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MASTING BY EIGHTEEN NEW ZEALAND PLANT SPECIES:
THE ROLE OF TEMPERATURE AS A SYNCHRONIZING CUE
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1Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269 USA
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5Landcare Research, P.O. Box 69, Lincoln, New Zealand
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Abstract. Masting, the intermittent production of large flower or seed crops by a pop-
ulation of perennial plants, can enhance the reproductive success of participating plants
and drive fluctuations in seed-consumer populations and other ecosystem components over
large geographic areas. The spatial and taxonomic extent over which masting is synchro-
nized can determine its success in enhancing individual plant fitness as well as its ecosystem-
level effects, and it can indicate the types of proximal cues that enable reproductive syn-
chrony. Here, we demonstrate high intra- and intergeneric synchrony in mast seeding by
17 species of New Zealand plants from four families across .150 000 km2. The synchronous
species vary ecologically (pollination and dispersal modes) and are geographically widely
separated, so intergeneric synchrony seems unlikely to be adaptive per se. Synchronous
fruiting by these species was associated with anomalously high temperatures the summer
before seedfall, a cue linked with the La Niña phase of El Niño–Southern Oscillation. The
lone asynchronous species appears to respond to summer temperatures, but with a 2-yr
rather than 1-yr time lag. The importance of temperature anomalies as cues for synchronized
masting suggests that the timing and intensity of masting may be sensitive to global climate
change, with widespread effects on taxonomically disparate plant and animal communities.

Key words: abiotic factors; Chionochloa; cross-correlation; Dacrydium; El Niño–Southern Os-
cillation; Elaeocarpus; masting; New Zealand; Nothofagus; Phormium; synchrony; temperature.

INTRODUCTION

Masting, also known as mast seeding or mass flow-
ering, is the intermittent production of large crops of
flowers or seeds by a population of perennial plants
(Janzen 1971, Kelly 1994). Masting results from syn-
chronized variations in reproductive output of individ-
ual plants, and such synchrony may benefit the fitness
of individual plants, e.g., through increased pollination
efficiency or satiation of seed consumers (Janzen 1971,
Silvertown 1980, Nilsson and Wästljung 1987, Smith
et al. 1990). In addition, masting has powerful direct
and indirect effects on populations of seed consumers,
as well as other species and ecosystem processes (King
1983, Jedrzejewska and Jedrzejewski 1998, Jones et
al. 1998, Curran and Leighton 2000, Ostfeld and Kees-
ing 2000).

The fitness benefits accrued by plants and the effects
of masting on other ecosystem components are medi-
ated by the spatial and taxonomic extent of masting
synchrony (Curran and Leighton 2000). Masting can

Manuscript received 9 May 2001; revised 27 August 2001;
accepted 28 August 2001.

8 Address correspondence to: Institute of Ecosystem Stud-
ies, Box AB, Millbrook, NY 12545 USA.
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be synchronous over distances measured in hundreds
or thousands of kilometers (Koenig and Knops 1998,
2000, Kelly et al. 2000). Synchronous masting over
large spatial scales prevents consumers from aggre-
gating to and eliminating local patches of seed pro-
duction. Instead, consumers are effectively starved dur-
ing intermast intervals and swamped during mast
events, driving large fluctuations in consumer abun-
dance and increasing the potential fitness benefit of
masting (Curran and Leighton 2000). Similarly, syn-
chronous masting by sympatric taxa that share seed
predators can increase the predator-swamping benefits
of masting and increase the amplitude of fluctuations
in consumer abundance (Shibata et al. 1998, Kelly et
al. 2000). In addition, if seed consumers strongly prefer
particular fruits or seeds, then less preferred species
may escape seed predation by masting in synchrony
with a preferred species (Curran and Leighton 2000).

If individual plants do not communicate directly with
one another, then masting synchrony must result from
responses to external factors, or cues. Synchronizing
cues must be spatially consistent, to enable synchrony
of entire populations, and be easily detected by plants
through strong physiological effects. Weather condi-
tions, especially temperature, are likely candidates be-
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PLATE 1. The 1998–1999 season was a high-flowering season throughout New Zealand for most species, including
Phormium tenax, shown here in fruit in January 1999 near Dunedin. This long-lived herbaceous monocot has straplike leaves
2–3 m long and compound inflorescences 3–4 m tall with bird-pollinated flowers. Photograph by Dave Kelly.

cause they strongly affect photosynthesis and growth
and are spatially autocorrelated (Norton and Kelly
1988, Koenig et al. 1999, Koenig and Knops 2000).
Temperatures during flower or cone initiation appear
to control subsequent seed or flower production in a
variety of taxa (e.g., Matthews 1955, Maguire 1956,
Connor 1966, Lester 1967, Forcella 1981, Brockie 1986,
Norton and Kelly 1988, Allen and Platt 1990, Cowan
and Waddington 1990, Pucek et al. 1993, Kelly et al.
2000). Mark (1965) and Greer (1979) demonstrated ex-
perimentally that relocating alpine plants in the genus
Chionochloa to a lower elevation (and higher temper-
ature) can cause a sustained run of high seed production.
Ashton et al. (1988) found that mass flowering by a suite
of dipterocarp species was cued by a series of cool nights
associated with El Niño. Consequently, large-scale cli-
matic processes such as El Niño–Southern Oscillation
(ENSO) and global warming may alter the frequency
and intensity of masting, substantially altering geo-
graphically and taxonomically distant plant and animal
communities (McKone et al. 1998).

Masting in New Zealand

Masting is a worldwide phenomenon (Kelly 1994,
Herrera et al. 1998) but appears to be especially prev-
alent in the New Zealand flora (Webb and Kelly 1993;
see Plate 1). The ultimate reasons for high masting
prevalence in New Zealand are mysterious, but New
Zealand’s long history before humans and mammalian
herbivores arrived may have enabled even herbs and
grasses to evolve long life spans, which are necessary
for masting to be a viable strategy. Alternatively, data

on masting in other parts of the world may simply be
incomplete.

Several New Zealand plant taxa are reputed to mast
in synchrony with one another (Connor 1966, Brockie
1986), although such synchrony has rarely been quan-
tified (Burrows and Allen 1991, Kelly et al. 2000). Our
first objective was to quantify the degree of masting
synchrony over space and across taxa for 18 New Zea-
land species in five genera of five families. Our second
objective was to evaluate temperature as a putative syn-
chronizing environmental cue, by testing whether mast-
ing and temperatures are consistently correlated in time
and space. Our final objective was to determine to what
extent any temperature cues found are linked to large-
scale weather cycles such as ENSO.

The plants we studied have all attracted empirical
research by virtue of high variance in flower or seed
production. Two genera are herbaceous monocots
(Chionochloa, Poaceae; and Phormium, Phormiaceae),
two are dicot trees (Elaeocarpus, Elaeocarpaceae; and
Nothofagus, Fagaceae), and one is a gymnosperm tree
(Dacrydium, Podocarpaceae). The genera are ecolog-
ically diverse in several respects. Chionochloa (snow
tussocks) are perennial tussock-forming grasses com-
mon in alpine and subalpine meadows (Wardle 1991)
with wind-pollinated flowers and gravity-dispersed
seeds. Chionochloa exhibit extremely high variation in
flowering intensity, with coefficients of variation (CV)
exceeding 3.0 (Kelly 1994, Kelly et al. 2000). Several
Chionochloa suffer severe predispersal predation on
seeds and florets by specialist insects, and masting ap-
pears to benefit the plants by satiating these predators
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TABLE 1. Summary statistics for raw and standardized masting data sets.

Genus and species
Refer-
ence†

Fig. 1

Panel Symbol Site N (yr) Method

Chionochloa
crassiuscula (Kirk) Zotov
rubra Zotov
teretifolia (Petrie) Zotov
rigida (Raoul) Zotov
pallens Zotov
pallens

1
1
1
1
1
1

A
A
A
A
A
A

A
B
C
D
E
H

Takahe Valley
Takahe Valley
Takahe Valley
Takahe Valley
Takahe Valley
Mt. Misery

28
28
28
28
28
24

visual count, 100–200 plants
visual count, 100–200 plants
visual count, 100–200 plants
visual count, 100–200 plants
visual count, 100–200 plants
visual count, 200 1 m2 plots

australis (Buchanan) Zotov
pallens
macra Zotov
pallens
conspicua (Forst. f.) Zotov
flavescens Zotov

1
1
1
1
1
1

A
A
A
A
A
A

I
F
G
J
K
L

Mt. Misery
Mt. Hutt
Mt. Hutt
Camp Creek
Camp Creek
Camp Creek

24
15
11
19
19
20

visual count, 200 1 m2 plots
visual count, 80 plants
visual count, 17–34 plants
visual count, 50 plants
visual count, 50 plants
visual count, 50 plants

crassiuscula
oreophila (Petrie) Zotov
rubra

1
1
1

A
A
A

M
N
O

Camp Creek
Camp Creek
Camp Creek

19
19
19

visual count, 50 plants
visual count, 50 plants
visual count, 50 plants

Dacrydium
cupressinum
cupressinum

2
3

D
D

A
B

Wanganui S. F.
Ianthe Forest

33
11

eight 0.86-m2 trays, 20 m apart
35 0.28-m2 seed trays, 20 m apart

Elaeocarpus
dentatus 4 C D Orongorongo 33 0.28-m2 trays under 21 trees

Nothofagus
solandri (Hook. f.) Oerst.
solandri
solandri
solandri
solandri
menziesii (Hook. f.) Oerst.
menziesii
fusca (Hook. f.) Oerst.

5
5
5
6
5
7
8
7

B
B
B
B
B
B
B
B

A
B
C
D
E
F
G
H

Craigieburn A
Craigieburn B
Craigieburn C
Takahe Valley
Mt. Thomas
Rowallan
Takitimu
Rahu

35
35
35
20
34
19
29
16

eight 0.28-m2 trays 40 m apart
eight 0.28-m2 trays 40 m apart
eight 0.28-m2 trays 40 m apart
eight 0.28-m2 trays 40 m apart
eight 0.28-m2 trays 40 m apart
eight 0.28-m2 trays 40 m apart
2 to 8 0.28-m2 trays 40 m apart
eight 0.28-m2 trays 40 m apart

fusca
solandri
fusca
menziesii
truncata (Col.) Ckn.

6
9
9
9

10

B
B
B
B
B

I
J
K
L
M

Eglinton
Mt. Misery
Mt. Misery
Mt. Misery
Orongorongo

11
24
24
24
32

eight 0.28-m2 trays
10 0.28-m2 trays
17 0.28-m2 trays
17 0.28-m2 trays
2 to 21 0.28-m2 trays

Phormium
tenax J. R. et G. Forst.
tenax
cookianum Le Jolis

11
11
11

C
C
C

A
B
C

Ngauranga
Thorndon
Thorndon

18
18
18

visual count, 250 plants
visual count, 260 plants
visual count, 45 plants

Notes: Data sets are annual measurements of inflorescence or seed production, as described in Methods. Data are shown
in Fig. 1 with the panels and symbols indicated. For site locations, see Fig. 2.

† Key to references: 1, Kelley et al. (2000); 2, Norton and Kelly (1988); 3, James and Franklin (1978); 4, Cowan and
Waddington (1990) (in part; some data previously unpublished); 5, Allen and Platt (1990) (in part; some data previously
unpublished); 6, W. G. Lee, unpublished data; 7, Wardle (1984); 8, Burrows and Allen (1991); 9, Wilson et al. (1998) (in
part; some data previously unpublished); 10, P. Cowan and J. Alley, unpublished data; 11, Brockie (1986).

‡ Significantly nonnormal, Shapiro-Wilks W test, P , 0.01.

(Kelly et al. 1992, Kelly and Sullivan 1997, Kelly et
al. 2000). Phormium (New Zealand flaxes) are lowland
strap-leaved herbs, which produce large floral displays
attractive to nectar-feeding birds (Brockie 1986) (see
Plate 1); the seeds are wind dispersed. Elaeocarpus
dentatus J. R. et G. Forst. (hinau) is a tree that occurs
primarily at lower elevations on the North Island, and
the insect-pollinated flowers produce seeds in fleshy
drupes that are dispersed by native birds (Brockie
1986). Nothofagus (southern beeches) are trees of low-
land and montane habitats noted for producing highly
variable seed crops over large spatial scales (Wardle
1984, Allen and Platt 1990, Burrows and Allen 1991).
Nothofagus have wind-pollinated flowers and wind-dis-

persed seeds; the latter are important foods for a variety
of native birds (Wardle 1984, Wilson et al. 1998), as
well as introduced birds and rodents (King 1983,
O’Donnell and Phillipson 1996). Dacrydium cupres-
sinum Lamb. (rimu), also inhabits lowland and lower
montane habitats. Rimu cones are wind pollinated,
while the seeds are carried on fleshy podocarps, which
are dispersed by several native birds (Norton and Kelly
1988, O’Donnell and Dilks 1994).

METHODS

Data sets

We analyzed 34 published and unpublished time se-
ries of yearly flower or seed production (Table 1, Fig.
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TABLE 1. Extended.

Raw data

CV Skew Kurtosis

Standardized

Skew Kurtosis

2.73
1.76
2.28
2.23
1.67
1.49

3.93
2.15
2.56
2.99
1.88
1.50

16.98‡
4.11‡
5.52‡
8.69‡
2.64‡
1.09‡

0.90
0.24
0.67
0.38
0.14
0.01

20.54‡
21.73‡
21.24‡
21.42‡
21.54‡
21.38

1.91
1.69
1.44
1.85
1.62
1.77

3.03
1.80
1.49
2.19
1.61
1.85

10.54‡
1.83‡
0.91‡
4.32‡
1.79‡
2.41‡

0.10
20.06

0.11
0.60
0.76
0.69

21.44
21.37
21.57
21.43‡
21.26‡
21.39‡

1.86
1.57
1.96

1.94
2.30
2.05

2.77‡
5.99‡
3.26‡

0.97
0.45
1.12

20.80‡
21.21‡
20.53‡

1.41
1.18

1.80
0.71

2.68‡
21.52‡

20.61
20.06

20.34
21.77

0.77 1.26 1.16‡ 20.78 0.76

1.78
1.63
1.47

2.84
2.47
1.62

9.60‡
7.39‡
2.10‡

20.02
20.23
20.24

21.50‡
21.32
21.33

1.26
1.82
1.32
1.59
1.53

1.51
2.31
1.34
1.95
1.29

1.53‡
5.14‡
0.73‡
3.92‡

20.10‡

20.51
0.18

20.08
20.01

0.15

20.61
21.16
21.47
21.36
21.60

1.48
1.95
1.84
1.89
2.06

1.23
2.60
3.14
3.70
2.04

20.50‡
6.26‡

11.27‡
15.68‡

2.77‡

20.55
0.88
0.27

20.17
20.19

0.28
20.41‡
21.32‡
21.65‡
20.43

1.11
0.95
0.74

1.42
0.86
0.61

1.43‡
20.55‡
20.38

20.15
20.11
20.77

21.30
21.41

0.21

FIG. 1. Standardized time series of masting by (A) Chion-
ochloa spp., (B) Nothofagus spp., (C) Phormium spp. and
Elaeocarpus dentatus, and (D) Dacrydium cupressinum at var-
ious sites in New Zealand. Raw data were natural log-trans-
formed and standardized to mean 5 0 and SD 5 1 (see Meth-
ods for details). Each time series in a panel is indicated by
a different letter symbol. Species names, symbols, and
sources are in Table 1.

1). These data cover 780 site-years (Table 1) from 15
sites throughout the South Island and southern North
Island (Fig. 2), an area of .150 000 km2. Sites ranged
in elevation from 15 to 1430 m, and in mean rainfall
from 1000 to .6400 mm/yr. Table 1 briefly summarizes
measurement methods for previously published data
sets, but we urge the reader to consult the primary
sources for details. Chionochloa flowering intensity
was measured by censusing inflorescences per tussock,
usually on permanently tagged plants in unmodified
alpine and subalpine meadows (Kelly et al. 2000).
Phormium flowering intensity was measured by cen-
susing flowering stems per plant. Seed production by
Dacrydium, Elaeocarpus, and Nothofagus was mea-
sured as seeds/m2 of ground, using seed trays. At the
Orongorongo Valley research site, 18 km from Wel-
lington, Nothofagus truncata seeds were collected in
lowland sites from 0.28-m2 seed trays under individual
trees. Trays were added over time, from two in 1968,

three from 1971, 15 from 1974, 18 from 1978, 20 from
1979, and 21 thereafter (Fitzgerald et al. 1996, Alley
et al. 1998).

Sampling methods, mean, and variance differed
among data sets and data were not normally distributed.
All raw masting data sets had strong positive skew
(median 5 1.91) and most had positive kurtosis (me-
dian 5 2.72), indicating asymmetric long-tailed (lep-
tokurtic) distributions. All data sets but one failed the
Shapiro-Wilks W test for normality (StatSoft 1994) at
the 99% level (Table 1). To account for methodological
differences and reduce deviations from normality, all
masting data were transformed by natural log and stan-
dardized to mean 5 0 and standard deviation (SD) 5
1 before analysis (Herrera et al. 1998). If a raw data
set contained zeroes, then the smallest positive value
in that data set was added to all values before they were
transformed. Standardized data sets were consistently
much less skewed (median 5 0.08) and kurtotic (me-
dian 5 21.33) than raw data, although they tended to
be short tailed (kurtosis , 0; platykurtic) and 15 of 34
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FIG. 2. Sites of masting and weather data collection in New Zealand.

standardized data sets remained significantly nonnor-
mal at the 99% level (Table 1).

Testing for synchrony within and among genera

Masting synchrony among species and sites was
quantified by pairwise cross correlation (Hanski and
Woiwod 1993, Bjørnstad et al. 1999, Koenig 1999),
i.e., the Pearson correlation (r) between concurrent val-
ues of each pair of standardized masting time series
with n . 10 yr of overlap. Our decision to measure
synchrony by cross-correlation is based on the as-
sumption of normal masting (Kelly 1994). That is, high
and low seed production are not dichotomous, but rep-
resent opposing tails of a continuous distribution. For
that reason, our question of interest was not whether
seed production peaks and troughs occur in the same
years for different data sets, but rather whether relative
deviations from the long-term mean seed production
are correlated among data sets.

The standardized data sets were somewhat platykur-
tic, but r is robust to all but extreme deviations from
normality for reasonable sample sizes (n . 10; Edgell
and Noon 1984). However, r is not robust to temporal
autocorrelation, which can increase the type I error rate
(Abraham and Ledolter 1983), and seed production

tends to be temporally autocorrelated (Norton and Kel-
ly 1988, Sork et al. 1993, Crawley and Long 1995,
Koenig and Knops 2000). Therefore, the statistical sig-
nificance of each cross-correlation was evaluated after
calculating the adjusted degrees of freedom (nadj) ac-
cording to Sciremammano (1979). Because nadj , 30
in nearly all cases, we applied Hotelling’s modified z
transformation (Sokal and Rohlf 1981), which has an
approximately normal distribution with standard de-
viation (SD) sz* 5 (nadj 2 1)20.5, to each r. P values
were two-tailed and based on a normal distribution with
mean 5 0 and SD 5 sz*. Cross-correlations with nadj $
10 were considered valid for significance testing (Sci-
remammano 1979), and the significance of each com-
parison was evaluated after sequential Bonferroni cor-
rection (Rice 1989).

Testing for influence of temperature and ENSO

Based on previous studies, we hypothesized a priori
that standardized seed production would be correlated
with temperature during floral initiation for all species
and sites. To test this hypothesis, we cross-correlated
each masting time series with the seasonal (3-mo) mean
temperature (National Institute of Water and Atmo-
spheric Research, Auckland, New Zealand) recorded at



May 2002 1219SYNCHRONOUS MASTING IN NEW ZEALAND

FIG. 3. Box-and-whisker plots summarizing cross-cor-
relations between masting time series within and among gen-
era. Each box spans the 25th and 75th percentiles, with the
median indicated by a cross line. Whiskers indicate the 10th
and 90th percentiles, and diamonds indicate outlying obser-
vations. ‘‘Dacry vs. Others’’ indicates masting cross-corre-
lations between Dacrydium and other genera.

the nearest of 10 climate stations (Fig. 2) during the
period of floral initiation (summer 2 yr before seedfall
for Dacrydium, summer 1 yr before seedfall for all
others). However, temperatures during other time pe-
riods could also conceivably affect seed production.
Therefore, as an exploratory analysis, we tested for
cross-correlations between masting time series and sea-
sonal mean temperatures for all seasons between floral
initiation and seedfall. Weather variables other than
temperature were not included in these analyses, be-
cause previous empirical studies have consistently
pointed to temperature as an important predictor of
masting in New Zealand. Excluding alternative cues
may reduce our ability to explain masting synchrony,
but also greatly reduces the number of potential ex-
planatory variables and, consequently, the risk of type
I errors (Crawley and Long 1995). Significance of cor-
relations between masting and temperature variables
was assessed in the same manner as for tests of masting
synchrony. Sequential Bonferroni corrections were ap-
plied for exploratory analyses but not for a priori anal-
yses.

Across New Zealand, yearly variations in tempera-
ture and, to a lesser degree, precipitation are associated
with ENSO (Gordon 1986, Salinger et al. 1995). Rel-
atively high New Zealand temperatures are associated
with high values of the Southern Oscillation Index
(SOI), which accompany the La Niña phase of ENSO.
Because New Zealand temperatures vary with ENSO,
we also tested whether masting was correlated with 3-
mo mean SOI (downloaded from the Commonwealth
of Australia Bureau of Meteorology website)9 between
floral initiation and seedfall. Statistical testing for sig-
nificant correlations between masting and ENSO was
performed in the same manner as tests for masting
synchrony.

Separating associations with weather and distance

To more rigorously evaluate the hypothesis that tem-
perature cues are responsible for the masting synchrony
we observed, we compared the spatial pattern of mast-
ing with that of summer temperature. If temperatures
cue masting behavior, then the degree of masting syn-
chrony between two sites should be positively asso-
ciated with the degree of similarity in temperature var-
iations at those sites (Koenig et al. 1999). This analysis
is confounded by spatial autocorrelation, because both
masting and weather conditions are likely to be more
similar between nearby sites than distant sites. There-
fore, partial correlations (Sokal and Rohlf 1981) were
used to separate the potential effects of weather and
distance. Each pair of masting data sets was charac-
terized by (1) the degree of masting synchrony, ex-
pressed as z*; (2) the degree of temperature similarity,
expressed as the correlation (r) between mean summer

9 URL: ^http://www.bom.gov.au/climate/current/soihtm1.
shtml&

temperatures at the two sites; and (3) the geographic
distance (km) between sites. Across all pairs of masting
data sets, we calculated the simple and partial Pearson
correlations between masting synchrony, temperature
similarity, and geographic distance. The statistical sig-
nificance of these correlations was evaluated by Mantel
randomization tests (Manly 1997), in which the ma-
trices of masting synchrony and temperature similarity
were randomly and independently permuted 10 000
times. We report the proportion of permutations (P)
resulting in correlations of equal or greater absolute
value than the observed correlation. Partial-correlation
analysis was conducted separately for within-genus
comparisons among Nothofagus spp., Chionochloa
spp., and between-genus comparisons excluding Dac-
rydium (correlations including Dacrydium were too
weak to analyze further).

RESULTS

Synchrony within and among genera

Masting was highly synchronous within genera (Fig.
3), as all 171 within-genus comparisons with n $ 10
yr of overlap yielded r . 0.26 (median r 5 0.71). Out
of 160 within-genus cross-correlations valid for sig-
nificance testing (nadj $ 10), 140 (88%) were individ-
ually significant at a 5 0.05, and 58 (36%) were sig-
nificant after sequential Bonferroni correction. Masting
also tended to be synchronous between genera other
than Dacrydium (265 comparisons, all r . 0.07, median
r 5 0.54; Fig. 3). Out of 248 valid cross-correlations
between genera, excluding Dacrydium, 160 (65%) were
significantly positive individually, but only nine com-
parisons (all between Nothofagus and Chionochloa)
were significant after sequential Bonferroni correction.
However, out of 295 total cross-correlations between
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FIG. 4. Links between climate and masting time series in
17 New Zealand species (circles) and New Zealand Dacry-
dium cupressinum (triangles). Each circle or triangle repre-
sents a single cross-correlation between masting and 3-mo
means of (A) daily temperature or (B) Southern Oscillation
Index, working backward in time from the summer of seedfall
(Summer 0). Filled symbols denote individually significant
(P , 0.05) correlations, but note that only one was significant
after Bonferroni correction (see Results).

all genera, only seven (all comparisons between Dac-
rydium and Nothofagus) yielded a negative r. Such a
result would be extremely unlikely if these tests were
independent and each had a 50% chance of being neg-
ative. In this case, the individual cross-correlations are
not fully independent of one another: if A is positively
correlated with B, and B is positively correlated with
C, then A and C will also tend to be positively cor-
related. Based on a two-tailed binomial test assuming
50% probability of positive or negative correlations,
the result of seven or fewer negative correlations would
only be likely (P . 0.05) if the effective number of
independent correlations was #24 (,10% of the raw
number). Because such an extreme reduction in effec-
tive sample size seems unlikely, we conclude that the
preponderance of positive cross-correlations among
genera other than Dacrydium is not due to random
chance.

None of the 24 correlations between Dacrydium and
other genera with nadj $ 10 was significant individually,
and the median r was only 0.12. D. cupressinum seeds
fall 2 yr after floral initiation (Norton and Kelly 1988),
whereas seedfall is 1 yr after flowering in the other
species we studied (Mark 1970, Brockie 1986, Allen
and Platt 1990). If the same environmental cue controls
masting in all species by acting during floral initiation,
then the response of D. cupressinum should lag a year
behind that of other species. However, masting by D.
cupressinum was negatively correlated (20.69 # r #
20.13, median r 5 20.41) with that of all other species
the year before and positively correlated (0.06 # r #
0.76, median r 5 0.53) with that of all other species
the year after.

Weather and masting synchrony

Out of 33 valid (nadj $ 10) cross-correlations iden-
tified a priori between seed production and temperature
during floral initiation, 20 had P , 0.05 and another
four correlations had 0.05 # P # 0.10. Masting by
Phormium was not evidently correlated with floral ini-
tiation temperature (0.06 # r # 0.25, all P $ 0.41).
Dacrydium seed production at Wanganui was nega-
tively correlated with floral initiation temperatures (r
5 20.59, P 5 0.0065) as reported by Norton and Kelly
(1988), whereas seed production and temperature were
positively correlated for Chionochloa (0.13 # r # 0.59,
12 of 15 P , 0.05), Elaeocarpus (r 5 0.40, P 5 0.038),
and Nothofagus (0.28 # r # 0.63, 6 of 13 P , 0.05).

In exploratory analyses, no correlation between
masting and temperature and only two correlations with
SOI (June–August lag 1 vs. N. menziesii from Takitimu
and C. rigida from Takahe Valley) were statistically
significant after sequential Bonferroni correction.
However, certain apparent generalities should be noted.
Among Chionochloa, Elaeocarpus, and Nothofagus
species, seed production tended to be positively cor-
related with temperatures during the summer of seed-
fall, the previous autumn, and the summer of floral

initiation (Fig. 4). For D. cupressinum, seed production
was positively correlated with temperatures during the
summer of seedfall and negatively correlated with tem-
peratures during floral initiation (two summers before
seedfall; Fig. 4). For all taxa other than D. cupressinum,
masting was positively correlated with SOI the pre-
vious winter, and 12 of 32 valid cross-correlations were
individually significant at P , 0.05. However, corre-
lations with SOI were generally weaker than those with
temperature (Fig. 4).

Masting synchrony within and between genera de-
creased with geographic distance (Fig. 5), although
within-genus synchrony remained strong (r ; 0.5) be-
tween even the most distant sites. Masting synchrony
was positively correlated with temperature similarity
(Fig. 5), and significant partial correlations with tem-
perature similarity remained after controlling for geo-
graphic distance. Partial correlations between masting
synchrony and distance, controlling for temperature
similarity, were also highly significant (Fig. 5).
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FIG. 5. Association of masting synchrony with geographic distance and similarity of summer temperature variations.
Associations are graphed separately for synchrony within Chionochloa, within Nothofagus, and between genera except
Dacrydium. All simple and partial Pearson correlations (r) are significant at P # 0.0001 based on Mantel randomization
tests, and all are significant after sequential Bonferroni correction.

DISCUSSION

Fluctuations in seed production by New Zealand
plants are synchronized among closely and distantly
related taxa over great distances. We wish to emphasize
two points: (1) although synchrony among sympatric
species that share a seed predator could be favored by
natural selection, there is no evidence to support the
hypothesis that the synchrony across taxonomic fam-
ilies of New Zealand plants that we observed is itself
adaptive, and (2) multitaxon masting synchrony ap-
pears to result from unrelated plants responding to

shared or highly correlated environmental cues (tem-
peratures during floral initiation), which act in a con-
sistent manner across distance and habitats.

Synchrony among congenerics was strong, even be-
tween sites separated by .700 km, and within-genus
synchrony may be adaptive. Chionochloa spp. were
especially synchronous, with interspecific and intra-
specific correlations of similar magnitude (Fig. 3). Syn-
chrony among Chionochloa spp. probably serves to
swamp seed predators that are generalists among
Chionochloa spp. but rarely attack other genera (Kelly
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et al. 2000, McKone et al. 2001), although this hy-
pothesis has not been empirically tested. Nothofagus
spp. may benefit from masting primarily through im-
proved pollination success (Wardle 1984, Burrows and
Allen 1991, Kelly et al. 2001) rather than predator sa-
tiation. The evolutionary significance of masting in E.
dentatus and Phormium spp. is unclear, but in Phor-
mium may derive from high accessory costs of repro-
duction (Kelly 1994).

We found a surprising level of masting synchrony
among these ecologically disparate genera (Figs. 1 and
3). Seed and flower production by alpine grasses, mon-
tane nut-producing trees, lowland fleshy-fruited trees,
and lowland herbaceous plants were substantially in-
tercorrelated. Synchronous masting by such disparate
species could be adaptive if they share seed predators
(Shibata et al. 1998, Curran and Leighton 2000), but
there is no evidence that any of the genera we studied
share important seed predators. New Zealand lacks na-
tive generalist mammalian granivores (Webb and Kelly
1993) that may promote multitaxon masting synchrony
in other terrestrial systems.

Dacrydium and Phormium are exceptions to our gen-
eral pattern of results. D. cupressinum masting was not
correlated with that of other taxa, although it was
strongly synchronized between Ianthe and Wanganui
State Forest sites 15 km apart (Fig. 3), and also between
Wanganui and Pureora (Beveridge 1973), which is 650
km away in the central North Island (n 5 7, r 5 0.93,
P 5 0.003). As Norton and Kelly (1988) reported, D.
cupressinum seed production is negatively correlated
with temperatures during floral initiation (two summers
before seedfall) and positively correlated with temper-
atures during seedfall. Norton and Kelly (1988) also
showed that within-plant competition for resources be-
tween ripening seeds and new cone buds produces a
negative correlation between seed production in a par-
ticular year and seed production two years before. Our
reanalysis of these data suggests that masting by D.
cupressinum is more strongly driven by temperature
cues than by internal competition for resources. Stan-
dardized D. cupressinum seed production at Wanganui
in year t was more strongly correlated with summer
temperatures in year t 2 2 (r 5 20.59) than with seed
production in year t 2 2 (r 5 20.47) or with summer
temperatures in year t (r 5 0.53). In addition, there
was a strong partial correlation (r 5 20.46) between
seed production in year t and summer temperatures in
year t 2 2, after accounting for seed production in year
t 2 2. However, the partial correlation between seed
production in years t and t 2 2, after accounting for
temperatures in year t 2 2, was weak (r 5 20.23).
Thus, D. cupressinum appears to respond to the same
cue (summer temperatures) as other taxa but in differ-
ent directions and with different lags, resulting in lack
of synchrony in concurrent masting.

Brockie (1986) reported that Phormium flowering
was correlated with prior autumn temperatures based

on a 10-yr time series. However, we found no statis-
tically significant correlation with temperatures during
the prior summer (0.06 # r # 0.25) or autumn (20.06
# r # 0.22) in our analysis of further data from the
same sites (18-yr time series), despite strong correla-
tions with other genera (except Dacrydium). Phormium
flowering was most strongly correlated with concurrent
summer temperatures (0.44 # r # 0.60). However,
Phormium spp. flower quite early in summer (early
December) and floral buds elongate even earlier, so the
link with concurrent summer temperatures is probably
spurious. Phormium masting may respond to temper-
ature cues missed by our coarse averaging over seasons.

Although masting was not strongly correlated with
SOI in our analyses, New Zealand temperatures are
affected by ENSO (Gordon 1986, Mullan 1998). How-
ever, a great deal of variance in New Zealand temper-
ature anomalies is not explained by ENSO (Francis and
Renwick 1998), and El Niño events may have greater
and more predictable effects than La Niñas (Mullan
1996). Consequently, low SOI values (El Niño) may
be better predictors of mast failures in New Zealand
than high SOI values (La Niña) are of mast peaks. An
ENSO-related weather cue is also linked to intergeneric
masting synchrony in Malaysia and Borneo (Ashton et
al. 1988, Curran et al. 1999, but cf. Wich and van
Schaik 2000), and a similar link to climatic cues could
explain the large-scale multitaxon masting synchrony
in North American coniferous trees (Koenig and Knops
1998). Combined with our results, these studies suggest
that weather-related cues contribute to synchronous re-
production over large spatial scales in widespread and
taxonomically diverse floras.

Implications

Our results add to an extensive list of taxonomically
disparate plants for which seed production is tightly
associated with temperatures during critical periods of
floral bud formation and differentiation. This shared
cue appears to be responsible for the observed masting
synchrony within and among genera of New Zealand
plants. We note, as did Tapper (1996) for fruiting by
ash (Fraxinus excelsior), that the cue seems to be de-
viation from local expected temperature, not absolute
temperature. Thus, plants may mast in synchrony at
different elevations, with greatly different mean tem-
peratures, if temperature anomalies are spatially con-
sistent. Local adaptation may enable fine-tuning of
plants to particular sites across generations (Mark
1965), or plants might physiologically acclimate to
their environment (but cf. Sullivan and Kelly 2000).
However, if acclimatization is weak, then climatic
changes could substantially alter the masting pattern
(McKone et al. 1998). The commonness of floral-ini-
tiation temperatures as a masting cue suggests that the
process of bud differentiation may involve a temper-
ature-sensitive process shared by many masting taxa.
Floral initiation and differentiation are affected by gib-
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berellins, production of which may be affected by tem-
perature (Pharis and King 1985). The existence of such
a ready triggering mechanism may have contributed to
the commonness of masting worldwide.

The importance of seasonal weather conditions, es-
pecially temperature during floral initiation, as cues for
many plants to invest in reproduction implies that the
frequency and intensity of masting are sensitive to
global climate change (McKone et al. 1998), both di-
rectly through mean temperatures and indirectly
through effects on phenomena like ENSO (Trenberth
and Hoar 1996, Hunt 1999) and the North Atlantic
Oscillation. Climatic change could therefore alter the
temporal pattern of masting, with potential repercus-
sions for plant communities and entire food webs. Pro-
duction of a large seed crop typically entails reduced
investment in growth that year (Koenig and Knops
1998). The masting response to temperature appears to
be the result of local adaptation (Mark 1965, Greer
1979), implying that the growth–reproduction trade-off
is subject to selection for optimum, rather than maxi-
mum, seed production. Consequently, if global warm-
ing causes masting plants to produce large seed crops
more frequently, their growth and survival may be re-
duced, potentially altering plant community composi-
tion.

In addition, changes to the temporal pattern of mast-
ing are likely to affect consumer populations, with po-
tentially widespread indirect effects. Strong numerical
responses of granivores to regionally synchronized
masting events can propagate a chain of indirect effects
on other trophic levels at regional scales (Ostfeld and
Keesing 2000). For example, high acorn production in
eastern North America may suppress gypsy moth out-
breaks (Elkinton et al. 1996, Ostfeld et al. 1996) but
increase Lyme disease risk (Ostfeld et al. 2001), and
Nothofagus mast seed events indirectly elevate the
abundance of stoats, increasing predation on New Zea-
land native birds (O’Donnell and Phillipson 1996, Wil-
son et al. 1998). Consequently, an altered masting re-
gime in response to changing climate could have re-
percussions for plant and animal populations on spatial
scales measured in hundreds of kilometers.
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Nilsson, S. G., and U. Wästljung. 1987. Seed predation and
cross-pollination in mast-seeding beech (Fagus sylvatica)
patches. Ecology 68:260–265.

Norton, D. A., and D. Kelly. 1988. Mast seeding over 33
years by Dacrydium cupressinum Lamb. (rimu) (Podocar-
paceae) in New Zealand: the importance of economies of
scale. Functional Ecology 2:399–408.

O’Donnell, C. F. J., and P. J. Dilks. 1994. Foods and foraging
of forest birds in temperate rainforest, South Westland, New
Zealand. New Zealand Journal of Ecology 18:87–107.

O’Donnell, C. F. J., and S. Phillipson. 1996. Predicting the
occurrence of mohua predation from the seedfall, mouse
and predator fluctuations in beech forest. New Zealand
Journal of Zoology 23:287–293.

Ostfeld, R. S., C. G. Jones, and J. O. Wolff. 1996. Of mice
and mast: ecological connections in eastern deciduous for-
ests. BioScience 46:323–330.

Ostfeld, R. S., and F. Keesing. 2000. Pulsed resources and
community dynamics of consumers in terrestrial ecosys-
tems. Trends in Ecology and Evolution 15:232–237.

Ostfeld, R. S., E. M. Schauber, C. D. Canham, F. Keesing,
C. G. Jones, and J. O. Wolff. 2001. Effects of acorn pro-
duction and mouse abundance on abundance and Borrelia
burgdorferi-infection prevalence of nymphal Ixodes sca-
pularis ticks. Vector Borne and Zoonotic Diseases 1:55–
63.

Pharis, R. P., and R. W. King. 1985. Gibberellins and repro-
ductive development in seed plants. Annual Review of
Plant Physiology 36:517–568.

Pucek, Z., W. Jedrzejewski, B. Jedrzejewska, and M. Pucek.
1993. Rodent population dynamics in a primeval deciduous
forest (Bialowieza National Park) in relation to weather,
seed crop, and predation. Acta Theriologica 38:199–232.

Rice, W. R. 1989. Analyzing tables of statistical tests. Evo-
lution 43:223–225.

Salinger, M. J., R. E. Basher, B. B. Fitzharris, J. E. Hay, P.
D. Jones, J. P. MacVeigh, and I. Schmidley-Lelu. 1995.
Climate trends in the south-west Pacific. International Jour-
nal of Climatology 15:285–302.

Sciremammano, F. Jr., 1979. A suggestion for the presenta-
tion of correlations and their significance levels. Journal of
Physical Oceanography 9:1273–1276.

Shibata, M., H. Tanaka, and T. Nakashizuka. 1998. Causes
and consequences of mast seed production of four co-oc-
curring Carpinus species in Japan. Ecology 79:54–64.

Silvertown, J. W. 1980. The evolutionary ecology of mast



May 2002 1225SYNCHRONOUS MASTING IN NEW ZEALAND

seeding in trees. Biological Journal of the Linnaean Society
14:235–250.

Smith, C. C., J. L. Hamrick, and C. L. Kramer. 1990. The
advantage of mast years for wind pollination. American
Naturalist 136:154–166.

Sokal, R. R., and F. J. Rohlf. 1981. Biometry: the principles
and practice of statistics in biological research. Second edi-
tion. W. H. Freeman and Co., New York, New York, USA.

Sork, V. L., J. Bramble, and O. Sexton. 1993. Ecology of
mast-fruiting in three species of North American deciduous
oaks. Ecology 77:2567–2572.

StatSoft. 1994. STATISTICA for Windows (Version 5.1).
Volume I. General Conventions and Statistics I. StatSoft,
Inc., Tulsa, Oklahoma, USA.

Sullivan, J. J., and D. Kelly. 2000. Why is mast seeding in
Chionochloa rubra (Poaceae) most extreme where seed pre-
dation is lowest? New Zealand Journal of Botany 38:221–
233.

Tapper, P. G. 1996. Long-term patterns of mast fruiting in
Fraxinus excelsior. Ecology 77:2567–2572.

Trenberth, K. E., and T. J. Hoar. 1996. The 1990–1995 El
Niño-southern oscillation event: longest on record. Geo-
physical Research Letters 23:57–60.

Wardle, J. A. 1984. The New Zealand beeches: ecology, uti-
lization and management. New Zealand Forest Service,
Christchurch, New Zealand.

Wardle, J. A. 1991. Vegetation of New Zealand. Cambridge
University Press, Cambridge, UK.

Webb, C. J., and D. Kelly. 1993. The reproductive biology
of the New Zealand flora. Trends in Ecology and Evolution
8:442–447.

Wich, S. A., and C. P. Van Schaik. 2000. The impact of El
Niño on mast fruiting in Sumatra and elsewhere in Malesia.
Journal of Tropical Ecology 16:563–577.

Wilson, P. R., B. J. Karl, R. J. Toft, J. R. Beggs, and R. H.
Taylor. 1998. The role of introduced predators and com-
petitors in the decline of kaka (Nestor meridionalis) pop-
ulations in New Zealand. Biological Conservation 83:175–
185.


	Southern Illinois University Carbondale
	OpenSIUC
	5-2002

	Masting by Eighteen New Zealand Plant Species: The Role of Temperature as a Synchronizing Cue
	Eric M. Schauber
	Dave Kelly
	Peter Turchin
	Chris Simon
	William G. Lee
	See next page for additional authors
	Recommended Citation
	Authors



