
Southern Illinois University Carbondale
OpenSIUC

Articles Department of Electrical and Computer
Engineering

8-1993

Application of Expectation-Maximization
Algorithm to the Detection of a Direct-Sequence
Signal in Pulsed Noise Jamming
Arif Ansari
Southern Illinois University Carbondale

R. Viswanathan
Southern Illinois University Carbondale, viswa@engr.siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_articles
Published in Ansari, A., & Viswanathan, R. (1993). Application of expectation-maximization
algorithm to the detection of a direct-sequence signal in pulsed noise jamming. IEEE Transactions
on Communications, 41(8), 1151 - 1154. doi: 10.1109/26.231956 ©1993 IEEE. Personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works must be obtained from the
IEEE. This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted without the explicit permission
of the copyright holder.

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted
for inclusion in Articles by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Ansari, Arif and Viswanathan, R.. "Application of Expectation-Maximization Algorithm to the Detection of a Direct-Sequence Signal
in Pulsed Noise Jamming." (Aug 1993).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_articles?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_articles?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41. NO. 8, AUGUST 1993 1151 

Application of Expectation-Maximization Algorithm to the Detection 
of a Direct-Sequence Signal in Pulsed Noise Jamming 

Arif Ansari and R. Viswanathan 

Absfract- We consider the detection of a direct-sequence 
spread-spectrum signal received in a pulsed noise jamming 
environment. The expectation-maximization algorithm is used to 
estimate the unknown jammer parameters and hence obtain a 
decision on the binary signal based on the estimated likelihood 
functions. The probability of error performance of the algorithm 
is simulated for a repeat code and a (7,4) block code. Simulation 
results show that at low signal-to-thermal noise ratio and high 
jammer power, the EM detector performs significantly better 
than the hard limiter and somewhat better than the soft limiter. 
Also, at low SNR, there is little degradation as compared to the 
maximum-likelihood detector with true jammer parameters. At 
high SNR, the soft limiter outperforms the EM detector. 

I. INTRODUCTION 
PREAD-spectrum communication systems offer an in- S herent advantage of reducing interference. The reduction 

achieved depends on the processing gain. Pulsed, but broad- 
band, noise jamming may cause considerable degradation in 
performance of a direct-sequence spread-spectrum system [ 11. 
The performance of the system may be further improved by 
using additional techniques [2]-[5]. 

We consider here the performance of a maximum-likelihood 
detector for the following detection problem [l]. Let the T ~ ’ S  

represent the outputs of the direct-sequence correlator, corres- 
ponding to different symbols transmitted as DS-BPSK signals, 
and let (85.z = l ; . . .m ,8~&(&1)} ,  j~(1.....2~ = M )  be 
one of the code vectors of a given (m, k )  block code. 

Choose one of the following A4 hypotheses, {HI.] = 
1 , 2 , ’ . . , M }  : 

H3 : 8, = O f ,  i = 1.2:...n1 (1) 

given by ObSeNatiOnS 

HI : T ,  = 8f.5 + n, + J,Z, . ( 2 )  

The significance of various variables appearing in ( 2 )  are 
explained below. For a given (m, k )  block code, { O : ,  z = 
1,2,  . . . , m} are known sequences for every 3 .  In the case 
of repeat code, the same bit of information is transmitted m 
times, Le., 8, = 8. z = 1 ,2 . .  . . . m. The detection problem (1) 
reduces to 

H 1 : 8 = - 1  
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versus 

H2 : 8 = +l .  (3) 

Perfect interleaving is assumed so that the probability that a 
symbol is jammed is independent of any other symbol being 
jammed or not. Let p be the duty cycle of the pulse jammer 
n J ( t )  with two-sided power spectral density N J / ( ~ P ) ,  and let 
n(t) be the thermal noise with two-sided power spectral den- 
sity N o / 2 .  Both the noises are assumed to be independent, zero 
mean Gaussian. With an equivalent baseband representation 
for direct-sequence correlator, ni is a zero-mean white Gauss- 
ian noise with known variance u2 = N , / 2 ,  J; is zero-mean 
Gaussian jamming noise with variance N J / ( ~ P ) .  2:s ~ ( 0 , 1 )  
denote whether the ith symbol is jammed or not. They are 
independent random variables with P(Z; = 1) = p .  n;, J; ,  
and Zi are all mutually independent. Z; ,  p ,  and N J / ~  are 
typically unknown. Assuming these parameters are known, 
we construct an optimal (but practically unrealizable) detector 
in Section 111. When Zi’s are known, the T ; ’ S  are Gaussian; 
and when Z;’s are unknown, the T ; ’ S  are samples from 
a mixture density as shown below. The signal level s is 
assumed known. There may be situations where s cannot be 
determined easily, and the discussions in this paper do not 
apply to those situations [2]. The expectation-maximization 
(EM) algorithm is used in order to obtain the estimates of p and 
0; = o2 + N J / ( @ ) .  The likelihood function with estimated 
jammer parameters is maximized to obtain a decision on 
the hypotheses for the testing problem in (1). A complete 
discussion of the EM algorithm can be found in [6]. Recently, 
the EM algorithm has been applied to other types of detection 
and estimation problems [7], [8]. 

In Section 11, we discuss how the EM algorithm can be 
applied to the testing problem outlined above. In Section 111, 
simulation results are presented for the repeat and block coding 
cases. The performances of the EM detector are compared to 
those of hard and soft limiters, an optimal detector, maximum 
likelihood and linear detectors. In Section IV, we discuss the 
results. 

11. DIRECTSEQUENCE DETECTION AND EM ALGORITHM 

Consider the detection problem stated in (1) and (2)  with 
the observations being the sum of the data signal, the channel 
noise, and the jammer noise. When Zi’s are unknown, the 
sum of the channel noise and the jammer component may be 
viewed as a variate from a mixture of two normal distributions 
with zero means, variances u2 and u:, and mixing ratios 
1 - p and p ,  respectively. In other words, the interference 
is from channel noise alone with probability 1 - p and from 
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channel plus jammer with probability p. The observations (2) 
are distributed as 

any reasonable set can be assumed [lo]. For example, we 
assume p ( l )  = 0.5, = 1.0, and e(') = 0,  in all the 
simulations. Although 0 is not an allowed value for 8, it is 
used as an unbiased starting value for the EM algorithm. The 
decision on 8 given by the EM detector will always be +l 
or -1 since these are the only allowed values in subsequent 
iterations. The fact that (10)-(12) form the EM algorithm for 
mixture density (4) is shown in [6]. 

B. Block Codes 

HJ : T2 f(r2) = (1 - Q)fl(T,)  + Pf2 (T , )  (4) 

where 

fl(rz) = (1/&0) exp(-(rt - 8 : ~ ) ~ / 2 c ~ ~ )  (5 )  

and 

f 2 ( T z )  ( l /GgJ) -(" - 8 ~ " ) 2 / 2 0 ~ )  ' (6) 
k t  the code vector be 0 3 .  Then 6 3  = (dl, e2 , .  . . , e m )  is 

the maximum-likelihood estimate of 0 3  given by Define the parameter vector 9 = (e3, c:, p ) ,  where 0 3  = 
(e:, 8;, . . . , 8L). The log-likelihood function is given by 
L ( 9 l r )  = 1nf(r2).  Then the proposed detector for 0, 
which we shall call the EM detector, maximizes L ( 9 l r )  using 
the estimates of 0: and p obtained via the EM algorithm. 

A. Repeat Codes 

timates of 8,o:, and p can be obtained as the simultaneous 
solution to the set of following equations: 

6 3  = argmaxL(9lr) .  (13) 0 m 

The maximum of ~(91~) is to be searched Over the M 
valid codes. The maximum-likelihood estimate of the jammer 
variance has to satisfy 

m 
Using the procedure in [ 111, the maximum-likelihood es- 

6 = argmax(L(iPlr)), eE(+i, -1) (7) 

p .  (T ,  - 8zs)2 . f2(7-t)/f(7-t) 

6; = 2=1 . (14) E P f 2 ( T z ) / f  (Tz> 
z = 1  

The only difference between (8) and (14) is the index i on 8, 
as they are no longer the same for each 2. The equations for the 
maximum-likelihood estimate of p for the block codes remain 
the same as for the repeat code, although fl(r,) and f2(r,), 

as in (5) and (6), will have the appropriate 8; for each 2 .  

The EM algorithm has been shown to result in a nonde- 
creasing likelihood at each successive step and, under some 
conditions, to converge to a maximum-likelihood estimator 
[6], [9]. However, in general, the alorgithm will converge to 

m c P(T2 - w2 . f 2 ( 7 - % ) / f ( . 2 )  

6: = 2=1 (8) 
Z=1 E P * f2 ( .2 ) / f (TZ)  

5 P . f l ( T % ) / f ( T t )  5 b .  f2 (Tt ) / f (7 -2 )  
z = 1  . (9) a compact set of stationary point(s). - - 

m m P =  2=1 

There may be several solutions to (7), (8), and (9), and the 
one which maximizes L ( 9 l r )  has to be picked. Equations 
(7), (8), and (9) are used to provide the following iteration 
scheme. However, as explained later, the solution obtained 
via the iterations does not necessarily correspond to the global 
maximum of L (9 1.). 

Let denote the estimate of Q, at the pth iteration, 
P 2 1.  

111. SIMULATION PERFORMANCE 

In this section, simulated performances of the EM detector, 
maximum-likelihood detector with known jammer parameters, 
the linear, hard-limiter, and soft limiter [l], [4], [5] are 
studied. The clipping level of the soft-limiter is set at s. If 
s is also unknown, the resulting EM detector would be the 
linear detector, which would also be the maximum-likelihood 
detector because the maximum-likelihood estimate of the 
common mean of the mixture of two normal distributions is = +1 or - 1 whichever maximizes L(9(P)I r )  (10) 

the sample mean [12]. 

A. Repeat Coding Performance 

The bit energy for a repeat code is given by Eb = m . s2, 
where m = 7 is the code length assumed. In the case of 
repeat code, we look at an optimal, but unrealizeable, detector 

Optimal Detector: With 2, known, the likelihood ratio for 

m 
[ r z  - e ( ~ ) ~ ] ~  . f $ ) ( T , ) / f ( p ) ( T t )  

0 2 ( p + 1 )  - z = 1  
J -  (11) E f P ) ( T ,  )/f(") (7-2) 

2=1 

m for performance comparison purposes. c P ( P )  . f$)(T,)/f(P)(T,) 

m 
p ( P + l )  = 2 = 1  (12) the testing problem (3) is given by 

where fp)(rz), C = 1 ,2 ,  and ~ ( P ) ( T , )  are the density functions (l/&) ex( - (x ,  - 4 / 2 4  

2 ( 1 / 6 a )  +s, + 4 / 2 4  evaluated at T,  and 9 ( P ) .  A starting value, 9(l). is required. 
The iteration scheme is insensitive to these initial values, and 

= n 
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where ri = yi if the symbol is jammed, and ri = xi if it is not. 
Equivalently, a test based on the likelihood ratio is given by 

In order to implement this detector, value of u;,  and whether 
each sample is jammed or not, are needed. In this sense, it is 
an ideal detector and the required information is usually not 
available. Let k be the number of jammed samples. The error 
probability of the optimal detector is given by 

m 

where Po,,(, I k)  = Q ( s . J ( m  - k) /u2  + k/ (uz  + N ~ / 2 p ) ) ,  
and &(.) is one minus the standard normal cdf. 

The EM detector described in Section 11-A is simulated 
for at least lo5 and up to lo6 trials for each probability 
of error estimation. Each trial creates a realization of T = 
(rI ,r2,  . . . , T,) as in (2). The stopping criterion used for the 
EM algorithm iterations is the following rule of convergence 
of the likelihood functions: 

Stop iterations and obtain the current decision on 0 if 

abs((l(*(p) I T )  - ~5(+(~- ' )  1 T ) ) / L ( + ( p - ' )  1 T ) )  5 0.01 

or if the number of iterations exceeded 30. 
(18) 

A benchmark for the performance of the algorithm is the 
simulated performance of the maximum-likelihood detector 
with known 0: and p, but unknown jammer state, that is, the 
maximum-likelihood detector based on the mixture density (4). 

B. (m, k )  Block Coding Performance 

The energy per information bit for an (m.k)  block code 
is given by Eb = m .s2/k. A (7,4) block code is assumed, 
and hence a single error correcting capability is available. The 
hard limiter detector makes a decision on each bit of the coded 
word, and a word decision error is made if the hard limiter 
makes an error in more than one bit. The soft limiter detector 
computes 

m arg max 

i= l  
j E ( 1 ,  ' .  . , M )  

c( . )  being the output of the soft limiter. The EM detector for 
the block coding case as described in Section 11-B is simulated 
for 100000 trials for each EbINJ. 

The error probabilities of these detectors are shown in 
Figs. 1 and 2 against p for various s ,u2 .  and Eb/NJ values, 
and in Figs. 3-6 against Eb/NJ for various s .u2 ,  and p 
values. 

s=l .o E b /N j = O  dB (T' = 0.5 

1.0e+00 1 

t 
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n 
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2 a 1.0e-02 
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I .- - .- 

& 

4 - 4  ' 1.0e-03 - soft 

0.0 0.2 0.4 0.6 0.6 1.0 
1 .os04 

P 

Fig. 1 .  Bit error probability for m = 7 repeat code. 
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Fig. 2. Bit error probability for i n  = 7 repeat code. 
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Fig. 3. Bit error probability for I J I  = 7 repeat cod . ia' 
Iv. DISCUSSION AND cON&S 

Comparing the proposed EM detector to other schemes in 
terms of the probability of error performance as a function of p 
for different s, u2, and Eb/NJ values, it is observed that at low 
signal-to-thermal noise ratio (SNR 4 s 2 / g 2 ) ,  there is little 
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s=l .o p-0 1 a ‘=0.5 

+-4 EM - Linear 
1 oe-01 

-4 soft e a 1 oe-02 
L e 
b 
c 

i3 1 oe-03 

low p values. The gap between the performances of the 
optimal (unrealizable) and the EM detector is considerable 
for large SNR values (Figs. 1 and 2). The same relative 
performances of the EM, the maximum-likelihood, and the 
optimal detectors are also observed when the probability of 
error is plotted as a function of E ~ I N J  for different s, a’, and 
p values (Figs. 3 and 4). For (7,4) block code also, the EM 
and maximum likelihood detectors exhibit close probability of 
error performances at low SNR (Figs. 5 and 6). 

When the EM detector performance is close to that of the 
maximum-likelihood detector, the estimate of the likelihood 
function does not necessarily correspond to the true likelihood 
function. It was observed that, after the EM algorithm had 
converged according to (18), the estimated jammer parameters 
did not converge to the true jammer parameters at all even 
when the probability of error curves for the EM and the 
maximum-likelihood detectors were close. With such a small 
sample size as 7, parameter convergence is not expected. The 
convergence of the EM algorithm is observed to be quite rapid. 
Very few times (ranging from single digits to a maximum of 
50 out of 100000 for all simulations) did the algorithm fail to 
converge according to (18) and had to exit after 30 iterations. 

Comparing the performance of the EM detector to the other 
detectors, it is seen that it performs consistently better than the 
hard limiter detector at low SNR (Figs. 1,3,  and 4). Compared 
to the soft limiter, the EM detector performs better at low SNR 
and high jammer power levels. For high SNR conditions, the 
soft limiter outperforms the EM detector (Fig. 2). In general, 
the (7,4) block code performs better than the length 7 repeat 
code at equivalent signal and noise conditions. 

Fig. 4. Bit error probability for 771 = 7 repeat code. 
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Fig. 5 .  Word error probability for (7,4) block code. 
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Fig. 6. Word error probability for (7.4) block code 

degradation in performance as compared to the maximum- 
likelihood detector with known jammer parameters (Fig. 1). At 
high SNR, the EM detector performance is considerably poorer 
than the maximum-likelihood detector (Fig. 2), especially at 
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