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NORMS OF SUMS OF SQUARES

Robert W. Fitzgerald

Southern Illinois University

Abstract. For a finite separable extension K/F of fields of characteristic not 2, the norm
of a sum of 2n squares in K is a sum of 2n squares in F . We find explicit identities.

Let F be a field of characteristic not 2 and let K/F be a finite separable extension. A
special case of Scharlau’s Norm Principle [4, I 8.6] says that if α is a sum of 2n squares in
K, for some n, then NK/F (α) is a sum of 2n squares in F . The goal here is to find explicit
identities expressing NK/F (α) as a sum of 2n squares in F .

The motivation is a previous result [1, 1.1] for monic, separable f(x) ∈ F [x]: If f(x) is
the characteristic polynomial of a symmetric k × k matrix over F then the discriminant
of f(x) is a sum of 2n squares, where 2n−1 < k ≤ 2n. The converse is true for n = 2
and false for n ≥ 4. To settle the open case n = 3 requires an explicit identity for the
discriminant as a sum of four squares. Such an identity follows, by the proof of [1, 1.1],
from the identity expressing the norm, from a cubic extension, of a sum of three squares
in K as a sum of four squares in F . Although we obtain such an identity here, it is too
complicated to immediately settle the n = 3 case. This application will be postponed.

The proofs depend on a matrix theoretic approach to the transfer of a quadratic form,
which seems to be new. Then one imitates the proof of Scharlau’s Norm Principle (and
Witt’s Cancellation Theorem), replacing the usual vector space arguments with explicit
matrix computations.

We have presented formulas for several cases other than the one which motivated this
work because there is a curious difference between the case of two squares and the case of
four or more squares. This is best illustrated by an example. Suppose [K : F ] = 2 with σ
the non-trivial F -automorphism of K. Let x1, x2 ∈ K. Then:

NK/F (x2
1 + x2

2) = (x2
1 + x2

2)(σ(x1)2 + σ(x2)2).

We have the standard identity:

(0.1) (x2
1 + x2

2)(y
2
1 + y2

2) = (x1y1 + x2y2)2 + (x1y2 − x2y1)2.
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2 ROBERT W. FITZGERALD

If we set y1 = σ(x1) and y2 = σ(x2) then the second term of (0.1) p2 := x1y2 − x2y1

becomes x1σ(x2)−x2σ(x1) which is not in F (i.e. σ(p2) = −p2). Thus we have not written
NK/F (x2

1 + x2
2) as a sum of two squares in F . However, if instead we set y1 = σ(x2) and

y2 = σ(x1) then:

p1 = x1σ(x2) + x2σ(x1) = trK/F (x1σ(x2)) ∈ F

p2 = x1σ(x1)− x2σ(x2) = NK/F (x1)−NK/F (x2) ∈ F,

and we have the desired identity. We will show such a substitution is always possible for
sums of two squares and any finite K/F .

The situation is different for sums of four squares. Let xi ∈ K for 1 ≤ i ≤ 4. We have:

NK/F (x2
1 + x2

2 + x2
3 + x2

4) = (x2
1 + x2

2 + x2
3 + x2

4)(σ(x1)2 + σ(x2)2 + σ(x3)2 + σ(x4)2),

and the Lagrange identity (see e.g. [2, p. 287]):

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4) = p2
1 + p2

2 + p2
3 + p2

4

where p1 = x1y1 + x2y2 + x3y3 + x4y4

p2 = x1y2 − x2y1 + x3y4 − x4y3

p3 = x1y3 − x3y1 − x2y4 + x4y2

p4 = x1y4 − x4y1 + x2y3 − x3y2.

There are 24 possible substitutions, namely, for each permutation π on four letters set
yi = σ(xπ(i)). None of these substitutions yield all four pi in F . The identity for the norm
of a sum of four squares must involve division.

1. Sums of two squares.
We begin by finding an identity for

∏m
i=1(x

2
i1 + x2

i2), where xi1, xi2 are independent
variables over F . Let X denote the set of xij ’s. Let Am

k (X) denote the sum of all products
x1 i1 · · ·xm im with exactly k of the ij ’s equal to 1. We will frequently use:

(1.1) Am+1
k+1 (X) = Am

k (X)xm+1 1 + Am
k+1(X)xm+1 2.

Lemma 1.2. For m ≥ 2:

m∏

i=1

(x2
i1 + x2

i2) = Pm
1 (X)2 + Pm

2 (X)2,

where:

Pm
1 (X) =





∑2r
i=0(−1)i+1Am

2i(X), if m = 4r
∑2r

i=0(−1)i+1Am
2i+1(X), if m = 4r + 1

∑2r
i=0(−1)iAm

2i+1(X), if m = 4r + 2
∑2r+1

i=0 (−1)i+1Am
2i(X), if m = 4r + 3.
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and

Pm
2 (X) =





∑2r−1
i=0 (−1)i+1Am

2i+1(X), if m = 4r
∑2r

i=0(−1)i+1Am
2i(X), if m = 4r + 1

∑2r+1
i=0 (−1)i+1Am

2i(X), if m = 4r + 2
∑2r+1

i=0 (−1)iAm
2i+1(X), if m = 4r + 3.

Proof. This is not quite a straightforward induction argument so we provide most of the
details. For m = 2 we apply (0.1) to:

(x2
11 + x2

12)(x
2
22 + x2

21),

Note that we have switched the order of x21 and x22 in the sum. This yields:

P 2
1 (X) = x11x22 + x12x21 = A2

1(X)

P 2
2 (X) = x11x21 − x12x22 = A2

2(X)−A2
0(X),

as desired.
When m > 2 we have four cases to consider. First suppose m = 4r + 3. Then:

m∏

i=1

(x2
i1 + x2

i2) = (Pm−1
1 (X)2 + Pm−1

2 (X)2)(x2
m1 + x2

m2),

Note that this time we did not switch the order of xm 1 and xm 2. With (0.1) this yields:

Pm
1 (X) = Pm−1

1 (X)xm 1 + Pm−1
2 (X)xm 2

=
2r∑

i=0

(−1)iAm−1
2i+1(X)xm 1 +

2r+1∑

i=0

(−1)i+1Am−1
2i (X)xm 2

=
2r∑

i=0

(−1)i
[
Am−1

2i+1(X)xm 1 + Am−1
2i+2(X)xm 2

]−Am−1
0 (X)xm 2

=
2r+1∑

i=1

(−1)i+1Am
2i(X)−Am

0 (X)

=
2r+1∑

i=0

(−1)i+1Am
2i(X),

where we used (1.1) in the fourth line. Similarly,

Pm
2 (X) = Pm−1

1 (X)xm 2 − Pm−1
2 (X)xm 1

=
2r∑

i=0

(−1)iAm−1
2i+1(X)xm 2 −

2r+1∑

i=0

(−1)i+1Am−1
2i (X)xm 1

= −Am−1
m−1(X)xm 1 +

2r∑

i=0

(−1)i
[
Am−1

2i+1(X)xm 2 + Am−1
2i (X)xm 1

]

=
2r+1∑

i=0

Am
2i+1(X),
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Next assume m = 4r. Again we switch the order of the sum in the last term so that our
product is (Pm−1

1 (X)2 + Pm−1
2 (X)2)(x2

m 2 + x2
m 1). The induction proceeds as before. The

argument for m = 4r + 1 is the same except we do not switch the order of the sum, using
(Pm−1

1 (X)2 + Pm−1
2 (X)2)(x2

m 1 + x2
m 2). Lastly, suppose m = 4r + 2. We switch and use:

(Pm−1
1 (X)2 + Pm−1

2 (X)2)(x2
m 2 + x2

m 2) = (−Pm
1 (X))2 + (−Pm

2 (X))2.

We have:

Pm
1 (X) = −Pm−1

1 (X)xm 2 − Pm−1
2 (X)xm 1

= −
2r∑

i=0

(−1)i+1Am−1
2i+1(X)xm 2 −

2r∑

i=0

(−1)i+1Am−1
2i (X)xm 1

=
∑

i=0

(−1)i
[
Am−1

2i+1(X)xm 2 + Am−1
2i (X)xm 1

]

=
2r∑

i=0

(−1)iAm
2i+1(X),

as desired. The derivation for Pm
2 (X) = −Pm−1

1 (X)xm 1 + Pm−1
2 (X)xm 2 is similar. ¤

Theorem 1.3. Let K/F be a separable field extension of degree m. Let σ1, σ2, . . . , σm

be the F -monomorphisms of Kinto a fixed algebraic closure of F . Let u, v ∈ K. Write
Pm

i (u, v) for:

Pm
i (σ1(u), . . . , σm(u), σ1(v), . . . , σm(v)),

with i = 1, 2. Then each Pm
i (u, v) ∈ F and

NK/F (u2 + v2) = Pm
1 (u, v)2 + Pm

2 (u, v)2.

Proof. We have by (1.2):

NK/F (u2 + v2) =
m∏

i=1

(σi(u)2 + σi(v)2) = Pm
1 (u, v)2 + Pm

2 (u, v)2.

Thus it suffices to show each Pm
i (u, v) ∈ F . This is clear if v = 0 so suppose v 6= 0. Let

sk(z1, . . . , zm) denote the sum of all products of k distinct z’s. Then:

Am
k (σ1(u), . . . , σm(u), σ1(v), . . . , σm(v)) = NK/F (v) · sk(σ1(u/v), . . . , σm(u/v)).

Write sk(u/v) for sk(σ1(u/v), . . . , σm(u/v)). For any i, σi(sk(u/v)) = sk(u/v). Thus
sk(u/v), and so Am

k (u, v) and Pm
i (u, v), is in F . ¤
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Corollary 1.4. Let K/F be a finite Galois extension and let R ⊂ K be a ring invariant
under the action of the Galois group. If u, v ∈ R then NK/F (u2 + v2) = a2 + b2, with
a, b ∈ R ∩ F .

Remark. If charF > m then one can express both Pm
i (u, v), i = 1, 2, in terms of norms

and traces of elements of K. Define:

tk(z1, . . . , zm) =
m∑

i=1

zk
i .

From the theory of symmetric polynomials we know there are Qk ∈ Z[z1, . . . , zm] such
that:

sk =
1
k

Qk(t1, . . . tm).

For instance, s2 = (t21 − t2)/2 and s3 = (t31 − 3t1t2 + 2t3)/6. Now:

tk(σ1(u/v), . . . , σm(u/v)) = trK/F ((u/v)k)

sk(u/v) =
1
k

Qk(trK/F (u/v), . . . , trK/F ((u/v)m),

which expresses sk, hence Am
k and Pm

i , in terms of traces and norms.

2. The transfer of a matrix.
The transfers of isometric quadratic foms are themselves isometric. We present a new

matrix-theoretic proof of this basic fact.
We recall the transfer map. Let K/F be a finite field extension and let t : K → F

be a non-trivial linear functional. Let V be an m-dimensional space over K and let
B : V ×V → K be symmetric and bilinear. The transfer of B is t∗B : V ×V → F defined
by (t∗B)(v, w) = t(B(v, w)), where we now view V as an F -space.

For the matrix version of the transfer, first fix a basis D = {γ1, . . . , γn} of K over F .
We denote the standard basis of Km by E . Let Q be a symmetric m × m matrix over
K. Then the transfer of Q, with respect to D, is t∗Q = (t(wT

i Qwj)), where the wi range
through

ED = {γ1e1, γ2e1, . . . , γne1, γ1e2, . . . , γnem}.
If Q1 and Q2 are conguent symmetric matrices over K then t∗Q1 and t∗Q2 are congruent.
This is easily checked using the transfer of spaces as Q1 and Q2 are the matrices of the
same bilinear space with respect to different bases. However, we need an explicit matrix
proof.

We fix the field extension K/F , linear functional t, and basis D of K/F throughout this
section.

Definition. For x ∈ K define α(x) to be the matrix, with respect to D, representing
multiplication by x. Explicitly, α(x) is the n × n matrix whose i-th column is the D-
coordinates of γix. For a matrix M = (mij) over K we define α(M) to be the block
matrix (α(mij)),
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Proposition 2.1. Let Q1 and Q2 be symmetric m × m matrices over K and suppose
PT Q1P = Q2, for some invertible matrix P . Then α(P )T (t∗Q1)α(P ) = t∗Q2.

Proof. We work with the bilinear space (V,B) where V = Km and B(v, w) = vT Q1w. The
matrix of B with respect to E is Q1. Let C be the set of columns of P . Then the matrix of
B with respect to C is Q2. The matrix of t∗B with respect to ED is t∗Q1 and the matrix
of t∗B with respect to CD is t∗Q2. Thus we need the transition matrix R for CD to ED.

Write P = (pij) and pij = pij1γ1 + · · · pijnγn. Set Γ = (γ1, . . . γn). By definition,
α(pij)es •Γ = γspij . Let ci denote the i-th column of P . Then the ED-coordinates of γsci

are:
(α(pi1)es, α(pi2)es, . . . , α(pim)es),

a vector with mn entries. Thus the block of ED-coordinates of γ1ci, . . . , γnci is:

(α(ci1), α(ci2), . . . , α(cim))T = α(ci).

Hence R = α(P ) and RT Q1R = Q2. ¤
Proposition 2.2. (1) The map α : K → Mn(F ) is an F -algebra homomorphism.

(2)Suppose PT P = S · I, where S ∈ K and I is the m × m identity matrix. Then
α(PT )α(P ) = α(S) · I, where the latter denotes the block diagonal matrix with m copies
of α(S) along the diagonal.

Proof. (1) is clear since α(x) represents multiplication by x. (2) follows immediately from
(1). ¤
3. Norms of sums of three squares for quadratic extensions.

We begin with an example showing (1.4) fails for sums of four squares.

Example 3.1. Let F = Q(r, s, t) and K = F (
√

7). Let R = Z[r, s, t,
√

7], which is
invariant under the action of Gal(K/F ). Let:

u = 1 + s
√

7 and v = r + t
√

7.

We show that NK/F (1 + u2 + v2) is not a sum of four squares in R ∩ F = Z[r, s, t].
This implies the remark made in the introduction, namely that there is no substitution
yi = σ(xπ(i)), π ∈ S4, that makes each of the four terms of Lagrange’s identity an element
of F .

We sketch the proof. First, we have:

NK/F (S) = (2 + 7s2 + r2 + 7t2)2 − 28(s + rt)2

= 4 + 4r2 + 28t2 + 49s4 + 14r2s2 + 98s2t2 + r4 − 14r2t2 + 49t4 − 56rst.

Suppose this can be written as the sum of four squares of the form:

(air
2 + birs + cis

2 + dirt + eist + fit
2 + gir + his + kit + li)2.

Set A = (a1, a2, a3, a4) ∈ Z4 and similarly for the other letters. Comparing coefficients
yields equations such as A • A = 1, A • B = 0, etc, using the standard inner product. We
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can assume that A = (1, 0, 0, 0). The coefficient of r2t2 yields 2A•F +D •D = −14. Then
f1 ≤ −7. The t4 term gives F • F = 49 so that f1 = −7 and hence F = (−7, 0, 0, 0) and
D = 0.

There are now many cases to consider. In each case the goal is to determine C and L
and then use the following facts:

(i) A positive integer of the form 4a(8b− 1) is not a sum of three squares in Z.
(ii) There do not exist v, w ∈ Z3 such that v • v = 14, v • w = 0 and w • w = 49.
(iii) There do not exist v, w ∈ Z4 such that v = (±1,±1,±1,±1), v • w = 0 and

w • w = 49.
Statement (i) is standard ([2, p. 174]). For (ii) note that (v + w) • (v + w) = 63,

contradicting (i). For (iii) one must check each representation of 49 as a sum of four
squares.

We will present an outline of the cases and the details of two typical ones. Begin by
setting V equal to the span (over Q) of A,B, C, K,L and setting W equal to the span of
E, G,H. Then V and W are orthogonal.

In the first case, suppose dimV = 1, so that V consists of multiples of A. Then
A • B = A • K = 0 implies B = K = 0. Then the equation from the r2s2 term,
2A • C = B • B = 14, gives c1 = 7 and so, as C • C = 49, we have C = (7, 0, 0, 0). Next,
L is a multiple of A so L = (l1, 0, 0, 0). L • L = 4 yields l1 = ±2. If L = (2, 0, 0, 0) then
the coefficient of t2, namely 2F •L + K •K computes to -28, while it should be 28. Hence
L = (−2, 0, 0, 0). Then looking at the coefficients of s2 and r2s give H •H = −2C •L = 28
and A •H = 0. Thus h1 = 0 and h2

2 + h2
3 + h2

4 = 28, contradicting (i).
The subsequent cases are (2) dim V = 2 and B 6= 0, (3) dim V = 2 and B = 0, (4)

dim W = 1 and H 6= 0, (5) dim W = 1 and E = H = 0, all of which end in similar
contradictions. This leaves dim V = 3, dim W = 1, H = 0 and E 6= 0. Then l1 6= 0 else
K • K = 28 and A • K = 0 which implies 28 is a sum of three squares, contrary to (i).
Further, l1 6= ±2 else c1 = 0 which implies B •B = 14, B •C = 0 and C •C = 49, contrary
to (ii). Thus L = (±1,±1,±1,±1). But L • C = 0 and C • C = 49, contradicting (iii).
This completes the example.

Theorem 3.2. Let K = F (
√

d) be a separable extension. Let n = 2k, with k ≥ 1 and let
u1, u2, . . . , un ∈ K. Then:

(
n∑

i=1

u2
i 2)NK/F (1 +

n∑

i=1

u2
i ) = (S2)2 +

n∑

i=1

(ui 1S2 − ui 2S1)2

where S = 1 +
∑

u2
i , ui = ui 1 + ui 2

√
d and S = S1 + S2

√
d.

Proof. Of course, the result can be verified by expanding out both sides but we will derive
it. We imitate Scharlau’s proof of his norm principle, keeping track of the matrices that
arise. Let P be a 2n × 2n matrix such that PT P = S · I. Let t : K → F be the linear
functional with t(1) = 0 and t(

√
d) = 1. Let t∗ be the induced transfer map of quadratic

forms. Then :

t∗(〈1〉) =
(

0 1
1 0

)
t∗(〈S〉) =

(
S2 S1

S1 dS2

)
.



8 ROBERT W. FITZGERALD

Call the first matrix q1 and the second q2. Set Q1 equal to the block diagonal matrix
with 2n copies of q1; Q1 is the matrix of t∗(2n · 〈1〉). Similarly define Q2, the matrix of
t∗(2n · 〈S〉) with respect to the standard basis. Let R be the block matrix α(P ). Then
RT Q1R = Q2 by (2.1). Next diagonalize q2 as follows:

m =
(

1 −S1

0 S2

)

mT q2m =
(

S2 0
0 −S2NK/F (S)

)

Set M equal to the block diagonal matrix with 2n copies of m.. Then:

(RM)T Q1(RM) = S2diag(1,−NK/F (S), 1,−NK/F (S), . . . ).

Now eT
1 Q1e1 = 0. Set w = (RM)−1e1. Then:

(3.3)
2n∑

j=1

w2
2j−1 = NK/F (S)(

2n∑

j=1

w2
2j)

which will give our identity. (RM)−1 can be easily found as follows. Let R∗ = α(PT ).
Then R∗R is the block diagonal matrix with 2n copies of α(S) by (2.2)(2). Let L be the
block diagonal matrix with 2n copies of:

α(S)−1 =
1

NK/F (S)

(
S1 −dS2

−S2 S1

)
.

Then R−1 = LR∗. Write P = (pij) = (pij 1 + pij 2

√
d). Then for w = (RM)−1e1 we have:

wi =
{

S1p1 j 2 − S2p1 j 1, if i = 2j

NK/F (S)p1 j 2, if i = 2j − 1.

Plugging into (3.3) gives:

NK/F (S)2
2n∑

j=1

p2
1 j 2 = NK/F (S)

2n∑

j=1

(S1p1 j 2 − S1p1 j 1)2.

Now we can assume the first column of P is (1, 0, . . . , 0,−u1,−u2 . . . ,−un) by[2,XI,1.2].
This gives the desired result. ¤

One can easily derive the identities for NK/F (1 + u2
1 + · · · + u2

n) from (3.2): multiply
both sides by

∑
u2

i2 and apply the n = 2k identity. For instance, in the case of example
(3.1) we obtain:

NK/F (S) =
(

2s(s + rt)
s2 + t2

)2

+
(

2t(s + rt)
s2 + t2

)2

+
(

2(t− rs)(s + rt)
s2 + t2

)2

+
(

4rst + r2t2 − 7s4 − r2s2 − 14s2t2 − 2t2 − 7t4

s2 + t2

)2
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One can also derive the identities for NK/F (u2
1 + · · ·+ u2

2n) by factoring u2
1 + · · ·u2

2n =
(u2

1 + · · ·u2
n)(1 + v2

1 + · · · v2
n), where:

n∑

i=1

v2
i = (

2n∑

i=n+1

u2
i )/(

n∑

i=1

u2
i ),

is found with the n = 2k identity. Then take norms of both sides.

4. Norms of sums of three squares for cubic extensions.
We introduce some notation and assumptions. Let K/F be a separable extension of

degree 3. We assume -1 is not a sum of two squares in F (otherwise it is trivial to write
any element of F as a sum of three squares). Let u, v ∈ K and set S = 1 + u2 + v2. We
assume S /∈ F . Then K = F (S). Suppose S3 = aS2 + bS + c, with a, b, c ∈ F . Note that
NK/F (S) = c. Write:

u = u0 + u1S + u2S
2 and v = v0 + v1S + v2S

2.

Theorem 4.1. Use the above notation and assumptions. Suppose χ := (2c + bc− 1)/c is
not zero. Then:

(w2
2 + w2

5 + w2
8 + w2

11)NK/F (S) = w2
3 + w2

6 + w2
9 + w2

12,

where:

w2 = −2µ(u)u2 − 2µ(v)v2

w3 = c− bc + 1
χ

− 2µ(u)
(

γ(u)− (bc + 1)ϕ(u)
cχ

)
− 2µ(v)

(
γ(v)− (bc + 1)ϕ(v)

cχ

)

w5 = 2µ(u)v2 − 2µ(v)u2

w6 = 2µ(u)
(

γ(v)− (bc + 1)ϕ(v)
cχ

)
− 2µ(v)

(
γ(u)− (bc + 1)ϕ(u)

cχ

)

w8 = u1 + au2 +
2cu2

χ
− 4µ(u)

χ
(u2ϕ(u) + v2ϕ(v))− 4µ(v)

χ
(u2ϕ(v)− v2ϕ(u))

w9 =
bcu2 − u2 + 2cu0

2
+

2cγ(u)
χ

− 2µ(u)
(

bc + 1
2c

+
2
χ

(ϕ(u)γ(u) + ϕ(v)γ(v))
)

− 4µ(v)
χ

(ϕ(v)γ(u)− ϕ(u)γ(v))

w11 = v1 + av2 +
2cv2

χ
− 4µ(u)

χ
(v2ϕ(u)− u2ϕ(v))− 4µ(v)

χ
(u2ϕ(u) + v2ϕ(v))

w12 =
bcv2 − v2 + 2cv0

2
+

2cγ(v)
χ

− 4µ(u)
χ

(ϕ(u)γ(v)− ϕ(v)γ(u))

− 2µ(v)
(

bc + 1
2c

+
2
χ

(ϕ(u)γ(u) + ϕ(v)γ(v))
)

.
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Here we use:

ϕ(u) =
u0 − bcu0 + 2c2u1

2c

Q = χ(
(

1 +
4ϕ(u)2

χ2
+

4ϕ(v)2

χ2

)

ψ(u) =
bcu2 + u2 + 2cu0

2

µ(u) =
1
Q

(
ψ(u) +

2cϕ(u)
χ

)

γ(u) =
−bcu0 − u0 + 2c2u1

2c

Proof. The reader who wishes to verify, with the aid of a computer, this identity needs to
notice that the ui and vi are not independent. Comparing coefficients with respect to the
basis {1, S, S2} of S = 1 + u2 + v2 yields:

0 = 1 + u2
0 + 2cu1u2 + acu2

2 + v2
0 + 2cv1v2 + acv2

2

1 = 2u0u1 + 2bu1u2 + (ab + c)u2
2 + 2v0v1 + 2bv1v2 + (ab + c)v2

2

0 = 2u0u2 + u2
1 + 2au1u2 + (a2 + b)u2

2 + 2v0v2 + v2
1 + 2av1v2 + (a2 + b)v2

2 .

These relations,plus a Grobner basis program, are required for direct verification. We will,
instead, derive the identity.

We begin, as in (3.1), by following the proof of Scharlau’s Norm Principle. Set:

P =




1 0 u v
0 1 −v u

−u v 1 0
−v −u 0 1


 .

Then PT P = S · I. Let t : K → F be the linear functional with t(1) = 1, t(S) = 0 and
t(S2) = 0 and let t∗ be the induced transfer map. The key values are :

q1 := t∗〈1〉 =




1 0 0
0 0 c
0 c ac


 q3 := t∗〈S〉 =




0 0 c
0 c ac
c ac bc + a2c


 .

Let Q1 = diag(q1, q1, q1, q1) and similarly for Q3. Then if R = α(P ) we have RT Q1R = Q3,
by (2.1).

We diagonalize q3 as follows: set q2 = diag(1, c,−1). Then for:

m =




(1− bc)/(2c) 0 (1 + bc)/(2c)
−a 1 1
1 0 −1



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we have mT q3m = q2. Let M be the block diagonal matrix of four copies of m and similarly
for Q2. Then:

(RM)T Q1(RM) = Q2.

The object is to modify RM to N , as in the proof of Witt’s Cancellation Theorem, so
that NT Q1N = Q2 as before while the {1, 4, 7, 10}-submatrix of N is the identity. Then
if w = N−1e2 we have 0 = Q1(e2) = Q2(w) and w1 = w4 = w7 = w10 = 0. Hence:

(4.2) c(w2
2 + w2

5 + w2
8 + w2

11) = w2
3 + w2

6 + w2
9 + w2

12.

Since c = NK/F (S), (4.2) is our desired identity.
We will use hyperplane reflections to modify RM . Let B be the symmetric bilinear form

associated to Q1, that is, B(x, y) = xT Q1y. If Q1(y) 6= 0 then the hyperplane reflection
at y is:

Ty : x 7→ x− 2B(x, y)
Q1(y)

y.

The matrix of Ty, with respect to the standard basis, is I − (2/Q1(y))yyT Q1.
Set z1 = RMe1 − e1, where e1 is the first vector in the standard basis. Then:

Q1(z1) = Q2(e1)− 2B(e1, RMe1) + Q1(e1)

= 2− 2
1− bc

2c
= χ.

We are assuming χ 6= 0. (If χ = 0 then z1 must be replaced by RMe1 +e1 and the identity
reworked.) Set T1 = Tz1 . Then (T1RM)T Q1(T1RM) = Q2 and:

T1RM =




1 0 . . . 0
0
... ∗
0


 .

We continue the process. Set z2 = T1TRMe4−e4. Then z2 = RMe4−e4 and Q1(z2) =
χ 6= 0. Set T2 = Tz2 . Next, set z3 = T2T1RMe7 − e7. Then:

z3 = RMe7 − e7 − 2ϕ(v)
χ

z2 +
2ϕ(u)

χ
z1

Q1(z3) = χ

(
1 +

4ϕ(u)2

χ2
+

4ϕ(v)2

χ2

)
.

Since we are assuming that -1 is not a sum of two squares in F , we have Q1(z3) 6= 0. We
shorten Q(z3) to Q. So set T3 = Tz3 .

Lastly, set z4 = T3T2T1RMe10 − e10. Then:

z4 = RMe10 − e10 +
2ϕ(u)

χ
z2 +

2ϕ(v)
χ

z1

Q1(z4) = Q.
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Set T4 = Tz4 . Our modified isometry is N = T4T3T2T1RM , that is, NT Q1N = Q2 and the
{1, 4, 7, 10}-submatrix of N is the identity matrix. Our identity arises from the coordinates
of w = N−1e2.

We sketch the computation of w. First, every hyperplane reflection is an involution so
that T−1

i = Ti for each i. A striaght-forward computation yields:

T1T2T3T4(e2) = e2 − 2c

χ
z1 − 2µ(u)z′3 − 2µ(v)z′4

where z′3 = RMe7 − e7 +
2ϕ(v)

χ
z2 − 2ϕ(u)

χ
z1

z′4 = RMe10 − e10 − 2ϕ(u)
χ

z2 − 2ϕ(v)
χ

z1.

R−1 can be computed using (2.2)(2). Set R∗ = α(PT ). Then R∗R = α(S) · I. Now:

α(S) =




0 0 c
1 0 b
0 1 a


 and α(S)−1 =

1
c



−b c 0
−a 0 c

1 0 0


 .

So R−1 = diag(α(S)−1, α(S)−1, α(S)−1, α(S)−1)R∗. Lastly,

m−1 =




c 0 (bc + 1)/2
0 1 a
c 0 (bc− 1)/2


 .

The formulas for the wi, i 6= 1, 4, 7, 10, follow. ¤

The final remarks of Section 3 hold here as well. To get an identity for NK/F (1+u2+v2)
multiply both sides of (4.1) by w2

2 + w2
5 + w2

8 + w2
11 and apply the four square identity. To

get an identity for NK/F (u2
1 + u2

2 + u2
3 + u2

4) factor:

u2
1 + u2

2 + u2
3 + u2

4 = (u2
1 + u2

2)
(

1 +
u2

3 + u2
4

u2
1 + u2

2

)

= (u2
1 + u2

2)

(
1 +

(
u1u3 + u2u4

u2
1 + u2

2

)2

+
(

u1u4 − u2u3

u2
1 + u2

2

)2
)

.

Apply the identity from (4.1) to the norm of the second term and the identity of (1.3) to
the norm of the first term, then apply the two square identity twice.

Lastly, the argument of (4.1) can be used to find other identities. For the norm of
1 + u2 + v2 from larger extensions one needs more hyperplane reflections fo modify RM .
For sums of more squares one requires a different initial matrix P . For instance, for one
plus a sum of four squares use the matrix implicit in [3, p. 2] and for one plus the sum of
eight squares use [3, p.93].
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