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Correspondence 

Asymptotic Performance of a Distributed Detection 
System in Correlated Gaussian Noise 

V. Aalo and R. Viswanathan 

Abstract-In this correspondence we consider the detection of a con- 
stant signal in noise with a large set of geographically dispersed sen- 
sors. The noise at the sensors are correlated Gaussian. Two correlation 
models are considered: one where the correlation coefficient between 
any two sensors decreases geometrically as the sensor separation in- 
creases, and the other where the correlation coefficient between any 
two sensors is a constant. For both correlation models, the asymptotic 
(as the number of sensors becomes large) performances of a distributed 
detection system and a central system are examined. 

I.  INTRODUCTION 

Consider a distributed detection problem in which a large num- 
ber N of geographically dispersed identical detectors make deci- 
sions {U,, i = 1 ,  2,  . , N }  for the underlying binary hypothesis 
testing problem based on their local observations {XI } . Each local 
detector transmits its decision to the fusion center where a final 
decision uo is obtained. The distributed detection problem has been 
studied extensively for the case where the local observations are 
conditionally independent given either hypothesis (see [ l ]  for a re- 
view). However, the asumption of conditional independence may 
not be valid in some cases of practical interest [2]. 

Tsitsiklis [3] shows that for the binary hypothesis case, under 
mild regularity conditions, it is asymptotically optimal to operate 
all the local sensors with identical tests if the conditional indepen- 
dence assumption is valid. In [4] it is shown that if the fusion center 
performs a counting ( k  out of N )  rule, the probability of miss for 
finite k (or finite N - k ) )  does not go to zero asymptotically unless 
the probability distributions under the hypotheses satisfy certain 
conditions. 

Here we consider two correlation models for the observations in 
the distributed detection of a known constant signal in correlated 
Gaussian noise. In the first model, the correlation coefficient be- 
tween the observation at a given sensor and that at any other sensor 
decreases geometrically as the separation between the two sensors 
increases. With large, but finite N ,  this model could approximate 
some real situations. In the second model, any pair of sensors re- 
ceive equicorrelated observations. In both cases we investigate the 
asymptotic performances of the distributed detection system em- 
ploying a counting rule and that of the central system which derives 
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its decision based on the set of observations {X, } . In Section I1 the 
detection problem is stated and in Section 111 the asymptotic per- 
formances of the central and the distributed systems are discussed. 

11. PROBLEM STATEMENT 
Consider the problem of detecting a constant signal in additive 

Gaussian noise, as described by the following hypotheses testing: 

Ho: X, = n, 

H,: X, = n, + m (1) 

i = 1 ,  2,  . . .  , N and {n l  } are dependent zero-mean Gaussian 
noise with unit variance and rn ( > O )  is a known constant. Each 
local sensor performs an identical test 

HI  

Ho 
x, )c t .  

The binary decisions are therefore 

1 

0 

if the ith sensor decides H I  

if the ith sensor decides Ho. U, = [ 
In (2) every sensor uses the same threshold t .  Optimizing the 
thresholds with correlated observations in general is a difficult 
problem [ l ] ,  [2]. In a centralized detection scheme, the sensors 
send all their observations to the fusion center where an optimum 
test can be performed. The optimum (likelihood ratio) test in such 
a case is given by [ 5 ] :  

HI 

Ho 
Z(X) = M T K I X  )c h* (3) 

where X = {XI,  X,, . . . , XN)T, M = rn(1, 1, . . . , l )T,  A is the 
covariance matrix and h * is the threshold at the fusion center de- 
termined by the required false alarm probability. In the distributed 
scheme, a counting rule is considered at the fusion center. That is, 

(4) 

where U = ( u l ,  U*, . . . , uN)'and p is the fusion center threshold. 

111. CORRELATION MODELS AND PERFORMANCES OF CENTRAL 
AND DISTRIBUTED SYSTEMS 

Denote the correlation coefficient between X ,  and XI as p t l .  i, j = 

( 5 )  

1 ,  2,  * * . , N .  

a) Let p,/ = P I I - ~ ~  where 0 5 p < 1 .  

In this case the (optimum) centralized test in (3) becomes 
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For every N, I is distributed as Gaussian. Upon computing the mean 
and the variance of 1, we obtain the following as N --t 03: 

(7) 

where PF, Po, PM denote the probabilities of detection, false alarm, 
and miss, respectively, and Q( y) = 1 - F( y). F( y) is the standard 
normal CDF. For a given PF, the probability of a miss for the test 
(6) goes to zero exponentially with N at a rate (m2/2) (1 - p / 1  

+ P ) .  
Next, consider the correlation model in (5) when the local sen- 

sors send only their decisions to the fusion center. A stationary 
Gaussian sequence {XI } is ergodic iff its spectral distribution func- 
tion is continuous [6]. For the assumed correlation model, it can 
be shown that the spectral distribution is continuous. It follows that 
{uI } is also ergodic and stationary. Therefore, 1 / N  E;"= I U, tends 
to Q(t) as N -+ 00 under Ha and to Q(t - m) under HI. A test based 
on E:= U, therefore achieves zero probability of error, asymptoti- 
cally. Alternatively, we establish a similar result, using a central 
limit theorem. For a given PF > 0, it is shown that 1 - Po -+ 0 
and N -+ W. In the process of amving at this result, we derive an 
inequality relating the correlation coefficients between XI and X, 
and U, and U,. 

We first obtain a bound on the bivariate normal integral. Let 

Q z ( ~  I P )  = Sfm s,m f ( x ,  Y ;  P )  d.X dy 

P )  = s', 1' --m f ( x ,  y ;  p )  d.X dy 

(8) 

(9) 

wheref(x, y ;  p )  is the standard bivariate normal density with cor- 
relation coefficient p .  Letf(x) denote the standard normal density. 
Several equivalent expressions for F 2 ( t  I p )  exist [7], 
them is given by 

t - & Y  
FZ(tl P )  = s_9, F 2  ( Z ) f ( Y )  dY. 

Lemma: For any 0 5 p 5 1, and all t we have 

Fz(t  I P )  5 PRO + (1 - p ) F 2 ( 0  

and 

Q z V I  P )  5 PQ@) + (1 - P ) Q ~ ( ~ )  

[13]. One of 

(10) 

Proofi Consider (11). The result is seen true for p = 0. For 

For 0 < p < 1, we show that F2 ( t  1 p )  is convex in p .  That is 
p = 1, lim,,+lF2(tl p )  = F(t) [12], 1131. 

( d 2 / d p 2 )  F2(t1 p )  > 0 for all t. From [8] we have 

With an appropriate change of variable, the second inequality (12) 
follows. 

A consequence of the l e m a  is that the correlation coefficient 
between two sensor decisions ( p,) cannot exceed that between the 
corresponding sensor observation ( p r ) .  In order to see this, con- 
sider under Ha, 

E ( U ~ U ~ )  - E(u,)E(u,) - Qz@I  PJ - Q 2 W  
5 P I .  (13) - 

E(Ul) - E ( 4  )z Q(0 - Q 2 W  Pu = 

Since t in (8) and (9) is arbitrary, the above bound is valid for the 
hypothesis H I  also. 

Note that pu 5 pr has been established by Kedem in [9] for the 
special case o f t  = 0. 

Next, we present the definition of maximal correlation coeffi- 
cient of a sequence {X, } and a related central limit theorem [IO], 
[ 1 I]. The maximal correlation coefficient of a stationary sequence 

and the future {X,}?=k+n, is de- 
fined by 

between the past 

where the supremum is taken over all second order random vari- 
ables y I  and y2 such that for any arbitrary positive integer k, yI E {XI, 
X,, . . . , X k }  a n d y , E { X k + n , X k + n + I ,  . * }. Acentrallimittheo- 
rem for sequences of stationary random variables in which the past 
and distant future are asymptotically independent (i.e., p ( n )  -+ 0) 
is as follows: 

I f p ( n )  -+ 0 as n + 03, E{Ix, l z + 6 }  < 00 for some 6 > o 
and 
ut = E{(EY= IX,  - E(X,)))2} + 03 as n -+ 00, then 
E;=I (X, - E(X,))/un -+ N ( 0 ,  1). 

For the sequence {XL}f=l, and the correlation model ( 5 ) ,  the max- 
imal correlation coefficient is given by p n  . {U,}:= I is a bounded 
sequence of random variables. Using (13), the maximal correlation 
coefficient of this sequence is given by 

p,(n) 5 p n  -+ 0 as n -+ W. (15) 

The Gaussian observations {XI }:= I and hence the decisions 
{U,}:= I are stationary. Using the lemma, it can be seen that 

N 

0; 2 C [E(uf) - E(u,)'I = N[QW - Q2W1 (16) 
r = l  

where d is an appropriate constant, depending on Ha or HI and N 
is the number of sensors. Therefore, U; -+ 00 as N -+ 03 for finite 
d .  Using this fact and (15), we can apply the above central limit 
theorem to the sequence of decisions. We are unable to obtain an 
exact value of the variance U; because of the bivariate integrals 
and will therefore derive a bound on the performance of the dis- 
tributed detection system. It can be shown that when N is large, 
the following bounds are true [12]: 

where Pf = Q(t)  and Pd = Q(t - m). 
To obtain the lower bound on the probability of detection (for a 

fixed probability of false alaram at the fusion center), we use (17). 
The probability of false alarm is given by (using the CLT men- 
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tioned before) 

where p is a constant chosen so that fl  = NPf + &?h$ and h = 

Q-’ ( P F ) ,  $ &? = UNO. The probability of detection is given by 

As the number of sensors becomes very large, we have 

b) Let p i j  = p (20)  

where i,j = I ,  2 ,  . . . , N ,  and - 1 / N  - 1 < p < 1 .  When all 
the observations are available at the fusion center, the test in ( 3 )  
becomes 

1 - P  N HI 

H~ 
Z(X) = c xi I h (21)  

(N - l ) p 2  - (N - 2 ) p  - 1 i = l  

or 

(23 )  

where C = Q - l ( P F )  = X / ( & N )  for large N .  As N --t OD, Po + 

Q ( C  - m/&), which is a constant not equal to one. Hence the 
probability of a miss does not go to zero as N + W .  In this cor- 
relation model, an infinite set of such sensors is just equivalent to 
a single sensor receiving the constant signal m/&. 

Since the performance of a distributed detection system is 
bounded from above by that of the central system, the probability 
of a miss for any distributed detection system will not go to zero 
as well. 

IV. CONCLUSION 

We have studied the distributed detection of a constant known 
signal in correlated Gaussian noise for the case of two correlation 
models. The asymptotic performances of the central system and the 
distributed system for the cases of these correlation models, are 
summarized in Table I. 

TABLE I 
MISS PROBABILITY (AT A GIVEN FALSE ALARM PROBABILITY > 0 FOR 

N -+ OD) 

Correlation 
Model 

Detection Geometric Decrease with Sensor Equal \ System Separation Correlation 
~~ ~~~ 

Distributed 0 Fixed, > O  
Central Approaches 0 exponentially with Fixed, > O  

N(m2/2) (1 - p/1 + P )  
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A Unified Approach to Three Eigendecomposition 
Methods for Frequency Estimation 

Zoran Banjanin, J .  R. Cruz, and Dusan S.  ZrniC 

Abstract-We present a unified approach to three eigendecomposi- 
tion-based methods for frequency estimation in the presence of noise. 
These are the Tufts-Kumaresan (TK) method, the minimum-norm 
(MN) method, and the total least squares (TLS) method. It is shown 
that: 1) the MN method is a modified version of the TK method; 2) the 
TLS method is a generalization of the MN method; 3) the TLS solution 
vector can be expressed in matrix form, and an alternate way of com- 
puting it is presented; 4) the MN and the TLS methods exhibit some 
improvement over the TK method. 
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