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Abstract

The 26S proteasomal complex is a multifunctional proteolytic 
machinery of the cell. The proteasome plays role in myriad 
of cellular functions, which have been further diversified by 
its separable proteolytic and non-proteolytic sub-complexes. 
Protein quality control and turnover, cell cycle regulation, 
gene regulation and DNA repair are among the key pro-
cesses controlled by the proteasome. Disease resistance in 
plants invokes changes in all the processes controlled by the 
26S proteasome. In this review, the potential contribution of 
genes encoding the proteasome to disease resistance in soy-
bean (Glycine max L. Merr.) was examined.

Keywords: Proteasome; Rpt3; SCN; SDS; QTL; soybean; Gly-
cine max.

Introduction

The 26S proteasome is a versatile, non-lysosomal protein 
degradation complex of the cell (Glickman et al., 1998; Voges 
et al., 1999; Coux, 2002). It consists of two sub-complexes: the 
20S catalytic particle (CP) and the 19S regulatory particle (RP). 
The 19S RP in turn consists of a “base” and a “lid”. The 20S CP 
has a hollow cylinder like structure consisting of a stack of two 
alpha and two beta rings in the α7-β7-β7- α7 order. Three of 
the seven β subunits are catalytically active and possess chy-
motrypsin-like (β5), trypsin-like (β2) and caspase-like activities 
(β1) (Dick et al., 1998; Groll and Clausen, 2003). The base of 
19S RP consists of a ring of six ATPases (Rpt1-6) and three non-
ATPases (Rpn1, Rpn2 and Rpn13) (Glickman et al., 1998; Voges 
et al., 1999; Coux, 2002; Dick et al., 1998; Groll and Clausen, 
2003; Horwitz et al., 2007). The 19S base possesses molecular 
chaperonin activity that enables it to fold and unfold proteins 
(Braun et al., 1999). A chain of four or more polyubiquitin moi-
eties marks the protein destined to be degraded (Chau et al., 
1989; Finley et al., 1994; Wang et al., 2006). The ubiquitin re-
ceptor (Rpn10) in the 19S lid binds to this polyubiquitinated pro-
tein (Deveraux et al., 1994; Elsasser et al., 2004) which leads 
to its unfolding by the 19S base by ATP hydrolysis. The unfolded 
protein is fed into the 20S CP where the beta subunits proteo-
lyze it (Larsen and Finley, 1994; Navon and Goldberg, 2001; 
Verma et al., 2004; Guterman and Glickman, 2004; Hanna et 
al., 2006; Seong et al., 2007a,b; Shreiner et al., 2008; Husnjak 
et al., 2008). Through this mechanism, the proteasome regulates 
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abundance and localization of a large number of transcrip-
tion factors influencing several cellular processes (Hilt and Wolf, 
1996; He et al., 1998). It also degrades oncoproteins, cell cycle 
dependent cyclins, cyclin dependent kinase inhibitors, thus influ-
encing multitude of cellular processes directly or indirectly. In 
addition to this proteolytic role, the proteasome has been im-
plicated to regulate transcriptional activation in a proteolytic-
independent manner (Collins and Tansey, 2006; Bhaumic and 
Malik, 2008; Ferry et al., 2009; Lassot et al., 2007). It serves to 
recruit transcriptional co-activators, chromatin remodeling com-
plexes and enables assembly of the pre-initiation complex at 
gene promoters to activate transcription. Thus, the proteasome 
serves as a central hub orchestrating several regulatory mecha-
nisms (Figure 1). This makes it a good candidate for analysis of 
its contribution, if any, to some of pathological states of plants 
(in this study soybean).

Analysis in Soybean

Soybean [Glycine max (L.) Merr.] is the world’s most important 
legume crop grown for its protein and oil content (Messina et 
al., 1997). Nematode attack (by Heterodera glycines I.) by far 

has the most damaging effect on soybean crop leading to huge 
economic losses. Soybean cyst nematode (SCN) has been coun-
teracted by non-host crop rotation practices, use of nematicides 
and development of resistant cultivars. Use of resistant variet-
ies is a key strategy in SCN management. Although, about 130 
sources of SCN resistance have been identified within the Gly-
cine sp., and more than 30 resistance loci identified, not much is 
clearly known about the underlying SCN resistance genes (Afzal 
et al., 2008). SCN resistance is controlled by several genes at 
multiple quantitative trait loci (QTL) (Concibido et al., 2004) and 
identification of genes contributing to these loci will enable bet-
ter management of SCN.  Fine mapping analysis of SCN resis-
tance loci has revealed two major loci controlling resistance to 
SCN HG type 0 (Race 3) in soybean cv. ‘Forrest’ (Meksem et al., 
2001). One is the Rhg1 locus on linkage group G and other is 
Rhg4 on linkage group A2. Major loci were also found on link-
age groups B1 and D2 in many Plant Introductions (PIs; Afzal et 
al., 2009; Yue et al., 2001; Webb et al., 1995). 

Proteomic studies have shown that among the proteins in-
creased in SCN resistant Rhg1 near isogenic lines (NILs) was a 
proteasomal component (Afzal et al., 2009; Figure 1). It is inter-
esting to note that proteasome forms an important hub in the SCN 
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Figure 1. A part of the predicted interactome for soybean showing six proteins from the 2D gel analysis of (32). The multi catalytic 
endopeptidase shown in blue is the beta-3 subunit of the 20 S proteasome core protein. The proteins encoded by the Rpt3 genes 
of the 19S  regulatory particle are represented by a single pink spot (arrowed). The 14 proteins of the 20S particle and 9 proteins 
of the 19 S regulatory particle interact to form the 26S proteasome. Also shown in color were proteins changed in abundance by 
SCN infestation of roots; the thaumatin like protein, cytosolic heat shock protein  and triose phosphate isomerase.
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resistant protein interactome web with at least 21 interacting 
partners. Perhaps variations in the proteasome contribute to the 
SCN QTL. Soybean behaves like a diploidized-tetraploid and 
homology searches using BLAST showed there were two or four 
copies of each of the six ATPases subunits. Of these, Rpt3 had 
two copies on chromosomes 11 (linkage group B1) and 18 (link-
age group G). It is intriguing that the copy of same ATPase was 
conserved on two chromosomal locations. On chromosome 11, 
Rpt3 maps to a position of 32,631,398-32,634,285. This loca-

tion overlaps with Satt415 (position: 32,627,233 -32,627,528), 
a marker in the region mapped to SCN QTL (Figure 2a). This 
suggests that Rpt3 gene might be associated with SCN QTL. 
The other copy of Rpt3 lies on linkage group G (chromosome 
18) at position 4,388,793-4,389,751. Satt688 (3,264,226-
3,264,398) and Satt130 (4,619,181-4,619,599) are within 2 
Mbp of Rpt3 on chromosome 18 (Figure 2b). Both Satt688 and 
Satt130 are associated with SCN QTL. SCN QTL associated with 
Satt688 were 29-1, 29-4, 29-8 while Satt130 is linked to SCN 

Figure 2. Ideograms of  20 cM (8.24 Mbp) regions containing the Rpt3 genes in soybean.  Panel A: Ideogram of a region of chro-
mosome 11 with two markers Satt415 and Sat_364 close to Rpt3 gene, marked by arrows. Rpt3 is located at position 32,631,398-
32,634,285 which includes marker Satt415.Panel B: Ideogram of a region of chromosome 18 with two markers Satt130 and 
Satt688 close to Rpt3 gene, marked by arrows. Rpt3 is located at position 4,388,793-4,389,751.



QTL 17-4,  18-5 and 19-4. On linkage group G there was also 
a QTL for resistance to sudden death syndrome that overlaps 
the Rps3 genes and the SCN QTL

An interesting feature of the Rpt3 gene on both the chromo-
somes was a close conservation of the flanking genes (Figure 3). 
Conservation of two copies of Rpt3 with a set of few common 
genes suggests that this genetic unit may be playing important 
physiological roles in soybean. Serine theronine protein kiases, 
E2 ubiquitin lyases, harpin induced proteins, Kip1 like proteins 
and DEAD box helicases were all clustered with the Rpt3 genes 
at both loci.

The proteasomal component was increased during pathogen 
infestations probably to degrade the oxidized or damaged 
proteins or as a defense against oxidative stress posed by SCN 
feeding (Giulivi et al., 1994; Lee et al., 2006). Mapping of 
proteasomal genes close to SCN QTL underscores the contribu-
tion of proteasome in SCN resistant reaction. Thus, it might serve 
as an important gene in contributing to resistance to SCN. The 
proteasome has an interesting architecture, which couples to its 
exquisite regulation. It has a base of six ATPases, which sits atop 
the 20S cylinder. Upon ATP binding, the C-terminal hydrophobic 
tyrosine-X-motif of the base ATPases docks into the α subunits of 
the 20S core. ATP hydrolysis by the base then serves to open the 
gate to proteolytic 20S core to feed the proteins into the 20S 
barrel (Smith et al., 2005). Previous work (Afzal et al., 2009) 
and mapping of both the 20S and 19S components to SCN QTL 
indicates that a part of its role is SCN resistance is through its 
proteolytic activity. The 26S proteasome recognizes proteins to 
be degraded by a polyubiquitin chain of four or more ubiquitin 
moieties. The ubiquitin chain on a cellular protein is formed by 
isopeptide bond formation between C-terminus of ubiquitin and 
€-amino lysine side chain of the target protein or another ubiq-

uitin molecule (Pickart and Eddins, 2004; Pickart and Fushman, 
2004; Wang et al., 2006) by the sequential action of E1 acti-
vating, E2 conjugating and E3 ligating enzymes. Nature of the 
lysine linkage is a key factor determining the fate of the protein. 
K-48 linked poly ubiquitin chains are targeted for degradation 
while K-68 mostly serves in signaling pathways (Wang et al., 
2006; Chau et al., 1989; Finley et al., 1994). 

In addition, the 19S base ATPases can exist as an APIS (AAA 
ATPases independent of 20S) complex separate from the 20S 
core (Sun et al., 2002). This complex plays a crucial role in regu-
lation of transcriptional activation in yeast and humans (Lassot 
et al., 2007; Gonzalez et al., 2002; Lee et al., 2005; Bhat et 
al., 2008; Malik et al., 2009; Truax et al., 2010). Thus, 19S 
ATPases might also function to regulate transcription of other 
genes contributing to SCN reaction. The 19S ATPases have been 
shown to play key roles in histone covalent modification in yeast 
and mammals (Lee et al., 2005; Ezhkova and Tansey, 2004; 
Laribee et al., 2007; Kinyamu et al., 2008; Koues et al., 2008, 
2009). In yeast, inactivation of Rpt6/Sug1 leads to decreased 
dimethylated histone H3 lysine 4 (H3K4 di-me) and acetylated 
histone H3 (Lee et al., 2005). H3K4 methylation is associated 
primarily with gene activation but also contributes to gene si-
lencing of mating type locus. Acetylation of H3 is a strong gene 
activating signal serving to remodel promoter chromatin. These 
modifications also serve has a binding sites for effector proteins 
which perform their designated functions (Strahl and Allis, 2000; 
Sims and Reinberg, 2006) allowing the proteasome to exercise 
widespread control over various pathways. The 19S base also 
has chaperonin like activity and might also be serving to play 
some role in SCN resistance consistent with increased abundance 
of chaperonins in SCN resistant NIL roots (Afzal et al., 2009).
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Figure 3. Genes flanking Rpt3 in the regions within 200kbp on chromosomes 11 and 18.  Compare the common genes flanking Rpt3 
genes on both the chromosomes.
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Concluding Remarks
     

The proteasome with its far ranging functions is an attractive 
candidate gene for regulating diseased states in plants. Bioin-
formatics analyses based on protein abundances, protein inter-
actions and the location of genes encoding those proteins has 
inferred the proteasome may be contributing to SCN resistance 
in soybean. This link however, needs to be confirmed using other 
approaches. These approaches in soybean include candidate 
gene TILLING, EcoTILLING and complementation analysis, as has 
been performed for soybean cv ‘Forrest’ (Liu et al., 2010). Eval-
uation of the role of the proteasome through expression studies 
and association analysis may also yield interesting information 
about its mechanism of action. Identification of candidate genes 
underlying such diseases will provide a better insight of causal 
factors of such diseases and will contribute to development of 
better ways to manage them. 
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