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JMASM27: An Algorithm for Implementing Gibbs Sampling
for 2PNO IRT Models (Fortran)

Yanyan Sheng Todd C. Headrick
Southern Illinois University-Carbondale

A Fortran 77 subroutine is provided for implementing the Gibbs sampling procedure to a normal ogive
IRT model for binary item response data with the choice of uniform and normal prior distributions for
item parameters. The subroutine requires the user to have access to the IMSL library. The source code is
available at http://www.siu.eduJ-epsel/shengiFortran/, along with a stand alone executable file.
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Introduction

Item response theory (lRT) describes a
probabilistic relationship between correct
responses on a set of test items and a latent
variable, where the influence of items and
persons on the responses is modeled by distinct
sets of parameters. Common IRT models include
the two-parameter normal ogive (2PNO;
Lawley, 1943, 1944; Lord, 1952, 1953a, 1953b)
model such that the probability of person i
obtaining a correct response for item i, where
i=I, ... ,nand j=l, ...,k, is defined as
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where y} and aj denote item parameters and

~ denotes the continuous person trait. In the

model, items are assumed to vary in terms of
location, Yj, as well as slope, aj.

Simultaneous estimation of both item and person
parameters results in statistical complexities in
the estimation task of IRT models, which have
made estimation procedures a primary focus of
psychometric research over decades (e.g.,
Birnbaum, 1969; Bock & Aitkin, 1981;
Molenaar, 1995). Recent attention has been
focused on Markov chain Monte Carlo (MCMC;
e.g., Chib & Greenberg, 1995) techniques,
which have demonstrated to be useful for
complex estimation problems in many areas of
applied statistics. Albert (1992) was the first to
apply an MCMC algorithm, known as Gibbs
sampling (Casella & George, 1992; Gelfand &
Smith, 1990; Geman & Geman, 1984), to the
2PNO model, where he adopted non-informative
priors for item parameters.

As Albert's (1992) focus was on
investigating the applicability of Gibbs sampling
to IRT, he did not specifically consider the
situations where informative priors are adopted
for item parameters. However, in some
applications, they are more preferred than vague
priors. For example, when comparing several
candidate models, Bayes factors are commonly
adopted in the Bayesian framework, but they are
not defined with non-informative priors (Gelman
et al., 2003). In this case, the program given by
Albert (1992) does not provide a solution.
Moreover, given that MCMC is computationally
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demanding in drawing a sufficiently long chain
to ensure convergence, a major problem in
applied IRT is the accessibility of efficient
MCMC programs. Researchers have either used
WinBUGS (e.g., Bazan, Branco & Bolfarinez,
2006; DeMars, 2005) to implement MCMC for
IRT models, or coded the sampler in S-Plus
(e.g., Patz & Junker, 1999) or MA TLAB (e.g.,
Albert, 1992). They noted that each execution
consumed many hours, and hence was
computationally expensive. This fact makes it
impractical for users to utilize these programs
for various applications of IRT. They further
limit researchers in conducting Monte Carlo
studies, or developing more complicated IRT
models. It is then anticipated that Fortran will
provide a better solution, as it is the fastest
programming language for numerical computing
(Brainerd, 2003).

In view of the above, the purpose of this
article is to provide a Fortran subroutine that
obtains the posterior estimates (and their
associated standard errors) of item and person
parameters in the 2PNO IRT model. The
subroutine will have the option of specifying
non-informative and informative priors for item
parameters.

Methodology

The Gibbs Sampling Procedure
To implement Gibbs sampling to the

2PNO model defined in (I), a latent continuous
random variable Z is introduced so that Zij-

N(al); - r.. I) (Albert, 1992; Tanner & Wong,

1987). With prior distributions assumed for ();

and ;j' where ~ j = (a, Yj ) I , the joint posterior

distribution of (9, ~) is hence

p(9,~ I y) oc fey I Z)p(Z 19,~)p(9)p(~), (2)

where fey /Z) is the likelihood function.

With a normal prior for (), and non-

informative priors for a
J

and Yj so that

B; - N (f.1,a' ), aj >0 and p( Y) oc I, the full

conditional distributions of Zij' ();, and ~j can

be derived in closed forms as follows:

where x =[ () ,-I]. Alternatively, informative
conjugate priors can be assumed for aj and Yj

so that aj - N(o.~)(f.1a'ey;), Yj - N(f.1y,ey:). In

this case, the full conditional distribution of ~ j

is derived as

~j /- - N((x 'x + r:~lrl(x IZ j + r:~IJl~),
(x'x+r:~lrl)J(aj >0)

(6)

where ~,= (I'a' 1',) , and 1:, =(~~ ;; )
Hence, with starting values ()(O) and ~ (0),

observations (,if), ()(I), ~(I)) can be simulated

from the Gibbs sampler by iteratively drawing
from their respective full conditional
distributions specified in (3), (4) and (5) (or
equations 3, 4, and 6). To go from (ZI.I), ()(I-I) ,

~(I-I)) to (,i/),()(I), ~(I)), it takes three transition

steps:

1 D Z
f) _ (71 ()(I-I) ~(I-I)).. raw p .£..1 y, , ~ ,

2. Draw ()(I) _ p( () IZf), ~(I-I));

3. Draw ~(I) - p( ~ IZf), ()(I)).

This iterative procedure produces a sequence of
()(/) ~(I) -

( ''":», l= 0, ... , L. To reduce the effect of
the starting values, early iterations in the
Markov chain are set as burn-ins to be discarded.
Samples from the remaining iterations are then
used to summarize the posterior density of item
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parameters; and ability parameters 8. As with
standard Monte Carlo, with large enough
samples, the posterior means of ; and 8 are
considered as estimates of the true parameters.
However, their standard deviations tend to
underestimate the posterior standard deviations,
as subsequent samples in Gibbs sampler are
autocorrelated (e.g., Albert, 1992; Patz &
Junker, 1999). One approach to calculating them
is through batching (Ripley, 1987). That is, with
a long chain of samples being separated into
contiguous batches of equal length, the posterior
mean and standard deviation for each parameter
are then estimated to be the sample mean and
standard deviation of these batch means
respectively. Thus, the standard error of the
estimate is a ratio of the standard deviation and
the square root of the number of batches.

The Fortran Subroutine
The subroutine initially sets the starting

values for the parameters, so that 8(0) = 0I ,

dO) = 2 and ",(0) = -<1>-1 (" .. / ) ~5I r, L..J,YIj nrc»
(Albert, 1992). It then iteratively draws random
samples for Z and 8 from their respective full
conditional distributions specified in (3) and (4)

with f.1= ° and 0'2 = 1. Samples for ;j are

simulated either from (5), where uniform priors
are assumed for ;j' or from (6), where normal

priors are adopted with f.1a= u,= ° and

0'; = O'~= 1 . The algorithm continues until all

the L samples are simulated. It then discards the
early burn-in samples, and computes the
posterior estimates and standard errors for the
model parameters, 8, a and r, using batching.

For example, for a 2000-by-1 0 (i.e., n =

2,000 and k = 10) dichotomous (0-1) data matrix
simulated using the item parameters shown in
the first two columns of Table I, the Gibbs

sampler was implemented so that 10,000
samples were simulated with the first 5,000
taken to be burn-in. The remaining 5,000
samples were separated into 5 batches, each with
1,000 samples. Two sets of the posterior means
for a and r, as well as their standard errors,
were obtained assuming the uniform or normal
prior distributions described previously, and are
displayed in the rest of the table. It is noted that
the item parameters were estimated with enough
accuracy and the two sets of posterior estimates
differ only slightly from each other, signifying
that the results are not sensitive to the choice of
priors for ; . For this example, each
implementation took less than 13 minutes.
Although 10,000 iterations are long enough for
the Markov chain to reach the stationary
distribution, one may easily increase the length
of the chain to be as long as 50,000, which takes
about 60-90 minutes for each execution.

Conclusion

This Fortran subroutine leaves it to the user to
choose between uniform and normal priors for
the item parameters, a and r . In addition, the
user can change the source code so that the prior
distribution for 8, assumes different location, f.1

and scale, 0'2. Similarly, f.1a ' 0';, and ,Liy, O'~

can be modified to reflect different prior beliefs
on the distributions for the item parameters. It is
noted that convergence can be assessed by
comparing the marginal posterior mean and
standard deviation of each parameter computed
for every 1,000 samples after the bum-ins.
Similar values provide a rough indication of
similar marginal posterior densities, which
further indicates possible convergence of the
Gibbs sampler (Gelfand, Hills, Racine-Peon &
Smith, 1990; Hoijtink & Molenaar, 1997).
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Table I. Posterior estimates and their standard errors for ex and r with uniform priors and normal priors.

Posterior estimates
Parameters uniform priors normal priors

a r a r a r
(SE) (SE) (SE) (SE)

0.0966 -0.7997 0.1147 -0.8258 0.1120 -0.8223
(.0009) (.0010) (.0012) (.0006)

0.0971 -0.5321 0.1291 -0.5441 0.1285 -0.5449
(.0003) (.0006) (.0022) (.0004)

0.4589 0.8583 0.4412 0.9289 0.4416 0.9278
(.0031 ) (.0021) (.0031) (.0017)

0.9532 0.7237 1.1335 0.8906 1.1124 0.8801
(.0088) (.0032) (.0074) (.0041)

0.0771 -0.8184 0.0517 -0.8063 0.0510 -0.8056
(.0005) (.0005) (.0007) (.0007)

0.4891 -0.5834 0.4761 -0.6186 0.4726 -0.6188
(.0023) (.0006) (.0023) (.0004)

0.8599 0.3629 0.7960 0.3484 0.8015 0.3501
(.0028) (.0013) (.0036) (.0022)

0.9427 -0.9010 0.9230 -0.8661 0.9189 -0.8618
(.0060) (.0017) (.0083) (.0049)

0.2727 -0.9339 0.3981 -0.9497 0.3948 -0.9465
(.0027) (.0018) (.0028) (.0023)

0.6532 -0.3978 0.6562 -0.3785 0.6544 -0.3781
(.0016) (.0008) (.0015) (.0009)

References

Albert, J. H. (1992). Bayesian estimation
of normal ogive item response curves using
Gibbs sampling. Journal of Educational
Statistics, 17,251-269.

Bazan, J. L., Branco, M. D, & Bolfarinez,
H. (2006). A Skew Item Response Model.
Bayesian Analysis, 1, 861-892.

Birnbaum, A. (1969).Statistical theory for
logistic mental test models with prior
distribution of ability. Journal of Mathematical
Psychology, 6, 258-276.

Bock, R. D., & Aitkin, M. (1981).
Marginal maximum likelihood estimation of
item parameters: application of an EM
algorithm. Psychometrika, 46,443-459.

Brainerd, W. (2003). The importance of
Fortran in the 21 st century. Journal of Modern
Statistical Methods, 2, 14-15.

Casella, G., & George, E. I. (1992).
Explaining the Gibbs sampler. The American
Statistician, 46(3),167-174.

Chib, S., & Greenberg, E. (1995).
Understanding the Metropolis-Hastings
algorithm. The American Statistician, 49(4),
327-335.

DeMars, C. E. (2005). "Guessing"
parameter estimates for multidimensional IRT
models. Paper presented at the annual meeting of
the American Educational Research Association,
Montreal.

Gelfand, A. E., & Smith, A. F. M. (1990).
Sampling-based approaches to calculating
marginal densities. Journal of the American
Statistical Association, 85,398-409.

Gelfand, A. E., Hills, S. E., Racine-Poon,
A., & Smith, A. F. M. (1990). Illustration of
Bayesian inference in normal data models using
Gibbs sampling. Journal of the American
Statistical Association, 85, 315-331.



SHENG & HEADRICK 345

Geman, S. and D. Geman (1984).
Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Trans.
Pattern Analysis and Machine Intelligence 6:
721-741.

Gelman, A., Carlin, J. B., Stem, H. S., &
Rubin, D. B. (2003). Bayesian data analysis.
Boca Raton: Chapman & Hall/CRC.

Hoijtink, H., & Molenaar, I. W. (1997). A
multidimensional item response model:
Constrained latent class analysis using posterior
predictive checks. Psychometrika, 62,171-189.

Lawley, D. N. (1943). On problems
connected with item selection and test
construction. Proceedings of the Royal Society
of Edinburgh, 61,273-287.

Lawley, D. N. (1944). The factorial
analysis of multiple item tests. Proceedings of
the Royal Society of Edinburgh, 62, 74-82.

Lord, F.M. (1952). A theory of test scores.
Psychometric Monograph No.7.

Lord, F.M. (1953a). An application of
confidence intervals and of maximum likelihood
to the estimation of an examinee's ability.
Psychometrika, 18,57-75.

Lord, F.M. (1953b). The relation of test
score to the trait underlying the test. Educational
and Psychological Measurement, 13, 517-548.

Molenaar, I. W. (1995). Estimation of
item parameters. In G. H. Fischer & I. W.
Molenaar (Eds.), Rasch models: Foundations,
recent developments, and applications (pp. 39-
51). New York: Springer-Verlag.

Patz, R. J., & Junker, B. W. (1999). A
straightforward approach to Markov chain
Monte Carlo methods for item response models.
Journal of Educational and Behavioral
Statistics, 24, 146-178.

Ripley, B. D. (1987). Stochastic
simulation. New York: Wiley.

Tanner, M. A., and W. H. Wong (1987).
The calculation of posterior distribution by data
augmentation (with discussion). Journal of the
American Statistical Association, 82, 528-550.

Appendix

SUBROUTINE GSU2(Y, N, K, L, BURNIN, BN, UNIF, ITEM, PERSON)
C*************************************************************************
C Y is the n-by-k binary item response data
C N is the number of subjects
C K is the test length (number of items)
C L is the number of iterations using Gibbs sampling
C BURNIN is the first number of iterations that are to be discarded
C BN is the number of batches
C UNIF is a 0-1 indicator with a specifying normal priors for item
C parameters and 1 specifying uniform priors for them
C ITEM is a k-by-4 matrix of posterior estimates and standard errors
C for item parameters
C PERSON is a n-by-2 matrix of posterior estimates and standard errors
C for person abilities
C*************************************************************************



346 ALGORITHM FOR GIBBS SAMPLING FOR 2PNO IRT MODELS

INTEGER L, COUNT, IRANK , BURNIN, UNIF, INDX(2) , BN,
& BSIZE, Y(N, K)
REAL A(K), G(K), TH(N) , LP, MU, VAR, AV(L,K), GV(L,K), THV(N,L),
& PHAT(K), u, Z(N,K), V, MN, MSUM, PVAR,PMEAN, TT, X(N,2),
& XX(2,2), IX(2,2) ,ZV(N,l) ,XZ(2,1), AMAT(2,2), BZ(2,1), AMU,
& GMU, AVAR, GVAR, AGMU(2,1), AGVAR(2,2), SIGMA(2,2), BETA(1,2),
& BI(1,2), ITEM(K,4), PERSON(N,2), SUM1, SUM2, SUM3,
& M1, M2, M3, TOT1, TOT2, TOT3, SSl, SS2, SS3
DOUBLE PRECISION BB, TMP

C*************************************************************************
C Connect to external libraries for normal (RNNOR) and uniform (RNUN)
C random number generator, inverse (ANORIN, DNORIN) and CDF (ANORDF,
C DNORDF) for the standard normal distribution, and Cholesky
C factorization (CHFAC) routines
C*************************************************************************

EXTERNAL RNNOR, RNSET, RNUN, ANORDF, ANORIN,CHFAC, DNORDF, DNORIN
C*************************************************************************
C Set initial values for item parameters a, g, and person ability theta so
C that a = 2, g = -<p-JCJ:'JiYijln)-!5 for all k items, and theta = 0 for all n
C persons.
C*************************************************************************

PHAT = SUM(Y, 1)
DO 10 I = 1, K
A (I) 2.0
G(I) = -ANORIN(PHAT(I)/N)*SQRT(5.0)

10 CONTINUE
DO 20 I = 1, N
TH(I) 0.0

20 CONTINUE
C*************************************************************************
C MU and VAR are the mean and the variance for the prior distribution of
C theta.
C*************************************************************************

MU = 0.0
VAR = 1.0

C*************************************************************************
C Start iteration
C*************************************************************************

COUNT = 0
DO 30 IT = 1, L
COUNT = COUNT + 1

C*************************************************************************
C Update samples for Z from its normal posterior distributions
C*************************************************************************

DO 40 I = 1, N
DO 40 J = 1, K
LP = TH(I) * A(J) - G(J)
BB = ANORDF ((0.0 - LP))
CALL RNUN (1, U)
TMP = BB*(l - Y(I, J)) + (1 - BB)*Y(I, J)) * U + BB*Y(I, J)
Z(I, J) = DNORIN(TMP) + LP

40 CONTINUE
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C*************************************************************************
C Update samples for theta from their normal posterior distributions
C*************************************************************************

V = l/SUM(A*A)
PVAR = l/(l/V + l/VAR)
DO 50 I = 1, N
MSUM = 0.0
DO 60 J = 1, K
MSUM = MSUM+A(J)*(Z(I, J) + G(J))

60 CONTINUE
MN = MSUM*V
PMEAN = (MN/V + MU/VAR)*PVAR
CALL RNNOR(l,TT)
TH(I) = TT*SQRT(PVAR) + PMEAN
THV(I, COUNT) = TH(I)

50 CONTINUE
C*************************************************************************
C Update samples for item parameters, a and 9 from their multivariate
C normal posterior distributions
C*************************************************************************

DO 70 J = 1, 1
DO 70 I = 1, N
X(I, J) TH(I)

70 CONTINUE
DO 80 J = 2, 2
DO 80 I = 1, N
X(I, J) -1

80 CONTINUE
IF (UNIF = = 0) THEN

C*************************************************************************
C Specify the prior means (AMU, GMU) and variances (AVAR, GVAR)
C for a and g.
C*************************************************************************

AMU = 0.0
GMU = 0.0
AVAR = 1.0
GVAR = 1.0

C*************************************************************************
C Put the means and variances in vector and matrix format
C*************************************************************************

AGMU(l, 1) AMU
AGMU(2, 1) = GMU
AGVAR(l, 1) = AVAR
AGVAR(2, 2) = GVAR

C*************************************************************************
C Call the matrix inversion routine.

347



348 ALGORITHM FOR GIBBS SAMPLING FOR 2PNO IRT MODELS

C Invert matrix AGVAR with the inverse stored in SIGMA
C*************************************************************************

CALL MIGS(AGVAR, 2, SIGMA, INDX)
XX = MATMUL (TRANSPOSE (X), X) + SIGMA

ELSE IF (UNIF = = 1) THEN
XX = MATMUL(TRANSPOSE(X) , X)

END IF
C*************************************************************************
C Call the matrix inversion routine.
C Invert matrix XX with the inverse stored in IX
C*************************************************************************

CALL MIGS(XX, 2, IX, INDX)
C*************************************************************************
C Call the Cholesky factorization routine. Compute the Cholesky
C factorization of the symmetric definite matrix IX and store the
C result in AMAT
C*************************************************************************

CALL CHFAC (2, IX, 2, 0.00001, IRANK , AMAT, 2)
DO 90 J = 1, K
DO 100 I = 1, N

ZV(I, l)=Z(I, J)
100 CONTINUE

IF (UNIF = = 0) THEN
XZ = MATMUL(SIGMA, AGMU)+MATMUL(TRANSPOSE(X) , ZV)

ELSE IF (UNIF = = 1) THEN
XZ = MATMUL(TRANSPOSE(X) , ZV)

END IF
BZ = MATMUL(IX, XZ)
A(J) = 0

DO WHILE (A(J).LE.O)
CALL RNNOR (2, BI)
BETA MATMUL(BI, AMAT)+TRANSPOSE(BZ)i
A(J) BETA(l, 1)
G(J) BETA(l, 2)
END DO
AV(COUNT, J) A(J)
GV(COUNT, J) G(J)

90 CONTINUE
30 CONTINUE

C*************************************************************************
C Calculate the posterior means and SEs for a, 9 and theta and store them
C in ITEM and PERSON
C*************************************************************************

BSIZE=(L-BURNIN)/BN
DO 110 J = 1, K
COUNT = BURNIN
TOT1 = 0.0
TOT2 = 0.0
SSl = 0.0
SS2 = 0.0
DO 120 M 1, BN

SUM1 = 0.0
SUM2 = 0.0
DO 130 I = 1, BSIZE
COUNT = COUNT + 1
SUM1 SUM1 + AV(COUNT, J)
SUM2 = SUM2 + GV(COUNT, J)



130 CONTINUE
Ml = SUMI/BSIZE
M2 = SUM2/BSIZE
TOTI = TOTI + Ml
TOT2 = TOT2 + M2
SSI = SSI + Ml*Ml
SS2 = SS2 + M2*M2

120 COUNTINE
ITEM(J, 1) TOTI/BN
ITEM(J, 2) SQRT((SSI - (TOTl*TOTl/BN))/(BN -1))/SQRT(FLOAT(BN))
ITEM(J, 3) TOT2/BN
ITEM(J, 4) SQRT((SS2 - (TOT2*TOT2/BN))/(BN -1))/SQRT(FLOAT(BN))

110 CONTINUE

DO 140 J = I,N
COUNT = BURNIN
TOT3 = 0.0
SS3 = 0.0
DO 150 M = I, BN

SUM3 = 0.0
DO 160 I = I, BSIZE
COUNT = COUNT + 1
SUM3 = SUM3 + THV(J, COUNT)

160 CONTINUE
M3 = SUM3/BSIZE
TOT3 = TOT3 + M3
SS3 = SS3 + M3*M3

150 CONTINUE
PERSON(J, 1) TOT3/BN
PERSON(J, 2) SQRT((SS3 - (TOT3*TOT3/BN))/(BN -1))/SQRT(FLOAT(BN))

140 CONTINUE

RETURN
END


