orphan message; however it does have some problem.
We explain first the problem associated with nonblocking
synchronous checkpointing approach. After that we will state
a solution. The following discussion although considers only
two processes, still the arguments given are valid for any
number of processes. Consider a system of two processes
Pi and Pj . Assume that the checkpointing algorithm has
been initiated by an initiator process P∗, and it has sent
a request message Mc to Pi and Pj asking them to take
a checkpoint each. In our approach no additional control

4 Journal of Computer Systems, Networks, and Communications

message exchange is necessary for making individual recent
checkpoints mutually consistent. That is, in this case both
processes Pi and Pj will act independently. Let Pi receive the
request messageMc and take its checkpointCi1. Let us assume
that Pi now immediately sends an application message m
to Pj . Suppose at time (t + C), where C is very small with
respect to t, Pj receives m. Also suppose that Pj has not yet
received Mc from the initiator process. So, Pj has no idea if
the checkpointing algorithm has started or not and therefore
it processes the message. Now the request message Mc arrives

at Pj . Process Pj now takes its checkpoint C
j
1. We find that

message m has become an orphan due to the checkpoint C
j
1.

Hence, Ci1 and C
j
1 cannot be consistent.

To avoid this problem we state a very simple solution.
Process Pi piggybacks a flag, say $, only with its first
application message, say m, sent (after it has taken its
checkpoint for the current execution of the algorithm and
before its next participation in the algorithm) to a process
Pj , where j /= i, and 0 ≤ j ≤ n− 1. Process Pj after receiving
the piggybacked application message learns immediately that
the checkpointing algorithm has already been invoked; so
instead of waiting for the request it takes its checkpoint first,
then processes the message m and later it ignores the current
request when that arrives.

Note that in our approach an initiator process interacts
with the other processes only once via the control message
Mc. After receiving Mc, each such process, independent
of what others are doing, just takes its checkpoint and
sends some vectors to the initiator process and immediately
resumes its computation. That is why we consider it as a
single-phase algorithm.

4. The Checkpointing Algorithm

Below we describe the nonblocking algorithm. Assume that
it is the xth invocation of the algorithm. The algorithm
produces n globally consistent checkpoints for a distributed
system with n processes; see Algorithm 1.

Proof of Correctness. In the “if” block every process Pi takes
its xth checkpoint Cix when it receives the request message
Mc. That is, none of the messages it has sent before this
checkpoint can be an orphan. In the “else” block, a receiving
process Pi takes its xth checkpoint Cix before processing
any application message m, sent by a process which took
its xth checkpoint first before sending the message m to
Pi. Therefore the message m cannot be an orphan as well.
Since this is true for all the processes, hence the recent
xth checkpoints Cix, 1 ≤ i ≤ n are globally consistent
checkpoints.

4.1. Performance. The algorithm is a synchronous one.
However it differs from the classical synchronous approach
in the following sense; it is just a single phase one unlike
the three-phase classical approach, it does not need any
exchange of additional (control) messages to coordinate the
processes except only the request message Mc, there is no

synchronization delay, and finally it is non-blocking. About
message complexity the initiator process broadcasts Mc only
once and there is one message containing the vectors from
each Pi to P∗. So the message complexity is O(n).

4.1.1. Comparisons with Some Existing Works. We use the
following notations (and some of the analysis from [10])
to compare our algorithm with some of the most notable
algorithms in this area of research, namely, [1, 8, 10]. The
analytical comparison is given in Table 1. In this table,

Cair is cost of sending a message from one process to
another process;

Cbroad is cost of broadcasting a message to all
processes;

nmin is the number of processes that need to take
checkpoints;

n is the total number of processes in the system;

ndep is the average number of processes on which a
process depends;

Tch is the checkpointing time.

In Table 1, the first column is about blocking. In Koo
and Toueg’s work, the checkpointing scheme is blocking. So
unless all processes take their permanent checkpoints, any
underlying distributed application cannot restart. So in the
worst case, the total blocking time for the processes that need
to take checkpoints is nmin times the checkpointing time Tch

per process. For the other works in the table, the algorithms
are non-blocking. So they have zero blocking time.

For the second column, consider the work of Cao and
Singhal, in the first phase a process uses two system messages
while taking a tentative checkpoint. So the system message
overhead is 2∗ nmin ∗ Cair. In the second phase the message
overhead is min(nmin ∗ Cair, Cbroad). So the total overhead
is the summation of the above two. In a similar way, the
other entries can be explained. Observe that we have a single-
phase algorithm, and only one type of system message (a
request message) is broadcasted. ThereforeCbroad is just equal
to n∗Cair.

Figure 3 illustrates how the number of control messages
(system messages) sent and received by processes is affected
by the increase in the number of the processes in the system.
In Figure 3, ndep factor is considered being 5% of the total
number of processes in the system and Cbroad is equal to
n∗Cair. We observe that the number of control messages
does increase in our approach with the number of processes,
but it stays smaller compared to other approaches when the
number of the processes is higher than 7 (which is the case
most of the time).

5. Recovery Scheme

Our recovery approach is independent of the number of
processes that may fail concurrently. In order to identify lost
messages in the event of a failure, we adopt only one idea
from the centralized approach [14] for message logging: all

Journal of Computer Systems, Networks, and Communications 5

At each process Pi (1 ≤ i ≤ n)
if Pi receives Mc

takes checkpoint Ci
x;

sends its Vi
x(sent) and Vi

x(recv) to the initiator process P∗;
// all such vectors from each Pi are used by P∗ to determine the lost messages

sent by the processes during (Ci
x–C

i
x−1) in the event of a failure continues its normal operation;

else if Pi receives a piggybacked application message < m, $ > && Pi has not yet received Mc

for the current execution of the checkpointing algorithm
takes checkpoint Ci

x without waiting for Mc;
sends its Vi

x(sent) and Vi
x(recv) to the initiator process P∗;

// all such vectors from each Pi are used by P∗ to determine the lost messages
sent by the processes during (Ci

x–C
i
x−1) in the event of a failure continues its normal operation;

// processes the received message m and ignores Mc, when received later

Algorithm 1: Nonblocking Algorithm.

Table 1: System performance.

Algorithm Blocking time Messages Distributed

Koo-Toueg [1] nmin ∗ Tch 3 ∗nmin ∗ ndep ∗ Cair Yes

Elnozahy et al. [8] 0 2 ∗Cbroad + n∗ Cair No

Cao-Singhal [10] 0 ≈ 2∗ nmin ∗ Cair + min(nmin ∗ Cair, Cbroad) Yes

Our algorithm 0 Cbroad Yes

1 4 7 10 13 16 19 22 25 28

Number of processes

0

20

40

60

80

100

120

140

160

N
u

m
be

r
of

m
es

sa
ge

s

Number of messages (Koo-Toueg)
Number of messages (Elnozahy)
Number of messages (Singhal)
Number of messages (ours)

Figure 3: Number of messages versus number of processes for four
different approaches

application messages are routed through the initiator process
P∗. But, we differ from the centralized approach in that the
messages sent to a process Pk are logged at P∗ according to
the order of their arrival at P∗, and some of these messages
may become lost messages in the event of a failure. This
is a major difference because the approach in [14] logs

copies of only those messages which have been exchanged
between any two processes and for doing so it employs
an acknowledgment protocol. In our work we denote this
message log for process Pk as MESGk, where 1 ≤ k ≤ n for
an n process distributed system. Another major difference is
that in our work the initiator process P∗ does not save the
checkpoints of the n processes. It is rather the responsibility
of the n processes themselves.

The proposed recovery scheme is dependent on the
following computation done by the initiator process. Each
time when the execution of the checkpointing algorithm is
over, the initiator process P∗ determines the possible lost
messages with respect to the processes’ respective recent
checkpoints which will be helpful for consistent and correct
distributed computation in the event that a failure occurs
before the next execution of the checkpointing algorithm.
Since this computation can be performed by P∗ while
the normal distributed application is running, therefore we
name it as the Background Computation.

5.1. Background Computation by P∗. Assume that the xth
execution of the checkpointing algorithm has just been over.
So P∗ has already collected all the n sent and n received
vectors from the n application processes. Using these vectors
P∗ determines the lost messages, if any, sent by all other
processes, Pi (1 ≤ i ≤ n, i /= k) to each Pk in the interval
(Cix–Cix−1) in the way shown in Algorithm 2.

5.2. Recovery. Let us assume that after the processes have
taken their respective xth checkpoints a failure has occurred.
It may be concurrent failures also. After the system recovers,
initiator process P∗ sends to each Pk the lost messages, if any,

6 Journal of Computer Systems, Networks, and Communications

Table 2: Brief summary of comparisons.

Required
message
ordering

Maximum
rollbacks

Per failure

Message
overhead

Message
complexity

Number of
concurrent

failures

Manivannan-Singhal [7] None 1 O(F) O(n2) n

Johnson-Zawenepoel [16] None 1 O (1) O (n) 1

Juang-Venkatesan [19] None 1 O (1) O(n2) n

Damini-Grag [17] None 1 O(n) O(n2) n

Our algorithm None 1 None O (n) n

For each process Pk and 1 ≤ i ≤ n, i /= k
if Sik

x > R
ki
x

P∗ records these sequence numbers (Rki
x + 1) to Sik

x in lost-from- Pki ;
// messages with sequence numbers (Rki

x + 1) to Sik
x are

the lost messages from Pi to Pk .
P∗ forms the total order of all lost messages sent by every Pi, i /= k to Pk

using lost-from- Pki and the message log MESGk for Pk ;

Algorithm 2

following their total order which Pk did not receive before its
recent (xth) checkpoint.

Observe that a failure may occur in the n-process system
before the background computation by P∗ finishes. Since as
in the classical synchronous approach we assume that P∗ is
not faulty, so P∗ will continue with its determination of the
lost messages and when it is done it will send these messages
to the appropriate receivers.

Theorem 1. Algorithm nonblocking together with the recovery
scheme results in correct computation of the underlying
distributed application.

Proof. According to the checkpointing algorithm there does
not exist any orphan message with respect to the recent
checkpoints of the processes. Also, the initiator process P∗

identifies the lost messages, if any, with respect to the recent
local checkpoints of the processes and the recovery approach
ensures that the lost messages are resent following their
total order to the appropriate destinations after the system
restarts. Therefore there does not exist any orphan or lost
message with respect to the recent checkpoints. Hence the
correctness of the underlying distributed computation is
ensured.

5.3. Performance. The following are the salient features of
our approach. First, all processes restart from their respective
recent checkpoints; that is, there is no further rollback. It
also means that processes save only their recent checkpoints
replacing their previous ones. Second, the recovery approach
is dependent on the background computation by P∗. This
computation goes on in parallel with the normal compu-
tation. So it does not delay the recovery approach in any
way. It appears to us as a significant advantage. Third, the
recovery approach is independent of the number of processes

that may fail concurrently. Fourth, the choice of the value
of the common checkpointing interval T enables to use as
little information related to the lost messages as possible
for consistent operation after the system restarts. About the
recovered lost messages, it depends on the nature of the
distributed application. These messages are computational
(application) messages and have to be resent for correct
computation. So they do not contribute in any way to the
complexity of the recovery approach.

5.3.1. Comparisons with Some Existing Works. In [15], it is
a two-phase checkpointing scheme and a process logs both
sent and received messages. In our work, it is a single-phase
scheme and also only the messages sent are logged. The work
in [6] considers only orphan messages, where as our work
considers lost and delayed messages as well. However, both
the works allow processes to have minimum rollback, thus
allowing minimum recomputation.

In the work [7] during normal computation each time
a process receives an application message, it has to check if
it needs to take a checkpoint so that the received message
cannot be an orphan. In our work it is not necessary
because of the checkpointing scheme. Hence we avoid some
unnecessary comparisons involved in such checking. The
message overhead in [7] is O(F), where F is the number of
recovery lines established, where as in our work it is absent.
Note that by “message overhead” it is meant the size of
the control information that is piggybacked with application
messages which are exchanged during normal computation.
Another important difference is that the work in [7] will
establish a recovery line for each failure and then establish a
consistent recovery line for the distributed system after the
occurrence of concurrent failures. It is not needed in our
work, because in our work it does not depend on if it is a
single failure or concurrent failures; our recovery line always

Journal of Computer Systems, Networks, and Communications 7

consists of the recent checkpoints of the individual processes
of the system independent of single or concurrent failures.

When compared to the classical work in [16] the
following differences are observed. In [16] there is always
an extracontrol messages for each application message,
that is, it requires receive sequence number (RSN) and
acknowledgment messages in addition to the application
message. We do not require it. Besides, the work in [16] has
the restriction that during normal computation receiver of
a message cannot send a new message until it receives the
acknowledgment for the RSN it has sent to the sender of the
message which it has already received. This obviously results
in slower execution. Our work does not have any restriction
of any kind during normal computation. Finally, we handle
both single and concurrent failures where as it is only single
failure in [16].

The work in [17] employs fault-tolerant vector clock
and history mechanism to track causal dependencies, orphan
messages, and obsolete messages to bring the system to a
consistent state after failures. Our approach is very simple.
Our simple checkpointing scheme makes sure that there is
no orphan message. Always the consistent state is the set of
the recent checkpoints of individual processes. So we do not
need any extra effort to determine a consistent state.

The classical work in [18] also employs time stamp
vectors to track dependencies in order to determine a
consistent state; as mentioned above our approach is always
domino-effect free. Also it considers only single failures and
its message overhead is O(n). In our work we consider both
single and concurrent failures and it does not have any
message overhead.

In Table 2 we state a brief summery of comparisons of
some important features of some of these checkpointing /
recovery approaches.

6. Conclusions

In this work, we have proposed a checkpointing approach
that is a single phase one and non-blocking in nature;
besides it does not have any synchronization delay. It makes
sure that at the time of recovery we do not have to deal
with orphan messages unlike many of the existing works
and also processes can restart from their respective recent
checkpoints. The choice of the value of the common check-
pointing interval T enables to use as little information related
to the lost and delayed messages as possible for consistent
operation after the system restarts. The determination of
the lost messages is always done a priori by an initiator
process; besides it is done while the normal distributed
application is running. It is meaningful because it does not
delay the recovery approach in any way. Besides, the recovery
approach is independent of the number of processes that
may fail concurrently. Finally note that our checkpointing
and recovery schemes are independent of the effect of any
clock drift on the respective sequence numbers of the recent
checkpoints of the processes, because we consider only
processes’ recent checkpoints irrespective of their sequence
numbers.

References

[1] R. Koo and S. Toueg, “Checkpointing and rollback-recovery
for distributed systems,” IEEE Transactions on Software Engi-
neering, vol. 13, no. 1, pp. 23–31, 1987.

[2] Y. M. Wang, A. Lowry, and W. K. Fuchs, “Consistent global
checkpoints based on direct dependency tracking,” Informa-
tion Processing Letters, vol. 50, no. 4, pp. 223–230, 1994.

[3] K. M. Chandy and L. Lamport, “Distributed snapshots: deter-
mining global states of distributed systems,” ACM Transactions
on Computer Systems, vol. 3, no. 1, pp. 63–75, 1985.

[4] Y.-M. Wang, “Consistent global checkpoints that contain a
given set of local checkpoints,” IEEE Transactions on Comput-
ers, vol. 46, no. 4, pp. 456–468, 1997.

[5] B. Gupta, S. K. Banerjee, and B. Liu, “Design of new roll-
forward recovery approach for distributed systems,” IEE
Proceedings: Computers & Digital Techniques, vol. 149, no. 3,
pp. 105–112, 2002.

[6] B. Gupta, S. Rahimi, and Z. Liu, “Novel low-overhead
roll-forward recovery scheme for distributed systems,” IET
Computers & Digital Techniques, vol. 1, no. 4, pp. 397–404,
2007.

[7] D. Manivannan and M. Singhal, “Asynchronous recovery
without using vector timestamps,” Journal of Parallel and
Distributed Computing, vol. 62, no. 12, pp. 1695–1728, 2002.

[8] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The
performance of consistent checkpointing,” in Proceedings of
the 11th Symposium on Reliable Distributed Systems (RELDIS
’92), pp. 86–95, Houston, Tex, USA, October 1992.

[9] G. Cao and M. Singhal, “On coordinated checkpointing
in distributed systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 9, no. 12, pp. 1213–1225, 1998.

[10] G. Cao and M. Singhal, “Mutable checkpoints: a new
checkpointing approach for mobile computing systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 12, no. 2,
pp. 157–172, 2001.

[11] S. Venkatesan, T. T.-Y. Juang, and S. Alagar, “Optimistic
crash recovery without changing application messages,” IEEE
Transactions on Parallel and Distributed Systems, vol. 8, no. 3,
pp. 263–271, 1997.

[12] M. Singhal and N. G. Shivaratri, Advanced Concepts in
Operating Systems, McGraw-Hill, New York, NY, USA, 1994.

[13] P. Jalote, Fault Tolerance in Distributed Systems, Prentice-Hall,
Upper Saddle River, NJ, USA, 1994.

[14] M. L. Powell and D. L. Presotto, “Publishing: a reliable broad-
cast communication mechanism,” in Proceedings of the 9th
ACM Symposium on Operating Systems Principles (SOSP ’83),
pp. 100–109, Bretton Woods, NH, USA, October 1983.

[15] Q. Jiang, Y. Luo, and D. Manivannan, “An optimistic
checkpointing and message logging approach for consistent
global checkpoint collection in distributed systems,” Journal of
Parallel and Distributed Computing, vol. 68, no. 12, pp. 1575–
1589, 2008.

[16] D. B. Johnson and W. Zwaenepoel, “Sender-based message
logging,” in Proceedings of the 17th International Symposium on
Fault-Tolerant Computing (FTCS ’87), pp. 14–19, Pittsburgh,
Pa, USA, July 1987.

[17] O. P. Damani and V. K. Garg, “How to recover efficiently
and asynchronously when optimism fails,” in Proceedings of
the 16th International Conference on Distributed Computing
Systems (ICDCS ’96), pp. 108–115, Hong Kong, May 1996.

8 Journal of Computer Systems, Networks, and Communications

[18] R. E. Strom and S. Yemini, “Optimistic recovery in distributed
systems,” ACM Transactions on Computer Systems, vol. 3, no.
3, pp. 204–226, 1985.

[19] T.-Y. Juang and S. Venkatesan, “Efficient algorithm for crash
recovery in distributed systems,” in Proceedings of the 10th
Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS ’90), pp. 349–361, Bangalore,
India, December 1990.

	Southern Illinois University Carbondale
	OpenSIUC
	2009

	A Novel Low-Overhead Recovery Approach for Distributed Systems
	B. Gupta
	Shahram Rahimi
	Recommended Citation

