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Abstract—We analyze the performance limits of data dissemi-
nation with multi-channel, single radio sensors. We formulate the
problem of minimizing the average delay of data dissemination
as a stochastic shortest path problem and show that, for an
arbitrary topology network, an optimal control policy can be found
in a finite number of steps, using value iteration or Dijsktra’s
algorithm. However, the computational complexity of this solution
is generally prohibitive. We thus focus on two special classes of
network topologies of practical interest, namely single-hop clusters
and multi-hop cluster trees. For these topologies, we derive the
structure of policies that achieve an average delay within a factor
1+ε of the optimal average delay, in networks with large number
of nodes. Through simulation, we show that these policies perform
close to optimal even for networks with small and moderate
numbers of nodes. Our analysis and simulations reveal that multi-
channel data dissemination policies lead to a drastic reduction in
the average delay, up to a factor as large as the total number
of channels available, even though each node can communicate
over only one channel at any point of time. Finally, we present
the foundations of a methodology, based on extreme value theory,
allowing the implementation of our near-optimal dissemination
policies with minimal overhead.

I. INTRODUCTION

A wide variety of fundamental sensor networking services,
such as routing and over-the-air programming, rely upon ef-
ficient data dissemination [1]–[3]. However, traditional sensor
limitations (e.g., limited battery life and memory) joined with
the complications of the wireless sensor broadcast channel (e.g.,
lossy channel, narrow bands, and energy-expensive communi-
cation) make it extremely difficult to analyze and implement
efficient dissemination algorithms.

Even so, wireless sensor radios currently on the market
do enjoy at least one currently under-utilized feature: they
are able to communicate on any one of multiple (narrow)
channels [4]–[7]. Thus, for example, MICA2 sensor motes
operating in the 900 Mhz range can communicate on any one of
more than 25 non-overlapping channels. The main challenge,
however, is that the motes are equipped with a single radio
interface (due, in large part, to considerations of cost and
energy consumption) and, thus, can operate on only one of

these channels at a time. The main effort of this work is to
demonstrate, through theoretical analysis and simulation, that
this multi-channel transceiving capability of sensor motes can
be exploited for major efficiency gains.

Specifically, we propose a theoretical framework to evalu-
ate the performance limits of data dissemination with multi-
channel, single radio sensors, using expected delay as the
primary optimization metric. Within this framework, we show
how to model the problem of data dissemination as an instance
of the stochastic shortest path problem [8]. This framework
permits us to find an optimal dissemination policy for an
arbitrary topology in a finite (though possibly prohibitive)
amount of time using value iteration or Dijsktra’s algorithm.

The optimal solutions are typically very complicated and
unintuitive. As such, we focus on two specific classes of
topologies of practical interest: single-hop clusters and multi-
hop cluster trees [9], [10]. For large size networks with these
topologies, we are able to derive the structure of policies that
exhibit nearly optimal expected delay (within a factor (1+ε),
for any ε > 0). These policies make use of a round-robin
strategy applied both at the packet and channel levels. We,
thus, refer to them as packet-channel round robin (PCRR)
policies. One of our main theoretical contributions is to show
that, with C channels available, the expected delay using PCRR
can approach a value that is C times smaller than the optimal
expected delay with a single channel (i.e., as in a multi-radio
system). These results are validated by simulation, showing
that PCRR policies are nearly optimal even for small and
moderately-sized networks.

Our work provides a first step in rigorously characterizing
the performance limits of multi-channel, single radio wireless
sensor networks. As such, important practical considerations,
such as control overhead, are not explicitly captured in the
model. That said, we present a methodology, based on extreme
value theory [11], that provides foundations for the practical
implementation of our near-optimal dissemination policies.
Specifically, given an upper bound estimate on the packet loss
probability, we show that the PCRR policy can be implemented
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in such a way that, with very high probability, all the nodes in
the network receive all the information without having to send
any acknowledgement packets (a so-called ACK-less protocol).
Our approach, thus, suggests a novel way to address the well-
know “broadcast storm” problem [12] plaguing reliable data
dissemination in wireless networks.

The rest of this paper is organized as follows. In Sec-
tion II, we first present our model and then formalize our
optimization problem, analyze its computational complexity,
and show how it can be (theoretically) solved in finite time.
In Section III, we analyze the problem of data dissemination in
single cluster topologies, introduce the PCRR policy, and prove
its near-optimality in networks with large number of nodes.
In Section IV, we generalize our results to multi-hop cluster
tree topologies. In Section V, we present our approach for
developing ACK-less protocols based on extreme value theory.
Simulation results are presented in Section VI. We provide
concluding remarks in Section VII.

II. MODEL AND PROBLEM FORMULATION

A. Model

We consider the problem of disseminating a file consisting
of M packets from a set of S sources (e.g., base stations) to
N nodes in an arbitrary topology network, with C orthogonal
channels available for communication. Each source has a copy
of the entire file. The time axis is slotted and each packet
transmission takes one time slot. Each node is equipped with
a single, half-duplex radio. Thus, during a time slot, a node
can either transmit or receive (but not both) on one of the C
channels. To simplify exposition, we assume that packets do not
need to be received in order at the various nodes for a file to be
properly reconstructed although the results of Sections II, III
and IV hold without this assumption. Note that several data
dissemination protocols, such as Deluge [1], do not require that
packets be received in order.

At each time slot, a control u specifies which nodes transmit
and receive on each channel. Packets are not only transmitted
by sources but possibly also by other nodes that have received
some of the packets and serve as relays. Communications
take place over a wireless broadcast channel, whose losses
are independent and identically distributed at each time slot.
As such, we can associate a probability pij(u) of a packet
transmission from node i to j being corrupted; note that this
probability is a function of the control u because the packet
loss is dependent on all simultaneous transmissions on the same
channel.

Finally, we will denote by T the random variable represent-
ing the time (delay) until all nodes receive all packets. Our
goal is thus to determine a control policy that minimizes the
expected value of T (denoted T̄ ).

B. Problem Formulation for General Networks

We next formalize our optimization problem and provide
a computational methodology to solve it by casting it as a
stochastic shortest path (SSP) problem [8]. In our specific case,

this problem can then be solved deterministically in bounded
time using value iteration or Dijkstra’s algorithm [13].

a) SSP problem: The SSP problem is a generalization of
the deterministic shortest path problem in a graph. Specifically,
in the stochastic version, a path from a source to destination is
determined probabilistically, meaning that one may transition
from a vertex to any other vertex according to a given dis-
tribution (which, in turn, is determined by a chosen control).
The shortest path, in this context, corresponds to the choice
of controls at each vertex that minimize the expected cost to a
given destination (or termination state in the literature). Clearly,
the deterministic version of the problem thus corresponds to
a case in which, controls from any given vertex assign a
probability 1 for reaching some vertex and 0 for reaching all
others.

b) Formulation: In our case, we build a graph of |V | =
2NM vertices, each of which correspond to an N × M binary
matrix representing a possible configuration of the network in
the middle of a data dissemination protocol. Specifically, the
(n,m)-th entry of any such matrix is 1 if and only if node
n has received packet m in the corresponding configuration.
For simplicity, we order the states so that the initial state i =
1 and last state i = |V | correspond to the all zero and all
one matrices respectively. Note that this formulation implicitly
requires global knowledge at each node about the data received
at other nodes in the network; we will see how to remove this
assumption in Section V for practical implementation.

To complete the model, we assume a set of possible controls
U(i) for each state i, and define a corresponding transition
probability qij(u) corresponding to the probability of reaching
state j from state i if transmissions are enacted according to
control u ∈ U(i). Our goal is then to pick a control π(i) ∈
U(i) at every state so as to minimize the expected delay from
state 1 to the termination state |V |. This optimal control π will
necessarily be stationary because the channel is assumed to be
i.i.d.

c) Solution: Let denote by T ∗
DP (i) the time to reach the

termination state starting from state i and T̄ ∗
DP (i) its expected

value solved using dynamic programming. One of the main
results for the SSP problem is that it has a unique solution
satisfying Bellman’s equations [8], [14]:

T̄ ∗
DP (i) = min

u∈U(i)


1 +

|V |∑
j=1

qij(u)T̄ ∗
DP (i)


 , i = 1, . . . , |V |.

(1)
For each state i, the optimal policy π(i) corresponds to

the control that achieves the minimum in Eq. 1. To simplify
notation, we will use T̄ ∗ to represent the optimal expected
delay starting from initial state 1. Traditional approaches to
this solution include value iteration, the most commonly used
approach that generally requires an infinite number of iterations
for convergence, and policy iteration, which is more computa-
tionally expensive at each step but terminates in finite time.

The special structure of our problem allows for an especially
efficient value iteration solution satisfying (1). Specifically, our
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Source Node

Fig. 1. Single cluster topology

graph has acyclic transition probabilities, in that a path can
never visit the same state twice, except for self-transitions
(which can be eliminated [8, Vol. 2: p. 97]); this is because
nodes cannot lose packets that they correctly received and
decoded. As such, value iteration is guaranteed to converge
within |V | iterations, where V is the state space. Since each
iteration involves |V ||U | operations, where |U | is the size of
the control space, the optimal solution can be computed with
at most |V |2|U | operations. The following theorem summarizes
this result.

Theorem 1: The optimal dissemination of an M -packet file
to a network with N nodes, S sources, and C channels can be
computed using value iteration with at most |V |2|U | operations,
where |V | = 2NM and |U | = 2(N+S)C .

Note that, in practice, we can even further reduce the
computational complexity of this problem by noting that its
optimal policy must be consistently improving, meaning that

qi,j(π(i)) > 0 ⇒ T̄ ∗
DP (i) > T̄ ∗

DP (j).

We can then use Dijsktra’s algorithm to compute the optimal
policy and optimal expected delays [8, Vol. 2: p. 135].

C. Problem Formulation for Single Clusters and Cluster Trees

In general, the derivation of an optimal policy for our
problem is computationally prohibitive for large numbers of
nodes, packets, or channels. As such, the remainder of this work
focuses on analytical approaches for some specific topologies
of practical interest, such as single-hop clusters and (multi-hop)
cluster trees. Even in such cases, the optimal policies can be
quite involved, but we are able to derive near-optimal policies,
as N → ∞.

1) Single Clusters: In this model, the network consists of a a
single-hop topology (shown in Figure 1). On each channel, only
one node can transmit (broadcast) in each time slot (to avoid
packets collision). For each receiver, the packet loss probability
is p, independently of any other events.

2) Cluster Trees: This model corresponds to a collection
of clusters organized along a tree (see Figure 2). The height
of the tree is D. The number of clusters at each depth d is
denoted by Wd, where d = 0, 1, . . . , (D − 1). The number of
nodes in the cluster w at depth d is Ndw = αdwN , where∑D−1

d=0

∑Wd−1
w=0 αdw = 1.

Source Node

D

N0,0

N1,0 N1,1

...

... ... ...

ND-1,0 ND-1,1
11, 1DD WN

Fig. 2. Cluster tree topology

We assume that the root cluster contains all the sources S.
A node in a cluster can communicate directly with all the other
nodes in the same cluster as well as with nodes belonging to a
direct parent or child cluster. We assume a 2-hop interference
model. Thus if a node transmits on a certain channel, then
all the nodes belonging to any ancestor or descendant clusters
within a distance of two hops and operating on the same chan-
nel must remain quiet to avoid packet collision. As before, the
packet loss probability is p for each pair of source/destination.

III. ANALYSIS OF SINGLE CLUSTERS

In this section, we analyze the single cluster model described
in Section II-C. We first consider the single channel case.
We determine the optimal policy and derive tight bounds on
the expected delay. We then consider the multi-channel case.
We derive lower and upper bounds on the expected delay and
determine a policy that is asymptotically optimal as N → ∞.
These results are first proven for the case when the number
of sources is larger or equal to the number of channels, i.e.,
S ≥ C, and then extended to the case S < C. In the following,
we denote by T ∗

N (C) the random variable representing the
completion time using the optimal policy in a cluster of N
nodes with C channels available for communication.

A. Single Channel

With a single channel, only one source can transmit in each
time slot. Denote by Tm

n the number of slots needed for user
n to receive packet m. Under the assumption of a packet
dropping probability p, Tm

n has a geometric distribution with
mean 1/(1 − p). Thus, because of the broadcast nature of the
channel, the number of slots needed for all the users to receive
packet m is Tm = maxn=1,...,N Tm

n . The minimum number
of time slots to complete the transmission of all the packets is
thus T ∗

N (1) =
∑M

m=1 Tm. We note that the order in which the
source transmits the packets is arbitrary. Thus, any transmission
policy in which, in each time slot, the source transmits a packet
needed by at least one of the N nodes in the network is optimal.

We next provide lower and upper bounds on the optimal
expected delay.
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Proposition 1: Consider a single cluster topology with C =
1 channel. Then,

Mλ−1(log(N)+γ) ≤ T̄ ∗
N (1) ≤ M(λ−1(log(N)+

1
2N

+γ)+1),

where λ = log( 1
p ) and γ ≈ 0.577215 is the Euler’s constant.

proof: For the random variables Tm
n , we have Pr{Tm

n = i} =
pi−1(1 − p) and Pr{Tm

n ≥ i} =
∑∞

i=n pi−1(1 − p) = pn−1.
Consider an equivalent continuous random variable Xm

n , where
Xm

n has the pdf f(x) =
∑∞

i=1 pi−1(1−p)δ(x− i), where δ(x)
is the Dirac’s delta function. The ccdf of Xm

n is F̄ (x) = p�x�−1,
for x ≥ 0.

We now define the random variables Y m
n and Zm

n = Y m
n +1

where F̄Y m
n

(x) = px and F̄Zm
n

(x) = min(1, px−1). We note
that Y m

n are independent exponential random variables with
parameter λ = log( 1

p ). Clearly, we have F̄Y m
n

(x) ≤ F̄Xm
n

(x) ≤
F̄Zm

n
(x). Therefore, Y m

n ≤st Xm
n ≤st Zm

n , where the notation
Y ≤st X means that the random variable Y is stochastically
smaller than the random variable X [15]. Using properties of
stochastic ordering, we then obtain

E max
i=1,...,N

Y m
i ≤ E max

i=1,...,N
Xm

i ≤ E max
i=1,...,N

Zm
i .

Since Y m
n are independent exponential random variables,

from [16, p. 73], we have

E max
i=1,...,N

Y m
i =

N∑
n=1

1
iλ

.

Using known bounds on the harmonic sum [17],

0 <
1

2(N + 1)
≤

N∑
n=1

1
i
− log(N) − γ ≤ 1

2N
,

where γ ≈ 0.577215 is the Euler’s constant. Therefore, we
have

log(N) + γ

log( 1
p )

≤ E max
n=1,...,N

Xm
n ≤ log(N) + 1

2N + γ

log( 1
p )

+ 1. (2)

The proof of the theorem follows by noting that ETm =
E maxn=1,...,N Xm

n and T̄ ∗
N (1) = METm. �

From the proposition, we observe that T̄ ∗
N (1) =

M log1/p(N) + o(log(N)).

B. Multiple Channels

We now address the case C > 1. In general, the structure of
the optimal policy appears to be quite intricate. One exception
is the unconstrained channel case, that is, C ≥ M , in which a
distinct channel can be dedicated to the transmission of each
packet. Note that T ∗

N (C) = T ∗
N (M), when C ≥ M .

We will exploit the results obtained for the single channel and
unconstrained channel cases to provide bounds on the optimal
expected delay for the case 1 < C < M . Using these bounds,
we show that, as N → ∞, a simple scheduling policy, called
Packet-Channel Round Robin, achieves an expected delay that
is within a multiplicative factor of (1 + ε) of the optimal
expected delay, where ε is an arbitrary small positive constant.
The results in this section are first derived for the case when the

number of sources is larger or equal to the number of channels,
i.e., S ≥ C (or S ≥ M if C ≥ M). At the end of the section,
we show that they can be easily extended to the case S < C.

a) Unconstrained channels: Suppose C ≥ M . Then,
a different packet can be continuously transmitted on each
channel, e.g., packet 1 on channel 1, packet 2 on channel 2, etc.
As in the single channel case, the number of slots needed for
user n to receive packet m, denoted by Tm

n , is geometrically
distributed with parameter p. However, this time, as soon as
user n receives packet m, it can switch to another channel to
receive the next packet it needs, and so on until all the packets
are received. The time needed for user n to receive all the
packets is, thus, Tn =

∑M
m=1 Tm

n and the completion time for
all the nodes is T ∗

N (M) = maxn=1,...,N Tn. Any control policy
is optimal as long as nodes tune to channels on which they can
receive a new packet.

We next provide bounds on the optimal expected delay. We
note that, being the sum of independent geometric random
variables, Tn is a Pascal (or negative binomial) random variable
with parameters p and M . We can then use a procedure similar
to the proof of Theorem 1. We replace Tn by an equivalent
continuous random variable and stochastically bound it.

Proposition 2: Consider a single cluster topology with C ≥
M channels and S ≥ M sources. Then,

T̄ ∗
N (M) ≥ λ−1(log(N) + log(M) + γ) and,

T̄ ∗
N (M) ≤ (λ−1 + ε)(log(N) +

1
2N

+ γ) + f(ε),

where λ = log(1/p), γ ≈ 0.577215 is the Euler’s constant, and
for any ε > 0, f(ε) is a finite function, which is independent
of N .

Proof: We first prove the first inequality. Since T ∗
N (M) =

maxn=1,...,N

∑M
m=1 Tm

n , we have

T ∗
N (M) ≥ max

n=1,...,N
max

m=1,...,M
Tm

n . (3)

The expression in the rhs of Eq. (3) corresponds to the
maximum of NM independent random variables geometrically
distributed with mean 1/(1− p). Therefore, the first inequality
follows from Eq. (2) (replacing N by NM ).

For the second inequality, similar to the proof in Proposi-
tion 1, we use the random variables Xm

n , Y m
n and Zm

n . Let
Xn =

∑M
m=1 Xm

n , Yn =
∑M

m=1 Y m
n and Zn =

∑M
m=1 Zm

n .
Using stochastic ordering properties, we have

F̄Yn
(x) ≤ F̄Xn

(x) ≤ F̄Zn
(x).

Now, we note that Yn is an Erlang random variable, that is,

F̄Yn
(x) =

M−1∑
i=0

(λx)i

i!
e−λx.

Now, for any ε′ > 0, eε′x increases at a faster rate than∑M−1
i=0

(λx)i

i! as x → ∞. Thus there exists a constant xε′ , such

that for all x ≥ xε′ , eε′x ≥ ∑M−1
i=0

(λx)i

i! , namely F̄Yn
(x) ≤

e−(λ−ε′)x for all x ≥ xε′ . Construct a random variable Y ′
n =

xε′ +Y e
n , where Y e

n is exponentially distributed with rate (λ−
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ε′). We have F̄Yn
(x) ≤ F̄Y ′

n
(x) for all x. Therefore, Yn ≤st Y ′

n

and
E max

i=1,...,N
Yi ≤ E max

i=1,...,N
Y ′

i .

Since E maxi=1,...,N Y ′
i = xε′ + E maxi=1,...,N Y e

i and Y e
i

are independent exponential random variables with rate (λ−ε′),
we again have from Eq. (2):

E max
i=1,...,N

Y ′
i ≤ xε′ +

log(N) + 1
2N + γ

λ − ε′
+ 1

= [
1
λ

+
ε′

λ(λ − ε′)
][log(N) +

1
2N

+ γ] + xε′ + 1.

Let ε = ε′
λ(λ−ε′) . Then ε′ = ελ2

1+ελ and let f(ε) = xε′ + M +
1 = x ελ2

1+ελ

+M +1. We then have, E maxi=1,...,N Yi ≤ (λ−1+

ε)(log(N) + 1
2N + γ) + f(ε) − M . Since E maxi=1,...,N Zi =

E maxi=1,...,N Yi + M , we get E maxi=1,...,N Zi ≤ (λ−1 +
ε)(log(N) + 1

2N + γ) + f(ε).
Therefore,

T̄ ∗
N (M) = E max

n=1,...,N
Tn ≤ E max

i=1,...,N
Zi

≤ (λ−1 + ε)(log(N) +
1

2N
+ γ) + f(ε).

The result follows. �
From the proposition, we conclude that log1/p(N) +

o(log(N) ≤ T̄ ∗
N (M) ≤ (1 + ε) log1/p(N) + o(log(N)), where

ε is an arbitrary constant such that ε > 0.
b) Constrained channels: Assume now C < M . We next

show that, for the optimal control policies, the completion
time with C channels is always stochastically larger than the
completion time in a single channel system running C times
faster.

Theorem 2: Consider a single hop cluster with C ≤ M
channels. Then T ∗

N (C) ≥st
1
C T ∗

N (1).
Proof: We prove this result using a sample path argument.

Consider an arbitrary time slot in the system with C channels,
denoted by SYSC , assuming packet mi is transmitted in chan-
nel i, i = 1, .., C. Denote an equivalent single channel system
by SYS1 evolving over C time slots. Each event in SYSC is
mapped to SYS1 by having packet mi being sent in time slot
i, i = 1, .., C. Since we have single radio, a node in SYSC can
listen on one channel only, say channel j. Thus, in SYSC , the
same node listens only during slot j but is forced not to listen
during all the other slots. Clearly, given the same starting state,
SYS1 using C time slots is equivalent to SYSC using one time
slot. The optimal policy using a single channel will always
perform at least as well as SYS1, since, in practice, nodes
are allowed to listen to packet transmissions in each time slot.
Therefore, CT ∗

N (C) ≥st T ∗
N (1), and the theorem follows. �

We now introduce a simple control policy called Packet-
Channel Round Robin (PCRR). We will show in the sequel
that this policy is near optimal (within a multiplicative factor
of 1 + ε), as N → ∞. To explain the policy, we introduce
a few notations. We use the variable c to index channels,
i.e., c = 1, 2 . . . , C, the variable m to index packets, i.e.,

1Channel 1

Channel 2

1

3 2 1 3 2 1 3 2

2 1 3 2 1 3 2 1 3

2 3 5
Time Line

6 7 8 94

Fig. 3. Example: PCRR policy for M = 3, C = 2

m = 1, . . . , M , and the variable t to index time slots, i.e.,
t = 1, 2, . . . , TPCRR. TPCRR is a variable and represents the
final time slot, that is, the time slot at which all the nodes have
completed receiving all the packets. Then, the PCRR policy
states that at time slot t, packet [(C(t−1)+c−1) mod (M)+1]
should be transmitted on channel c. An illustration of the policy
for the case C = 2 and M = 3 is given in Fig. 3, the number
in the block is the packet to send.

We next provide a stochastic relation between the comple-
tion time of the PCRR policy using C channels, denoted by
TPCRR(C), and the completion time in the unconstrained chan-
nel case using the optimal policy, T ∗

N (M). The proof, based on
a sample path argument, is similar to that of Theorem 2.

Theorem 3: Consider a single hop cluster with C ≤ M
channels. Then TPCRR(C) ≤st

M
C T ∗

N (M) + 1.
We now prove the main result of this section, namely that

the PCRR policy is (1 + ε)-optimal, as N → ∞.
Theorem 4: Consider a single hop cluster with C ≤ M

channels. Then

1 ≤ lim
N→∞

T̄PCRR(C)
T̄ ∗

N (C)
≤ 1 + ε,

for any, arbitrarily small, positive constant ε.
Proof: From Theorems 2 and 3, we have

1
C

T ∗
N (1) ≤st T ∗

N (C) ≤st TPCRR(C) ≤st
M

C
T ∗

N (M) + 1.

From stochastic ordering properties, similar inequalities apply
for the expectations of the random variables. Using the results
of Propositions 1 and 2, we thus have

λ−1 M

C
log(N) + o(log(N)) ≤ T̄ ∗

N (C) ≤ T̄PCRR(C)

≤ (λ−1 + ε)
M

C
log(N) + o(log(N)),

and the theorem follows. �
From Theorem 4, we observe that, as N → ∞, the expected

delay using the PCRR policy with C ≤ M channels approach
a value that is C times smaller than the optimal expected delay
with a single channel. It is important to emphasize that this
result holds even though each node is only equipped with a
single radio.

We also note that the performance of the PCRR policy can be
improved by letting it skip the transmissions of packets already
received by all the nodes. We can then easily prove that PCRR
is optimal in the single channel and the unconstrained channel
cases. Note, however, that all the results obtained for the PCRR
policy in this section hold without this requirement.
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c) The case S < C: We now show that the results
presented in the previous section can be extended to the case
where S < C. In this case, let the control policy consist of
2 stages. During stage 1, packets will be sent out in a round-
robin fashion over a single channel. Once at least (C−S) nodes
have received all M packets, then stage 2 starts, during which
PCRR is employed. Let the time the system spends in stage 1
be Ts1(N).

We now show that T̄s1(N) = O(1) = o(log(N)). Consider
a policy that selects a priori (C −S) out of N nodes, then use
a single channel policy to transmit the M packets to each of
these nodes. The expected time for these nodes to receive all
packets is T̄ ∗

(C−S)(1) = O(1). In practice, obviously T̄s1(N) ≤
T̄ ∗

(C−S)(1), thanks to the broadcast property of the wireless
channel. Thus, T̄s1(N) = o(log(N)).

IV. ANALYSIS OF MULTI-HOP CLUSTER TREES

We next analyze the cluster tree model described in Sec-
tion II-C. We first consider the single channel case and then
extend our results to the multi-channel case. In each case, we
compute lower and upper bounds on the optimal expected time
and derive (near) optimal policies, as N → ∞. We will denote
by T̄ ∗

CT(C), the minimum expected time to completion of the
optimal policy for a cluster tree with C channels available.

A. Single Channel

We consider the case C = 1 and provide a lower bound on
the minimum expected delay. As before, we use the notation
T̄ ∗

N (1) to represent the minimum expected delay to disseminate
M packets in a single hop cluster of N nodes. We also define
α = maxw=0,1,...,WD−1−1(α(D−1)w). Thus, αN represents the
number of nodes in the cluster of largest size at depth D − 1
in the tree.

Theorem 5: Consider a cluster tree topology with C = 1
channel. Then

T̄ ∗
CT(1) ≥ (D − 1) + (M − 1) + T̄ ∗

αN (1)
= M log 1

p
(N) + o(log(N)).

proof: We analyze the expected time to complete sending all
the packets to all the nodes belonging to the cluster of largest
size at depth D − 1, denoted as cluster v. This represents a
lower bound on the expected time to transmit all the packets
to all the nodes in the network. First, we note that it will take
at least D − 1 time slots for the first packet to arrive to any
cluster at depth D − 1. Additionally, there are at least M − 1
time slots during which nodes in clusters at depth D−2 receive
the remaining M − 1 packets. During these time slots, nodes
belonging to children clusters at depth D− 1 will be unable to
either transmit or receive any packet. Consider now time slots
during which packets are transmitted to nodes in cluster v. The
minimum expected number of such slots is T̄ ∗

αN (1), and the
result follows. �

We will next propose a simple, asymptotically optimal policy
called Multi-hop Packet-Channel Round Robin (MPCRR) that
proceeds in two stages. In stage 1, we make sure that at least

one node in each cluster gets all the M packets. In stage 2,
the node serving as a source implements the PCRR policy
described in Section III-B. There are three rules in stage 1: (i) a
packet is sent out from a parent cluster if and only if there is at
least one child cluster with none of the nodes having the packet;
(ii) when initiating transmissions, transmissions by descendant
clusters are given higher priority over those by ancestor clusters
if there is a channel contention; (iii) once transmission starts,
it stops only when at least one node in each child cluster has
received the packet.

Denote the expected time to completion using MPCRR
policy with single channel by T̄MPCRR(1). The following
theorem provides bounds on T̄MPCRR(1).

Theorem 6: Consider cluster tree with C = 1 channel. Then
T̄ ∗
CT(1) ≤ T̄MPCRR(1) ≤ M log1/p(N) + o(log(N)).
proof: In stage 1, following an analysis similar to that of

Section III-B, denote the expected time of stage 1 by T̄s1(N),
it can be shown that

T̄s1(N) ≤ 3(M − 1) + D

ΠD−1
d=0 ΠWd−1

w=0 (1 − pαdwN )
,

which can be bounded by a constant K, K = 3(M−1)+D
(1−p)DW ,

where W = maxd=0..D−1 Wd.
In the second stage, we let the sources implement the PCRR

described in Section III-B. We note that sources should be at
least 3-hops apart to avoid interferences. However, we remind
that transmissions by a source in a certain cluster can be
received not only by other nodes belonging to the the same
cluster but also nodes belonging to a direct parent or child
cluster. Thus, in each time slot, this policy performs at least
as well as the optimal policy for a single cluster of N nodes.
Denote the expected completion time in stage 2 by T̄s2(N).

Therefore,

T̄ ∗
CT(1) ≤ T̄MPCRR = T̄s1(N) + T̄s2(N)

≤ K + T̄ ∗
N (1) ≤ M log1/p(N) + o(log(N)).

�
The following result directly follows from Theorems 5 and

6.
Theorem 7: Consider a cluster tree with C = 1 channel.

Then

lim
N→∞

T̄MPCRR(1)
T̄ ∗
CT(1)

= 1.

B. Multiple Channels

We next study the case of C > 1 channels available in a
multihop tree cluster network. The results are similar to the
single cluster scenario. First, we provide a lower bound:

Theorem 8: Consider a cluster tree with C > 1 channels.
Then

T̄ ∗
CT(C) ≥ (D − 1) + T̄ ∗

αN (C)

=
M

C
log 1

p
(N) + o(log(N)).

Next, we give an upper bound:
Theorem 9: Consider a cluster tree with C > 1 channels.
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Then T̄ ∗
CT(C) ≤ T̄MPCRR(C) ≤ (λ−1 + ε)M

C log(N) +
o(log(N)).

The techniques to prove Theorem 8 and 9 are the same
as those used to prove Theorems 5 and 6, respectively. The
following theorem states the fact that MPCRR is (1 + ε)-
optimal, as N → ∞.

Theorem 10: Consider a cluster tree with C channels. Then

1 ≤ lim
N→∞

T̄MPCRR(C)
T̄ ∗
CT(C)

≤ 1 + ε,

for any, arbitrarily small, positive constant ε.

V. TOWARDS AN ACK-LESS PROTOCOL FOR DATA

DISSEMINATION

In this section, we develop the foundations for an ACK-
less data dissemination protocol based on the PCRR policy. In
order to provide for reliable communication, use of acknowl-
edgements (ACKs) is a common way to inform a source that a
packet has been received (otherwise the source must retransmit
the packet). The transmission of ACK packets is susceptible to
cause a large overhead. Although some mitigation approaches
exist [1], this overhead can easily become intolerable in dense
networks. Hence, we propose a strategy for designing an ACK-
less protocol. The main idea is to have the source compute in
advance the number of slots needed so that, with very high
probability, all the nodes receive all the packets. Our strategy
only requires the source to know the number of intended
recipients and have a conservative estimate on the packet loss
probability. To simplify exposition, we will discuss the single
cluster case and assume S ≥ C. However, our results can
be extended to cluster trees and to the case S < C, using
approaches similar to those presented in the previous sections.

First consider the unconstrained case, i.e., C ≥ M . Recall
Tm

n represents the time for the user n to receive the packet m
successfully, and Pr{Tm

n = t} = pt−1(1−p). Tn =
∑M

m=1 Tm
n

is the time for user n to successfully receive M packets.
The completion time, using an optimal policy, for all of N
nodes to receive M packets is T ∗

N (M) = maxn=1,...,N Tn. We
next prove a result based on techniques from extreme value
theory, showing that with appropriate normalization, T ∗

N (M)
can be bounded by random variables converging to a Gumbel
distribution, as N → ∞.

Theorem 11: There exist T̃ ∗
l and T̃ ∗

u = T̃ ∗
l + 1, satisfying

T̃ ∗
l ≤st T ∗

N ≤st T̃ ∗
u ,

lim
N→∞

Pr{(T̃ ∗
l − bN (M))/aN (M) ≤ x} = G(x),

where G(x) is the cdf of the Gumbel distribution, i.e., G(x) =
exp(− exp(−x)) and aN (M) = 1/ log( 1

p ) and bN (M) is a
constant which expression is given in the proof of the theorem
below.

proof: Tn is negative binomially distributed with distribution
function Pr{Tn = t} = D(t) = I(1 − p;M, t − M + 1) [18],
where I(z; a, b) is regularized beta function, and from [19, p.
516], we have I(z; a, b) = 1 − (1−z)b

B(a,b)

∑a−1
i=0 (−1)i

(
a−1

i

) (1−z)i

b+i

when a and b are integers and B(a, b) is the complete beta
function with B(a, b) = (a−1)!(b−1)!

(a+b−1)! [19, p. 594, 597].

Create a continuous R.V. T̃ i
l with c.d.f. F (x) = I(1 −

p;M,x − M), where x ∈ R. Then

F̄ (x) = 1 − I(1 − p;M,x − M)

=
px−M

B(M,x − M)

M−1∑
i=0

(−1)i

(
M − 1

i

)
pi

x − M + i

=
ΠM

j=1(x − j)
(M − 1)!

px−M
M−1∑
i=0

(
M − 1

i

)
(−1)ipi

x − M + i
.

Since F (x) is an increasing function of x, we have

F (x) ≤ D(�x	) ≤ F (x + 1).

Let T ∗
l = maxi=1..N T̃ i

l , and T ∗
u = maxi=1..N (T̃ i

l + 1) =
T ∗

l + 1, then we have

T ∗
l ≤st T ∗

N (M) ≤st T ∗
u .

Let aN (M) = 1/ log( 1
p ), bN (M) = log 1

p
(N) +

(M − 1) log 1
p

(
log 1

p
(N) + (M − 1) log 1

p
(log 1

p
(N))

)
+ (M −

1)
(
log 1

p
( 1−p

p )
)
− log 1

p
[(M − 1)!] + 1, it can be shown,

lim
N→∞

NF̄ (aN (M)x + bN (M)) = − log G(x), x ∈ R.

Thus, F is in the domain of attraction of G with normalizing
constants aN (M), bN (M) [16, p. 209], namely,

lim
N→∞

Pr{(T ∗
l − bN (M))/aN (M) ≤ x} = G(x).

�
Using Theorem 11, we can approximate the probability that

all the nodes in the network have received all the packets after
t time slots, as follows,

Pr{(T ∗
N − bN (M))/aN (M) ≤ t} ≈ G(t).

By setting t large enough, one can guarantee that with, high
probability, all the nodes have received successfully all the
packets.

Now we extend the analysis to the constrained channel case,
C < M and assume for simplicity that M is divisible by C.
Consider the PCRR policy, which transmits the same C packets
every M

C time slots. Let T be the total time to transmit all
packets to all nodes. Let Ti where i = 1, .., M

C be the number
of time slots used to transmit packets (i− 1)C + 1, (i− 1)C +
2, . . . , (i−1)C +C. Clearly, we have Ti = T/M

C for all i. For
every C packets, C channels are available. Thus Theorem 11
can be applied, and we have

Pr{(Ti − bN (C))/aN (C) ≤ t} ≈ G(t).

Since Ti = T/M
C , we have

Pr{T ≤ M

C
t} = Π

M
C
i=1 Pr{Ti ≤ t}.
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Thus,

Pr{T ≤ M

C
(aN (C)t + bN (C))} ≈ G(t)

M
C . (4)

If M is not divisible by C, we can employ a slightly conserv-
ative approach, whereby we replace M

C in Eq. 4 by �M
C 	.

VI. NUMERICAL RESULTS

We next present numerical results to evaluate the following
aspects: (i) the gain achieved using multiple channels with
single radios; (ii) the performance of PCRR compared to the
optimal policy; and (iii) the design accuracy of the proposed
ACK-less protocol.

A. Multi-channel Gain

1) Set Up: We consider the case of disseminating a file con-
sisting of M = 20 packets employing the PCRR transmission
policy, on a single cluster topology. The packet loss probability
p is set to 0.3. The results are obtained by taking average on
1000 identical simulations. We present results first for the case
S ≥ C and then for the case S = 1.

2) Simulation Results: Figure 4 shows the gain of multiple
channels compared to single channel for a single cluster topol-
ogy and S ≥ C. As expected, the average completion time in
each case increases logarithmically with N (note that the x-
axis in the figure is on a logarithmic scale). The figure shows
that significant reduction in the expected completion time can
be achieved using only two channels. Furthermore, as predicted
by the asymptotic analysis, we observe, using linear regression,
that the slopes of the curves corresponding to C channels are
about C times smaller than those corresponding to a single
channel, where C = 2, 5, 10.

Figure 5 illustrates the performance of the PCRR policy for
the case S = 1, i.e., when there is initially only one source
possessing the entire file. In this implementation, as soon as a
node receives all the M packets, it can serve as an additional
source. Obviously, the maximum number of sources cannot
exceed C. As expected, the performance of PCRR in this
case is similar to the unconstrained channel case. Interestingly,
when C = 10, we find that the expected completion time
decreases initially as the network size increases. This fact can
be explained by noting that, as the network size increases, it
takes less time to find nodes that have received all the packets
and serve as sources on different channels.

B. Comparison with Optimal Policy

We next compare the performance of the PCRR policy
with that of the optimal policy obtained by solving Eq. 1.
As discussed in section II-B, solving the optimal policy is
computationally involved. We thus consider a small example
where M = 3, C = 2, N = 1..20. Even then, the state
and control spaces in the dynamic programming problem are
huge. Therefore, we consider the case for which in-order packet
delivery is required, which substantially reduces the size of the
state and control spaces. Figure 6 shows that the performance
of PCRR is very close to that of the optimal policy. Although

10
1

10
2

10
3

10
4

10
50

50

100

150

200

250

Number Of Nodes

E
xp

ec
te

d 
C

om
pl

et
io

n 
T

im
e

M = 20, p= 0.3, S >= C

 

 

1 Channel
2 Channels
5 Channels
10 Channels

slope = 6.81

slope = 19.50

slope = 37.39

slope = 3.82

Fig. 4. Performance of PCRR algorithm with different number of channels
for S ≥ C

10
1

10
2

10
3

10
4

10
50

50

100

150

200

250

Number Of Nodes

E
xp

ec
te

d 
C

om
pl

et
io

n 
T

im
e

M = 20, p = 0.3, S = 1

 

 

1 Channel
2 Channels
5 Channels
10 Channels

Fig. 5. Performance of PCRR algorithm with different number of channels
for S = 1

the PCRR policy is proved to be near-optimal only when N is
very large, it performs very well compared to the exact optimal
policy, even in small networks.

C. Performance of the ACK-less Protocol

In this simulation, we evaluate our methodology based on
extreme value theory to approximate the probability that all
the nodes have successfully received all the packets after t time
slots.

1) Set up: We consider a single cluster topology consisting
of N = 100 nodes. The other parameters are set as follows:
M = 20, C = 10, and p = 0.1. The results are obtained by
taking average over 10000 identical simulations.

2) Simulation Results: Figure 7 depicts the probability that
all the nodes in the network have received all the packets
after t time slots, as a function of t. The figure compares the
results obtained with our approximate analysis (see Eq. 4) and
simulation. Although the two curves are known to converge
only when N → ∞, the result shows that they are already quite
close for N = 100 nodes. This result illustrates the potential
of our method towards the design of efficient, ACK-less data
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dissemination schemes.

VII. CONCLUDING REMARKS

In this paper, we have shown that the multichannel trans-
ceiving capability of sensors can be exploited to achieve sig-
nificance reduction in the delay of data dissemination. In partic-
ular, judicious variations of round robin strategies can achieve
near-optimal performance in important, practical topologies.
Surprisingly, the presence of a separate radio (interface) for
each channel is not needed to achieve substantial performance
gain, proportional to the number of channels. Finally, we have
shown that extreme value theory could prove very useful in
designing reliable data dissemination protocols with minimal
control overhead.
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