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Smooth and Analytic Normal and Canonical Forms for
Strict Feedforward Systems

Issa A. Tall and Witold Respondek

Abstract— Recently we proved that any smooth (resp. ana-
lytic) strict feedforward system can be brought into its normal
form via a smooth (resp. analytic) feedback transformation.
This will allow us to identify a subclass of strict feedforward
systems, called systems in special strict feedforward form, shortly
(SSFF), possessing a canonical form which is an analytic coun-
terpart of the formal canonical form. For (SSFF)-systems, the
step-by-step normalization procedure of Kang and Krener leads
to smooth (resp. convergent analytic) normalizing feedback
transformations. We illustrate the class of (SSFF)-systems by a
model of an inverted pendulum on a cart.

I. INTRODUCTION

In this paper we study the problem of analytic normal

forms for analytic strict feedforward systems. A single-input

nonlinear control system of the form

Π : ẋ = f(x, u),

where x ∈ R
n and u ∈ R, is in strict feedforward form if

we have

(SFF )

ẋ1 = f1(x2, . . . , xn, u)
. . .

ẋn−1 = fn−1(xn, u)
ẋn = fn(u).

A basic structural property of systems in strict feedforward

form is that their solutions can be found by quadratures.

Indeed, knowing u(t) we integrate fn(u(t)) to get xn(t),
then we integrate fn−1(xn(t), u(t)) to get xn−1(t), we keep

doing that, and finally we integrate f1(x2(t), . . . , xn(t), u(t))
to get x1(t).

In view of the above, systems in strict feedforward form

can be considered as duals of flat systems. In the single-input

case, flat systems are feedback linearizable and are defined

as systems for which we can find a function of the state

that, together with its derivatives, gives all the states and

the control of the system [5]. In a dual way, for systems in

strict feedforward form (SFF), we can find all states via a

successive integration starting from a function of the control.

Another property, crucial in applications, of systems in

(strict) feedforward form is that we can construct for them

a stabilizing feedback. This important result goes back to

Teel [37] and has been followed by a growing literature on
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stabilization and tracking for systems in (strict) feedforward

form (see e.g. [11], [19], [28], [38], [3], [20]).

The problem of transforming a system into a (strict)

feedforward form has recently been studied using various

techniques: in [18] only state transformations are applied, the

notion of (controlled) invariant distributions is used in [2],

a step-by-step constructive method to bring a system into a

feedforward form [35] and strict feedforward form [33], [34]

has been developed by the authors who also described in [25]

relations between strict feedforward forms and symmetries.

The general problem of transforming the nonlinear control

single-input system

Π : ẋ = f(x, u), x ∈ R
n, u ∈ R

m

by an invertible feedback transformation of the form

Γ :
z = φ(x)
u = γ(x, v)

to a simpler form has been extensively studied during the

last twenty years. The transformation Γ brings Π into the

system

Π̃ : ż = f̃(z, v),

whose dynamics are given by

f̃(z, v) = dφ(φ−1(z)) · f(φ−1(z), γ(φ−1(z), v)).

If the control u is not present, that is, the system Π is

actually a dynamical system of the form

ẋ = f(x), x ∈ R
n,

then the transformation Γ consists solely of a change of

coordinates z = φ(x). A classical problem addressed by

Poincaré is whether it is possible to find local coordinates

z = φ(x) around an equilibrium point in which the dy-

namical system becomes linear. Poincaré has solved it by

applying, step by step, homogeneous changes of coordinates

in order to normalize the corresponding homogeneous parts

of the same degree of the system. If all homogenous parts

can be annihilated (no resonances), we formally linearize

the system. If not, the result of this normalization procedure

gives a formal normal form, which contains nonlinearizable

terms only (called resonant terms, (see e.g. [1]).

Similarly, for control systems, the natural question of

feedback equivalence of Π to a linear system Π̃ has been

studied and solved in [6] and [9]. If the geometric lin-

earizability conditions are not satisfied, a natural problem is

to find normal forms for non linearizable systems. Various

approaches have been proposed, based on the singularity
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theory, Cartan equivalence method, hamiltonian formalism

etc (see, e.g. [26] for references). In this paper, we will use

a very fruitful approach of Kang and Krener [14], [12], [13]

who have proposed to analyze (following Poincaré), step

by step, the action of the Taylor series expansion of the

feedback transformation Γ on the Taylor series expansion

of the system Π and have obtained for single-input control

systems with controllable linearization normal forms for

the quadratic terms [14] and then for higher order terms

[12]. The results of Kang and Krener [14], [12] have been

completed by the authors who obtained canonical forms

and dual canonical forms for single-input nonlinear control

systems with controllable [31] and then with uncontrollable

linearization [32] (see also [17]). Recently those results have

been generalized by Tall [29], [30] to multi-input nonlinear

control systems.

Although these normal and canonical forms are formal,

they are very useful in studying bifurcations of nonlinear

systems [15], [17], in obtaining a complete description of

symmetries around equilibria [23], [24], and in characterizing

systems equivalent to feedforward forms [33], [35], [34].

Challenging questions are thus whether these normal

forms have their counterparts in the C∞-smooth and real

analytic (Cω) categories and what are conditions for the

normalizing procedure to be convergent. In other words, what

are obstructions for obtaining smooth and analytic normal

forms for control systems?

It is well known that the problems of convergence of the

normalizing transformations is difficult already for dynam-

ical systems. It was solved (in terms of locations of the

eigenvalues of the linearization) by Sternberg and Chen in

the C∞-category and by Poincaré, Dulac, Siegel, and others

in the Cω- category (see [1] for details and references).

For control systems, the eigenvalues of the linearization

are not invariant under feedback and the convergence prob-

lem seems to be even more involved. The only known results

relating formal and Cω-normal forms are in Kang [12]: for

feedback linearizable systems (based on [16]) and for a class

of non linearizable 3-dimensional systems. Other normal

forms in the C∞- and Cω-categories have been obtained

in [4], [8], [10], [27], [40] via singularity theory methods.

Very recently we showed in [36] that any smooth (resp.

analytic) strict feedforward system can be brought to its

normal form via a smooth (resp. analytic) feedback trans-

formation. This allowed us to identify in [36] a subclass of

strict feedforward systems, called special strict feedforward
systems, possessing a smooth normal form. In this paper we

will show that an analytic special strict feedforward system

can be brought to an analytic canonical form. These normal

and canonical forms are, respectively, smooth and analytic

counterparts of the corresponding formal forms obtained,

respectively, by Kang [12] (normal form) and the authors

[31] (canonical form).

The paper is organized as follows. In Section II we will

recall the Kang normal form and the canonical form of the

authors for single-input systems. Our main results: smooth

and analytic normal and canonical forms for strict feedfor-

ward and special strict feedforward systems are given in

Section III and the proof of the canonical form in Section V.

Finally, in Section IV we illustrate our strict feedforward

normal forms by a model of inverted pendulum on a cart.

II. NOTATION AND DEFINITIONS

All objects, i.e., functions, maps, vector fields, control

systems, etc., are considered in a neighborhood of 0 ∈ R
n

and assumed to be either smooth (which will always mean

C∞-smooth) or real analytic (denoted by Cω). Let h be a

smooth function. By

h(x) = h[0](x) + h[1](x) + h[2](x) + · · · =
∞∑

m=0

h[m](x)

we denote its Taylor expansion around zero, where h[m](x)
stands for a homogeneous polynomial of degree m.

Similarly, for a map φ of an open subset of R
n to R

n

(resp. for a vector field f on an open subset of R
n) we will

denote by φ[m] (resp. by f [m]) the term of degree m of its

Taylor expansion at zero, i.e., each component φ
[m]
j of φ[m]

(resp. f
[m]
j of f [m]) is a homogeneous polynomial of degree

m in x.

Together with the system Π, we will also consider its

infinite Taylor series expansion, given by

Π∞ : ẋ = f(x, u) = Fx + Gu +
∞∑

m=2
f [m](x, u),

(II.1)

where F = ∂f
∂x (0) and G = ∂f

∂u (0). We will assume

throughout the paper that f(0, 0) = 0.

Consider also the Taylor series expansion Γ∞ of the

feedback transformation Γ given by

Γ∞ :
z = φ(x) = Tx +

∞∑
m=2

φ[m](x)

u = γ(x, v) = Kx + Lv +
∞∑

m=2
γ[m](x, v),

(II.2)

where the matrix T is invertible and L �= 0. The action of

Γ∞ on the system Π∞ step by step leads to formal normal

forms. The following normal form was obtained by Kang

[12] (see also [14], [31]) and then completed by the authors

who obtained the canonical forms (see [31] for details):

Theorem II.1 Consider the system Π∞, defined by (II.1).
(i) Π∞ is feedback equivalent, by a formal transformation

Γ∞ of the form (II.2), to the formal normal form

Π∞
NF : ż = Az + Bv +

∞∑
m=m0

f̄ [m](z, v),

where for any m ≥ m0 ≥ 2, we have

f̄
[m]
j (z, v) =

⎧⎪⎪⎨
⎪⎪⎩

n+1∑
i=j+2

z2
i P

[m−2]
j,i (z̄i), 1 ≤ j ≤ n − 1,

0, j = n,
(II.3)
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with P
[m−2]
j,i (z̄i) being homogeneous polynomials of degree

m − 2 of z̄i = (z1, . . . , zi), and zn+1 = v.
(ii) The system Π∞ given by (II.1) is equivalent by a

formal feedback Γ∞ to its canonical form

Π∞
CF : ż = Az + Bv +

∞∑
m=m0

f̄ [m](z),

where, for any m ≥ m0, the components f̄
[m]
j (z) of f̄ [m](z)

are given by (II.3); additionally, we have

∂m0 f̄
[m0]
j∗

∂zi1
1 · · · ∂z

in−s

n−s

= ±1 (II.4)

and, moreover, for any m ≥ m0 + 1,

∂m0 f̄
[m]
j∗

∂zi1
1 · · · ∂z

in−s

n−s

(z1, 0, . . . , 0) = 0. (II.5)

(iii) Two systems Π∞
1 and Π∞

2 are formally feedback
equivalent if and only if their canonical forms Π∞

1,CF and
Π∞

2,CF coincide.

In (II.4) and (II.5), m0 is the degree of the first nonlin-

earizable term and the integers j∗ and tuple (i1, . . . , in−s)
are defined in [31]. The form Π∞

CF satisfying (II.3), (II.4)

and (II.5) is called the canonical form of Π∞ because of its

uniqueness property (iii).

The problem whether an analogous result holds in the

smooth (resp. analytic) category is actually a challenging

question, which can be formulated as whether for a smooth

(resp. analytic) system Π the normalizing feedback transfor-

mation Γ∞ gives rise to a smooth (resp. convergent) Γ and

thus leads to a smooth (resp. analytic) normal form ΠNF

and/or canonical form ΠCF . One of the difficulties resides

in the fact that it is not clear at all how to express, in terms

of the original system, homogeneous invariants transformed

via an infinite composition of homogeneous feedback trans-

formations. We will study in this paper a special class of

analytic control systems, namely strict feedforward systems,

that can be brought to their canonical (thus normal) forms

by analytic transformations.

III. MAIN RESULTS

Consider the class of smooth or analytic single-input

control systems

Π : ẋ = f(x, u),

in strict feedforward form (SFF), that is, such that

fj(x, u) = fj(xj+1, . . . , xn, u), 1 ≤ j ≤ n.

Notice that for any 1 ≤ i ≤ n, the subsystem Πi, defined

as the projection of Π onto R
n−i via π(x1, . . . , xn) =

(xi+1, . . . , xn), is a well defined system whose dynamics

are given by

ẋj = fj(xj+1, . . . , xn, u), for i ≤ j ≤ n.

Define the linearizability index of the (SFF)-system to be the

largest integer p such that the subsystem Πr, where p+r = n,

is feedback linearizable. Clearly, the linearizability index is

feedback invariant and hence the linearizability indices of

two feedback equivalent systems coincide. In this paper we

will assume that the linear approximation around the origin

is controllable. In this case p ≥ 2. The general case of

uncontrollable linearization will be considered elsewhere.

Each component of a strict feedforward system (SFF)

decomposes uniquely, locally or globally, as:

fj(x, u) = hj(xj+1) + Fj(xj+1, . . . , xn, u), (III.1)

for 1 ≤ j ≤ n (we put Fn = 0), where

Fj(xj+1, 0, . . . , 0) = 0. (III.2)

A strict feedforward form for which

hj(xj+1) = kjxj+1, 1 ≤ j ≤ r − 1, (III.3)

for some non zero real numbers k1, . . . , kr−1, will be called

a special strict feedforward form (SSFF).

The main result of this paper is as follows.

Theorem III.1 Consider an analytic special strict feed-
forward form (SSFF) given by (III.1)-(III.2)-(III.3), locally
around (x0, u0) ∈ R

n×R (resp. globally on R
n×R). There

exists a local around (x0, u0) (resp. global on R
n × R)

analytic feedback transformation that maps (x0, u0) into
(0, 0) and brings the system (III.1)-(III.2)-(III.3) into the
canonical form

ΠSSFCF :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = z2 +
n+1∑
i=3

z2
i P1,i(z2, . . . , zi)

. . .

żj = zj+1 +
n+1∑

i=j+2

z2
i Pj,i(zj+1, . . . , zi)

. . .

żr = zr+1 +
n+1∑

i=r+2

z2
i Pr,i(zr+1, . . . , zi)

żr+1 = zr+2

. . .

żn−1 = zn

żn = v ,
(III.4)

where Pj,i(zj+1, . . . , zi) are analytic functions of the indi-
cated variables, zn+1 = v and

∂m0z2
sPr,s

∂z
ir+1
r+1 · · · ∂zis

s

(z1, 0, . . . , 0) = ±1. (III.5)

The meaning of the integers m0 ≥ 2, k ≥ 0, s and of the

tuple (ir+1, . . . , is) will be made precise in the proof.

The main observation is that the canonical form ΠSSFCF

given by (III.4)-(III.5) is itself a (SSFF)-system. Recall that,

by Theorem II.1, any system (not necessarily (SSFF)) can

be brought to its formal canonical form Π∞
CF via a formal

feedback transformation Γ∞. If the system is in special strict

4215
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feedforward form (SSFF), then its formal canonical form

Π∞
CF is actually the formal power series of the analytic

canonical form ΠSSFCF (whose existence is assured by

Theorem III.1), which is, moreover, strict feedforward. In

other words, for a (SSFF)-system put into its canonical form,

the formal series expansions
∑∞

m=m0
f̄ [m](z, v) (with the

components f̄
[m]
j of f̄ [m] given by (II.3)) can be replaced

by analytic functions of (III.4), exhibiting additionally a

strict feedforward form. A counterpart of Theorem III.1 for

C∞-smooth systems was proved in [36] for normal forms

ΠSSFCF satisfying (III.4) only.

To justify the name canonical form, consider another

analytic system

Π̃ : ˙̃x = f̃(x̃, ũ),

in strict feedforward form, that is, such that

f̃j(x̃, ũ) =

{
h̃j(x̃j+1) + F̃j(x̃j+1, . . . , x̃n, ũ), 1 ≤ j ≤ r̃

0, r̃ + 1 ≤ j ≤ n
(III.6)

where

F̃j(x̃j+1, 0, . . . , 0) = 0, and dF̃j(0) = 0. (III.7)

It is in the special strict feedforward form (SSFF) if

h̃j(x̃j+1) = k̃j x̃j+1, 1 ≤ j ≤ r̃ − 1, (III.8)

for some non zero real numbers k̃1, . . . , k̃r̃−1. We then have

the following result justifying the name of canonical form:

Theorem III.2 Two analytic special strict feedforward sys-
tems (SSFF ) given, respectively by, (III.1)-(III.2)-(III.3)
and (III.6)-(III.7)-(III.8) are analytic feedback equivalent if
and only if their canonical forms ΠSSFCF and Π̃SSFCF

coincide.

The proof of this theorem is given in Section V. A natural

question to ask is whether it is always possible to transform a

strict feedforward form, given by (III.1)-(III.2), into a special

strict feedforward form (III.1)-(III.2)-(III.3).

Theorem III.3 If two analytic (SFF)-systems given by,
respectively, (III.1)-(III.2) and (III.6)-(III.7) are feedback
equivalent, then r = r̃ and

h̃j(lj+1x̃j+1) = ljhj(x̃j+1), 1 ≤ j ≤ r − 1,

for some non zero real numbers l1, . . . , lr−1.

Corollary III.4 An analytic strict feedforward system
(SFF), given by (III.1)-(III.2), is feedback equivalent to the
special strict feedforward form (SSFF), given by (III.6)-
(III.7)-(III.8), if and only if

hj(xj+1) = kjxj+1,

for 1 ≤ j ≤ r − 1, that is, the nonlinearizable part of the
system is already in (SSFF) in its original coordinates.

Basically, Theorem III.3 or Corollary III.4 imply that if the

nonlinearizable part of a (SFF)-system is not in a (SSFF),

then it cannot be brought to that form by any smooth (in

particular, analytic) feedback transformation. This means

that special strict feedforward forms (SSFF) define the only

subclass of strict feedforward systems that can be brought to

the Kang normal form ΠNF (actually, canonical form ΠCF

) still being in the strict feedforward form. Whether it is

possible to bring a smooth (resp. analytic) (SFF)-system into

its normal form ΠNF or canonical form ΠCF by a smooth

(resp. analytic) transformation is unclear but if true, then

the normal form ΠNF (or canonical form ΠCF ) will loose

the structure of (SFF) (unless the system is (SSFF)). On the

other hand, any smooth (resp. analytic) strict feedforward

form (SFF) can be brought to a smooth (resp. analytic) form

ΠSFNF , called strict feedforward normal form (introduced

by the authors in [33] in the formal category), which is close

as much as possible to the normal form ΠNF . Indeed, we

have the following result proved in [36] (which, together

with Theorem III.3, implies Theorem III.1):

Theorem III.5 Any smooth (resp. analytic) strict feedfor-
ward form (SFF), given by (III.1)-(III.2), is smooth (resp.
analytic) feedback equivalent to the strict feedforward nor-

mal form (SFNF):

ΠSFNF :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = h̄1(z2) +
n+1∑
i=3

z2
i P1,i

. . .

żj = h̄j(zj+1) +
n+1∑

i=j+2

z2
i Pj,i

. . .

żn−1 = h̄n−1(zn) + z2
n+1Pn−1,n+1

żn = h̄n(v) ,

(III.9)

where zn+1 = v, h̄j(zj+1) = hj(zj+1) and Pj,i =
Pj,i(zj+1, . . . , zi) are smooth (resp. analytic) functions of
the indicated variables.

Provided that the linear approximation is controllable, the

linearizability index of a general (SFF)-system on R
2 is

at least one while the linearizability index of a general

control-affine system on R
3 is at least two. It follows that in

those two cases the functions hj are not invariant (compare

Theorem III.3), which implies the following:

Corollary III.6 (i) Any smooth (resp. analytic) strict feed-
forward form (SFF) on R

2, given by (III.1)-(III.2), is special
and is feedback equivalent to the normal form

ż1 = z2 + v2P1,3(z2, v)
ż2 = v,

where P1,3 is a smooth (resp. analytic) function of the
indicated variables.

(ii) Any smooth (resp. analytic) control-affine strict feed-
forward system (SFF) on R

3 is special and is feedback
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equivalent to the normal form

ż1 = z2 + z2
3P1,3(z2, z3)

ż2 = z3

ż3 = v,

where P1,3 is a smooth (resp. analytic) function of the
indicated variables.

IV. EXAMPLE

Example IV.1 Cart-Pole System. In this example we con-

sider a cart-pole system that is represented by a cart with an

inverted pendulum on it [21], [39]. The Lagrangian equations

of motion for the cart-pole system are

(m1 + m2)q̈1 + m2l cos(q2)q̈2 = m2l sin(q2)q̇2
2 + F

cos(q2)q̈1 + lq̈2 = g sin(q2),

where m1 and q1 are the mass and position of the cart, m2,

l, q2 ∈ (−π/2, π/2) are the mass, length of the link, and

angle of the pole, respectively.

Taking q̈2 = u and applying the feedback law (see [21])

F = − ul(m1 + m2 sin2(q2))/ cos(q2)

+ (m1 + m2)g tan(q2) − m2l sin(q2)q̇2
2

the dynamics of the cart-pole system are transformed into

ẋ1 = x2, ẋ2 = g tan(x3) − lu/cos(x3)
ẋ3 = x4, ẋ4 = u,

where we take x1 = q1, x2 = q̇1, x3 = q2, and x4 = q̇2.

This system is in special strict feedforward form (SSFF)

with the linearizability index p = 2. The feedback transfor-

mation defined by

x̃1 = x1 + l

∫ x3

0

ds

cos s
, x̃2 = x2 + l

x4

cos x3

x̃3 = g tan x3, x̃4 = g
x4

cos2 x3

and ũ = gu/ cos2(x3)+2gx3x4 sin(x3)/ cos3(x3), takes the

system into the normal form

˙̃x1 = x̃2, ˙̃x2 = x̃3 +
lx̃3

(g2 + x̃2
3)3/2

x̃2
4

˙̃x3 = x̃4, ˙̃x4 = ũ.

Taking a linear transformation z = λx̃i followed by a linear

feedback v = λũ, with λ = 1
g

√
l/g, we obtain the canonical

form ΠSSFCF :

ż1 = z2, ż2 = z3 +
z3

(1 + (g/l)z2
3)3/2

z2
4

ż3 = z4, ż4 = v.

V. PROOFS

Theorems III.5 and III.3 are proved in details in [36], so

we will show Theorems III.1 and III.2.

Proof of Theorem III.1 Consider the system (III.1)-(III.2)-

(III.3). Since this system is in strict feedforward form, it

follows (because of Theorem III.5 and Lemma 1(ii) of [36]

and the fact that the linearizability index is invariant) that

there exists an analytic feedback transformation (local or

global) that takes the system into the strict feedforward

normal form

ΠSFNF :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = h̄1(x2) +
n+1∑
i=3

x2
i P1,i

. . .

ẋj = h̄j(xj+1) +
n+1∑

i=j+2

x2
i Pj,i

. . .

ẋr = h̄r(xr+1) +
n+1∑

i=r+2

x2
i Pr,i

ẋr+1 = xr+2

. . .
ẋn−1 = xn

ẋn = u ,

where xn+1 = u, Pj,i = Pj,i(xj+1, . . . , xi) are smooth

(resp. analytic) functions of the indicated variables, and

h̄j(xj+1) = kjxj+1 for some non zero real numbers

k1, . . . , kr−1.

Taking z1 = x1, zj = λjxj for 2 ≤ j ≤ r + 1, with

λj = k1 · · · kj−1, completed by zr+2 = λr+1xr+2, . . . , zn =
λr+1xn and v = λr+1u, we obtain h̄j(xj+1) = xj+1.

Choose s to be the largest integer, r + 2 ≤ s ≤ n + 1,

such that Pr,s(xr+1, . . . , xs) �= 0.
Let m0 denote the degree of the first homogeneous

nonzero terms in the Taylor series expansion of

Fr,s(xr+1, . . . , xs) = x2
sPr,s(xr+1, . . . , xs).

Define (ir+1, . . . , is) with ir+1 + · · · + is = m0 and is ≥ 2
to be the largest (s− r)-tuple , in the lexicography ordering,

such that
∂m0Fr

∂x
ir+2
r+2 · · · ∂xis

s

(0) = c �= 0.

By a linear transformation zi = λxi, v = λu we transform

the term cx
ir+1
r+1 · · ·xis

s of degree m0 of Fr,s(xr+1, . . . , xs)
into c̃z

ir+1
r+1 · · · zis

s with c̃ = cλ1−m0 . We then choose λ so

that c̃ = ±1. It follows that

∂m0Fr

∂x
ir+2
r+2 · · · ∂xis

s

(x1, . . . , 0) = ±1,

that is, the system is in canonical form. �
Proof of Theorem III.2 Consider two analytic special strict

feedforward forms (SSFF) given, respectively by, (III.1)-

(III.2)-(III.3) and (III.6)-(III.7)-(III.8).

Sufficiency. It is clear (using Theorem III.1) that the two

systems are analytic feedback equivalent if their canonical

forms ΠSSFCF and Π̃SSFCF coincide.

Necessity. Suppose that the two systems are analytic feed-

back equivalent. Theorem III.1 implies that their canonical

forms ΠSSFCF and Π̃SSFCF are also analytic feedback

equivalent, say, by z̃ = φ(z), ṽ = γ(z, v). Because of the

(SFF)-structure ṽ = λv and φj(z) = φj(zj , . . . , zn) for

1 ≤ j ≤ n. We claim that φ = Id. Indeed, let k be the

smallest integer such that for k + 1 ≤ j ≤ n, we have

φj(z) = λjzj for some nonzero real numbers. The integer

k is well-defined because φn(z) = λnzn. If k ≥ 1, the
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transformation φ will then modify the k-component of the

canonical form ΠSSFCF according to

˙̃zk =
∂φk

∂zk
żk + · · · + ∂φk

∂zl
żl + F̂r(zk+1, . . . , zn, v),

where F̂r(zk+1, . . . , zn, v) =
n+1∑

i=r+2

z2
i P̂r,i(zr+1, . . . , zi) for

some analytic functions P̂r,i, and l is the largest integer such

that φk(z) = φk(zk, . . . , zl). The transformed system is a

(SFF)-system but NOT a (SSFNF) because of the terms

∂φk

∂zl
zl+1 =

∂φk(zk, . . . , zl)
∂zl

zl+1

that invert as Θ(z̃k, . . . , z̃l)z̃l+1. Thus k = 0 and hence

φj(z) = λjzj , for 1 ≤ j ≤ n. Since ΠSSFCF and Π̃SSFCF

satisfy, respectively

∂m0z2
sPr,s

∂z
ir+1
r+1 · · · ∂zis

s

(z1, 0, . . . , 0) = ±1

∂m0 z̃2
s P̃r,s

∂z̃
ir+1
r+1 · · · ∂z̃is

s

(z̃1, 0, . . . , 0) = ±1,

it follows that λj = 1 and λ = 1, and completes the proof. �
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