
Southern Illinois University Carbondale
OpenSIUC

Honors Theses University Honors Program

5-1992

The Systems Control Language (SyCoL): A New
Language for Distributed Industrial Control
Doug E. Martin

Follow this and additional works at: http://opensiuc.lib.siu.edu/uhp_theses
Name on Title Page: Douglas Martin

This Dissertation/Thesis is brought to you for free and open access by the University Honors Program at OpenSIUC. It has been accepted for inclusion
in Honors Theses by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Martin, Doug E., "The Systems Control Language (SyCoL): A New Language for Distributed Industrial Control" (1992). Honors
Theses. Paper 24.

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/uhp_theses?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/uhp?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/uhp_theses?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/uhp_theses/24?utm_source=opensiuc.lib.siu.edu%2Fuhp_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

•

The Systems Control Language (SyCoL):

A New Language for Distributed Industrial Control

•

University Honors Thesis

by Douglas Martin

Bachelor of Arts in Computer Science

• Southern Illinois University

Spring 1992

•
Table of Contents

Introduction

History of Programmable Controllers (PLCs)....... 1
Advantages of PLes............................... 2
Components of PLes............................... 3
Programming Languages of PLCs.................... 5
Purpose of This Research......................... 6

Analysis of Existing PLC Languages

Analysis of Relay Ladder Logic................... 8
Analysis of Boolean Logic........................ 9
Analysis of Special Application Programming 11
Comparisons of the Programming Methods 13

The Need of A New PLC Language

• New Developments in Manufacturing and Computer
Science . 15

Combining PLC Technology with Software
Engineering ... I................................ 17

Distributed Environments and the Design of SyCoL

Overview of Distributed Control 19
Overview of Computer-Aided Software Engineering .. 21
Overview of SyCoL................................ 22
Description of SyCoL t' i ••••••• to 23

Implementing SyCoL

The Different Methods of Implementation 25
Interpreting SyCoL............................... 29
Translating SyCoL................................ 30
Compiling SyCoL.................................. 33
Comparison of Implementations 34

Conclusions and Thoughts About SyCoL

• Summary of SyCoL Research . 36
Thoughts About SyCoL . 38

Works Cited....................................... 39

•

Chapter One

Introduction

•

In this chapter, a overview of programmable logic

controllers in undertaken. It includes their history,

advantages, components, and programming languages. The

• chapter concludes with a statement of reason this research

was undertaken.

•
History of Programmable Logic Controllers

Until the late 1960's electro-mechanical devices were

the main components in industrial control operations. These

devices, known as relays, were linked together by the

thousands to control sequential manufacturing processes and

stand-alone machines. While these relays were reliable in

singular form, when they were linked together by hundreds of

wires the reliability and maintenance factors became very

challenging (Johnson 1).

• Along with these considerations came the issue of their

high installation cost. Typical configurations, including

the parts, wiring, and installation labor, could range from

$30 to $50 per relay. To make matters worse, when the

control needs of the process changed, it called for a

complete rewiring of the relay circuits. This rewiring often

took place months later using personnel that were sometimes

unfamiliar with the circuit operations and often, if the

circuits were poorly documented, the entire relay system was

scraped to save time and costs (Johnson 3).

Facing all these problems with relay systems, it was

obvious that another technology was needed to replace relays.

What was needed was a technology that could withstand the

• factory environment and be readily changed to fit changing

control needs. That technology came in the late 1960's in

the form of the programmable logic controller.

Page 2

•
Advantages of Programmable Logic Controllers

The invention of the programmable logic controller (PLC)

gave a great boost to high-volume production environments.

PLC's provide a system for process engineers that allows for

low down-time when control changes needed to be implemented,

and also a low down-time when diagnostics and repairs are

needed.

•
The low-down time for control changes is due to the fact

that the changes are not made on the physical system level,

that is rewiring, but rather they are made at the logical

level, in the controllers computer memory. Moreover, this

logical rewiring takes place in a fraction of the time need

for physical rewiring and also allows the process engineer to

quickly fix any errors may have been designed into the

system (Johnson 7).

The reason for the low-down time for repair and

diagnostics is that the components of the system that could

readily physically fail are removed from the control logic.

More specifically, the relays that once provided for the

circuit logic are replaced with solid state semiconductor

logic which has little to no chance of physical failure.

This leaves only the components that interface to the process

being controlled, and diagnosis of problems with these• components is fairly trivial (Johnson 8).

Page 3

•
Components of Programmable Controllers

All PLCs consist of the following four functional

blocks: inputs, outputs, central processing unit, and

programming device. To understand the operation of the PLC,

and thus the control system, each block must be fully

explored (Johnson 3).

•
Inputs to the PLC consist of digital and analog

components. Examples include pushbuttons, limit switches,

proximity switches, photosensors , theromocouples, position

sensing devices, and bar code readers. The signals from

these components are converted into meaningful data for the

central processing unit.

Outputs of the PLC also consist of digital and analog

components. Examples of outputs include pilot lights,

display devices, motor starters, DC and AC drives, solenoids,

and printers. These components, which are given data by

the central processing unit, allow the PLC to control the

process and inform the process supervisor of the current

state of the controller.

The central processing unit (CPU) is the brain of the

PLC. It consists of a microprocessor, logic memory for

storing the actual control logic, storage memory for variable

• data, and a power supply. The specific operation of the

microprocessor is beyond the scope of this paper, however a

generalized description of its operation will be given.

Page 4

• Basically, the CPU utilizes its logical memory to store the

needed information to control a process. After this

information is stored, the CPU starts to solve the logic from

the start of memory. This process continues until the end of

memory is reached, at which time the process starts over at

the beginning of memory. This is call "scanning", and it

continues in the PLC until the time the power to the PLC is

removed.

•
The final component of the PLC is the programming

device. This component, unlike the others, is not used in

the operation of the PLC, but as the name suggests, during

the program development time. These devices are divided into

two classes: dedicated devices, and personal computers. In

the beginning dedicated devices were the sole means of

programming the PLC. These first consisted of light emitting

diode (LED) devices, but were later improved through the use

of a cathode ray tubes (CRTs). These dedicated controllers

are optimized for usage but suffer from a lack of

expandabilty. Recently, manufacturers have been offering an

alternative to the dedicated device, which is the personal

computer (PC). The PC allows the process engineer to use a

combination of software to not only control the process, but

to monitor the process and perform quality control operations

automatically. Another advantage of using personal computers

• over dedicated devices is the savings accrued because

duplicated dedicated device hardware costs are eliminated

(Johnson 4).

Page 5

•
Programming Languages of Programmable Logic Controllers

•

As mentioned in the last section, there are a number of

programming devices available to the process engineer. These

devices present an interface between the process engineer and

the process to be controlled. The interfaces are usually

realized in one of the following four languages: relay ladder

logic, function block programming, boolean programming, and

special application programming. These programming languages

will be discussed in detail in the next chapter, but are

outlined here so that I may present the reason for my

research into programmable controller languages.

Relay ladder logic is basically an extension of the

method that old relay control systems were documented. It

consists of a series of graphic symbols representing physical

components that are connected together to from a circuit that

realizes the control operation needed.

Boolean programming is borrowed from the field of

discrete digital design. It consists of symbols representing

AND, OR, NOT and other logical operations. These symbols are

connected together to realize the control operation.

Special application programming consists of individual

languages designed by PLC manufacturers. These languages are

• usually designed around a type of operation to be performed

such as motion control, or continuous production control, but

may include general purpose languages (Johnson 20).

Page 6

Purpose of This Research

•

While all of the languages outlined in the previous

section performed well in the age of the simple automated

factory, they are showing their weakness now as fully

integrated factories are coming on-line. In these integrated

factories, where planning, production, and distribution are

optimized, the use of these languages presents a bottleneck

in production speed and efficiency. Current research has

focused on taking the human out of the process engineering

equation through the use of artificial intelligence .

However, industrial researchers are finding out, as computer

science researchers have found out, that the flexible

modeling of a complex process like control design is

extremely difficult, and computationaly expensive.

It is my belief that the human shouldn't be taken out of

the process engineering design procedure. I believe that a

system that combines modern software engineering techniques

with a distributed network architecture would provide a more

flexible and responsive control design system. I also

believe that such a system would enable management to take a

more active role at the plant floor level, both in quality

control and quality as~urance.

• It is with this in mind that I set out to research and

design a new PLC language, which this report outlines.

Page 7

•

Chapter	 Two

Analysis of Existing Programmable

Logic Controller Languages

•

In this	 chapter, the PLC languages that were outlined in

the previous chapter we be analyzed in-depth so that their

strengths and weaknesses can be ascertained. These strengths

•	 and weaknesses will be used in the design of my proposed PLC

programming language.

Page 8

•
Analysis of Relay Ladder Logic

Today's relay ladder logic is an extension of the old

method by which process engineers used to document relay

control systems. It uses a series of symbols to represent

both physical and logic components, an input line, an output

line, and any number of lines connecting the aforementioned

components together. The physical components represented by

different symbols include motors, lights, pushbuttons, and

limit switches. The logical components include addition and

subtraction, counters, timers, latches, and subprogram

• branching. By connecting the components together, the

process engineer sequences and controls the process.

Relay ladder logic gives the process engineer a method

in which he or she can quickly program a simple control

problem. Its use of a graphic symbology allows rapid program

construction on personal computers and allows others to

quickly understand the program.

The main disadvantage of relay ladder logic is its

limited instruction set, as it has no facilities for data

logging or statistical analysis. While this may seem to

contradict the above statement that a limited graphic set is

preferred, it in fact does not. Limiting the graphic set

does not have to mean a limiting of the instruction set, as

• will be seen in my design (Barney 27).

Page 9

•
Analysis of Boolean Logic Programming

Boolean logic programming is borrowed from the field of

combinational-sequential digital logic design. It uses AND,

OR, and NOT gates of combinational circuitry, and timers,

counters, and latches from the sequential side of digital

design. It represents these operations using the standard

'digital design graphical symbols. The logical operations can

be shown to be very similar to the relay logic operations,

that is, AND is equivalent to two contacts in series, and OR

is equivalent to two contacts in series. The timers,

• counters, and latches are built in the same manner (Barney

45) •

This method of programming the PLC allows for flexible

specification for the control problem. It lets the process

engineer think of the problem in logical terms and thus may

give a more bug free solution. Moreover, many products have

been developed in the digital design field that the process

engineer may use. These products include computer-aided

design (CAD) tools, automated circuit generation tools, and

automated testing tools.

However, there is a severe drawback associated with

thinking in and implementing the control problem in logical

terms, and that is program size. A boolean logic program, by

•	 definition, uses the most basic components, and thus, it

takes a much larger number of these components to specify a

Page 10

control problem than if the process engineer used relay•
ladder logic. Now while using these smaller components may

reduce program execution time, with today's affordable high-

speed computers, this most likely won't matter. Thus, when

speed is not a consideration, the use of the larger, more

complicated boolean logic methodology needs to be

reevaluated.

•

•

Page 11

•
Analysis of Special Application Programming

The final language type under analysis is special

application programming. This method of programming includes

manufacturer specific programming languages such as motion

control system languages or data management languages. The

method also includes general-purpose programming languages

that are modified or supplied with libraries to allow the

process engineer to design a solution to the control problem.

These languages let the process engineer look at the

control problem as a general computational problem. This

• view gives the engineer a great deal of flexibility in the

implementation of the control solution. The use of a general

purpose language also allows the engineer to incorporate data

gathering and data analysis sections into the control system.

It also allows the engineer to interface multiple machines

together into one control system in a more efficient manner

than with any other programming interface (Barney 54).

However, there are a number of disadvantages in using a

general purpose language for the implementation of a control

system. The first of these disadvantages is the fact that

the process engineer must learn the syntax and semantics of

the programming language. It is a well known fact that the

learning curve for a new programming language is a very long

•	 one. This slow process of learning the language may be

exacerbated further when multiple versions of the language

Page 12

reside on different machines in the control system. Another•
disadvantage with general purpose programming languages is

that they require the process engineer to program a great

deal of the low level functions associated with the control

system. This type of programming is well known for its

difficulty in writing and debugging. The final significant

disadvantage is the fact that there are so many different

general purpose languages in existence. This great diversity

in languages means that a control system may not be able to

be ported to a different machine setup, which cuts

significantly into the bottom line.

•

•

Page 13

•
Comparisons of the Programming Methods

Now that all three programming methods of the PLC have

been looked at, the strengths and weaknesses of the methods

can be extracted. This will provide a set of guidelines for

the creation and analysis of my PLC programming language.

The primary strength in the relay logic methodology is

its ease of use. The language allows the programmer to think

in graphical terms, and the use of a limited language set

allows other personnel to understand the control solution

quickly and easily. The primary strength of the boolean

•	 methodology is also its use of a graphical language set,

however, the resolution in which the programmer must think of

the control problem is too fine, that is, the language

constructs are to elementary for effective and efficient

control engineering. Finally, when looking at the strengths

of a general purpose programming language, one item stands

out, flexibility. So with all of these in mind, the chapter

ends with the following table that outlines the points that

need to be addressed when designing a PLC programming

language.

Design Points

• 1) Be easy to use
2) Be easy to learn
3) Provide flexibility
4) Provide security
5) Abstract the control solution

Page 14

•

Chapter	 Three

The Need of a New

Programmable Logic Controller Language

•

This chapter argues that a new programmable logic

controller language needs to be implemented. It bases this

•	 argument on the analysis of existing languages contained in

the last chapter.

Page 15

•
New Developments in Manufacturing and Computer Science

The last few years have seen significant changes in the

field of manufacturing. Computer technology has integrated

medium to large scale manufacturing operations in such a

manner that the entire manufacturing process is now under

computer supervision using a distributed network. This

supervision includes inventory control, process control,

quality control, and resource planning. In the face of this

rapidly expanding technology, the field of programming PLCs

has fallen behind -- process plans are being created by

• artificial intelligence but are being conceptually controlled

by connected relays!

The use of an antiquated control programming system is

in my view the bottle neck for the creation of a flexible

medium to large scale manufacturing system. I also believe

that the solution to the problem does not lay in the

application of artificial intelligence because control

programming is a design problem, and thus it cannot be

efficiently computationaly modeled.

Paralleling this growth in the field of manufacturing

technology has been the growth of an area of computer

science, that is, the field of software engineering.

Researchers in this field have be investigating the best

•	 methods and interfaces to use in order to produce quality

software. The amount of research has been considerable, and

Page 16

• the conclusions drawn have been varied. However, a number of

consistent findings have been reported in the field (Sodhi

5) •

The researchers have outlined the characteristics of

real-time languages, of which PLC programming languages are a

subset. The characteristics are security, readability,

flexibility, simplicity, portability, and efficiency. These

characteristics are the same as the ones extracted in the

last chapter from the combination of the existing PLC

programming languages. The researchers have also outlined

the goals of software engineering, they are reliability,

modifiability, maintainability, understandability,

•	 adaptability, reuseability, efficiency, portability,

tractability. These goals are to be reached through a set of

guiding principles. These principles are abstraction,

information hiding, completeness, confirmability, modularity,

localization, error handling, and uniformity. Finally, these

principles are to be incorporated into a programming

methodology that insures their preservation. Examples of

current methodologies are the structured approach, the

object-oriented approach, the entity relation approach, event

oriented approach, and the stepwise refinement approach. All

these terms will be investigated further in the description

of the new language, but are given here to shown the

• guidelines by which the language was designed (Sodhi 10).

Page 17

•
Combining PLC Technology with Software Engineering

Given the developments outlined in the previous section,

I think the best method to advance current PLC technology is

to introduce the principles set forth from the field of

software engineering. I think that a PLC programming

language that is based on the principles of software

engineering would give a immediate return in both the

efficiency and flexibility of a manufacturing system.

I also believe that if the current method of PLC

programming is continued, the newest area of manufacturing

•	 research, distributed control, will be slowed significantly.

Given this, I have researched and designed a new PLC

programming language for a distributed environment that

employs all the principles of software engineering but still

caters to the needs of the process engineer. The language is

entitled SyCoL, for Systems Control Language.

•

Page 18

•

Chapter Four

Distributed Environments

and the Design of SyCoL

•
The purpose of this paper is to propose a new language

for distributed PLC programming. This language, called

SyCoL, for Systems Control Language, was designed using both

current research in distributed control theory and computer-

aided software engineering techniques. The reason for the

combination of the two fields, as well as a general overview

of them, will first be discussed. After the basis of the

design has been given, an overview and detailed description

• of SyCoL will be presented along with a example problem.

Page 19

•
Overview of Distributed Control

Before any discussion of a new language for distributed

PLC programming, there must be a common agreement as to what

exactly is the definition of distributed control, as there

are many in current research literature. However, all of the

definitions seem to solely differ in the amount and method of

communication between the local control units and the host

controller. For the purpose of this paper, I am adopting the

definition of distributed control as follows --a system of

interconnected intelligent programmable controllers which

• communicate directly to other controllers in the system to

aid in efficient system control. Using this definition, all

of the advantages of distributed control, as outlined by

Lukas, can be realized. The advantages include a reduction

in costs for both installation and maintenance, and an

increase in amount of modularity, performance, and

reliability (Lukas 112).

Given these advantages, which are far greater than the

advantages afforded by stand-alone control systems, it is

obvious to see that the preferred method of building future

industrial systems would be with the use of the distributed

paradigm. However, there is a stumbling block on the road to

distributed control, and that is the programming languages

•	 available to the control engineer. Current efforts in the

area of distributed control languages are centered around the

Page 20

• adaptation of stand-alone control languages or the adaptation

of general purpose programming languages to the control

problem. I believe that the solution to the distributed

language issue does not lie in the adaptation of existing

languages, but rather in the creation of a new language using

a new area in computer science -- computer-aided software

engineering.

•

•

Page 21

•
Overview of Computer-Aided Software Engineering

Computer-aided software engineering (CASE), as mentioned

above, is a new area of study in computer science. It is

defined by Lewis as a set of tools that automate the

production, maintenance, and distribution of software

products (Lewis 1). The method by which these tools operate

is to link the "artifacts", as Lewis terms them, which are

simply the program listings and documentation of a computer

system, to the processes of software engineering, which

include the procedures, rules-of-thumb, and interaction among

•	 team members (Lewis 1). The advantage of this linkage of

process and product is the creation of quality software

efficiently and cost effectively.

By creating a CASE tool for distributed systems, I

believe that the programming and debugging time of such

systems could be drastically reduced. The reason for the

reductions in time would be due to the automatic programming

of common control situations afforded by the CASE tool, as

well as the automatic management of the programs on all of

the local control units. This paper is a proposal for the

language of just such a tool -- a language called SyCoL.

•

Page 22

•
Overview of SyCoL

Through the use of CASE tool technology, SyCoL would

enable the process engineer to create a control procedure

quickly and with a lesser chance of errors. This reduction

in design time is be due to SyCoL's use of an intuitive

graphical interface. This interface allows the engineer to

program the control system by connecting together a series of

graphical icons that represent components in the process. It

also allows the engineer to add other elements into the

control system, such as quality control and quality assurance

•	 procedures. Thus, SyCoL not only serves as a control

language, but also as a tool for the factory management.

•

Page 23

•
Description of SyCoL

As mentioned above, SyCoL operates under a graphical

environment so that the control program can be implemented in

a more intuitive manner. However, the decision to use a

graphical environment raises a great deal of questions.

These questions include hardware considerations, such as the

type of display device to use, software considerations, such

as the computer language to use to implement SyCoL, and

esthetic considerations, such as how the programming and

operator interface should look.

•	 To bypass all these considerations, SyCoL will adopt the

XWindows standard for both the programming and operator

interface. This standard, which is hardware independent,

uses the language C for its programming language, and defines

every aspect of its interface with the user. By doing this,

the user of SyCoL is insured that once a control system is

written, that it may be run on many different computer

systems. Also, this allows any third-party vendors to easily

design and market extensions to the language, thereby

insuring SyCoL's rapid growth and acceptance in the

marketplace.

Using this graphical interface, the user begins

programming the control system by selecting the inputs and

• outputs of the system. Inputs could include pushbuttons,

strain gauges, position sensors, and outputs could include

Page 24

• physical elements such as motors and lights, or computer

elements, such as messages on the computer screen. These

components would then be drawn as icons, or pictures that

represent what they are, on the screen.

After all the components have been selected, the user

begins to connect the components together in the form of a

dependency diagram through the use of a mouse device. This

diagram is simply a set of directed edges, that is, lines

that start at one component and end at either another

component or another line. For example, a motor of a sawmill

is to turn on when both a safety button is pressed and a

position sensor indicates that a log is in position. In this

•	 case, the user would first connect the safety button icon to

the motor icon. When this is done, a arrow is drawn between

the two icons. After this arrow is drawn by the CASE tool,

the user would then connect the position sensor icon to the

arrow. Thus, the user has now specified that the operation

of the motor somehow depends on the operation of both the

button and the sensor.

Now that the dependency diagrams have been drawn, the

user continues programming the control system by selecting

one of the dependency diagrams by selecting it with the

mouse. This brings up a new screen that contains the

components in the diagram along with arrows from component to

component. The user then uses the mouse to select one of the

•	 four types of objects, called functional units, that are

placed on the arrows between components. The three types of

Page 25

functional units are routers, which route paths between•
components, agents, which request information from the

component to the left and pass it on to the component to the

right, observers, which request information from the

component to the left and use it for their own purposes, and

actors, which pass information on to the component to the

right. By using these four components, any control system

can be implemented.

To complete the example system, the user would select

the dependency diagram that connects the button, sensor, and

motor. Once this is done, a screen is brought up that

contains these components along with their arrows. The user

• would select two agents and place each on the screen. Each

agent would be connected on the left side from each

component. After connecting, the user would select one of

the agents, say for example, the button. By selecting a

agent, another screen is brought up in which the user selects

a question to ask the button. The question to be asked is

selected by the user from a list of pre-defined questions for

the component that is connected on the left side. In the

case of the button the user would select "Is your button

down?", and in the case of the sensor, the user would select

"Is there something in front of you?". After setting-up the

agent, the user would select a router unit and place it on

• the screen. Then, the user would connect the arrows from the

two agents to the left side of the router, and the arrow from

the motor to the right side of the router. The user would

Page 26

• then select the router unit with the mouse. After being

selected, another screen would be brought up. In this

screen, the user would select the messages that when

received, should activate the path to the component on the

right side, in this case, the motor. The messages that

should activate the motor are a combination of "I am down"

and "There is something in front of me." Finally, the user

would place an actor between the output of the router and the

motor. Then by selecting the actor, the user is able to pick

from a list of messages that the motor will accept, in this

case the user would pick "Turn on."

Although the last example may seem lengthy, the actual

•	 time to implement the system would be just a few minutes,

compared to the hours that it might take using any other

distributed control programming language. Furthermore, once

implemented, the control program can be easily debugged by

inserting observers into the control path to see what

messages are being passed through the system.

The example just given showed some of the possible uses

of the four different functional units. The following table

lists some other uses for the function units:

Unit Type	 Operation

Router	 Logical AND, OR, NOT.
IF statement and CASE statement

• Multiplexed output
Encoded input

Agent	 Exception handler
Pre and post condition checking

Page 27

Observer Debugging tool• Data logging and analysis

It is important to realize that SyCoL is just a part of

the intended distributed control CASE tool. Other elements

of the CASE tool include program version control and

tracking, component creation, testing and maintenance

facilities, and automatic documentation management.

To analyze SyCoL, the requirements set down in the

previous chapters concerning software engineering and PLC

programming must be reexamined. They specified that the

language must:

• 1) Be easy to use
2) Be easy to learn
3) Provide flexibility
4) Provide security
5) Provide robustness
6) Provide functionality
7) Provide for easy insertion
8) Abstract the control solution

Without going into detail, it can be shown that SyCoL meets

all of the above requirements because of the combination of a

limited number of language elements with a graphical

environment.

•

Page 28

•

Chapter Five

Implementing SyCoL

A New Programmable Logic Controller Language

•

This chapter analyses the different methods of

• implementing the SyCoL. I look at both implementation and

execution costs.

Page 29

•
The Different Methods of Implementation

Basically, there are three methods of implementation

available for SyCoL. The methods are interpretation,

translation, and compilation. Each method is the result of a

trade-off between program development time and program

execution time. The following three sections investigate the

pros and cons of each type of implementation in relation to

program development and program execution time.

•

•

Page 30

•
Interpreting SyCoL

The method in which program development time is

minimized and program execution time is forfeited is

interpretation. This method gives immediate feedback from

the system to the programmer, and thus allows the programmer

to debug the system quickly and efficiently. The reason that

the execution time is forfeited is described below along with

an outline of the interpretation process.

The interpretation process starts with a source file

that describes the program in the language to be interpreted.

•	 The interpreter then takes this description and reads it into

memory in small meaningful amounts. These small amounts are

usually single lines in the program. The small amounts of

information are individually decoded and checked to see if

they are valid statements in the language. If they are

indeed valid statements, the corresponding routines that the

language statements specify are executed in the computer.

After the routines are executed, the process starts over by

reading in the next meaningful unit in source file. This

process is ended when either the end of the program is

reached, an error occurs, or the programmer interupts the

process in some pre-defined manner (Aho 34).

In examining the above process, one can see the reason

•	 for the slow execution time -- each statement must be

individually examined and executed, and many times each

Page 31

statement may be examined more than once. This lack of•
"remembering" statements may seem inane, but there is a

reason for it. The primary reason is that because the

interpreter doesn't need to remember past lines, it is far

easier to implement. The second reason is that the

programmer, as mentioned above, may arbitrarily stop the

program and change it. If the program were to remember

lines, it would have to also remember any relationships that

they may have to one another as well. This is so it can

change any lines that may be affected by the modification,

which would be very difficult and computationaly expensive to

implement.

•

•

Page 32

•
Translating SyCoL

Translation differs from interpretation by the fact that

it does not actually execute the program, but rather it

translates the program into another language so that the

program may be subsequently interpreted or compiled.

Therefore, real-time constraints only enter the picture when

the consideration of the language to translate to is made.

Ideally, the language to translate to would be an efficient

one like C or Pascal and not an interpreted language.

However, an interpreted language could be chosen if executes

• under the minimum real-time constraints.

The translation process is basically a mapping process.

It starts, as with interpretation, with reading the source

file. As it is reading the source file into memory, it takes

the statements from the source file and looks up the

equivalent statements in the target language. After finding

the equivalent statements, some translators perform some

optimazation new statements, removing inefficiencies that may

have arisen from the translation process. After this, the

target file containing the translated statements is written

out. This target file may then be executed by an interpreter

or fed into a compiler to yield an executable program (Aho

• 114).

Page 33

•
Compiling SyCoL

The final method of implementing SyCoL is compilation.

The compilation process is much the same as the translation

process, except that the target language is the machine

language of a target computer. This method yields the

slowest development time, but at the same time, yields the

quickest execution time.

The process is the same as the translation process with

some additional points added. First, after the target file

is written out the compiler then reads it back in and

• converts it into machine code readable by the computer. This

machine code is then combined with existing libraries of

machine code to form an executable program. The entire

process takes a great deal longer than simple translation,

but yields a program that may be executed extremely quickly.

The programmer then executes the program, notes the errors,

and goes back to the source file and makes changes to fix the

errors. After the errors are corrected, the source file must

be re-compiled, and thus program development time is

extended (Aho 22).

•

Page 34

•
Comparison of Implementations

Given the above information, the implementation choice

must be made. To interpret SyCoL would yield a system in

which program development would be lessened greatly.

However, real-time system considerations must be considered,

and thus, interpretation is out. Compiling the language

would result in very efficient execution time, however,

program development time would be extended greatly. Before

accepting or eliminating compilation, another important

consideration must be examined: portability. Compiler

•	 writing is inherently a machine dependent process, that is,

one written, the compiler will only run on one type of

computer system. Thus I believe that translation would be

the best choice in light of the needed compromise between

programming ease and economic considerations of

implementation. I think that the best choice of a target

language would be C, mainly because of its ability to express

low-level activities easily and efficiently.

•

Page 35

•

Chapter Six

Conclusions and Thoughts About SyCoL

•

This chapter concludes the paper by giving a summary the

• research, and continues by outlining some of my thoughts

about the affect of SyCoL on the future of industry.

Page 36

•
Summary of SyCoL Research

This research has attempted to unite the fields of

software engineering and control system design. I have

extracted what I believe to be the essential concepts for the

design of a new distributed PLC programming language from

existing language designs. I have also taken the principles

of real-time software engineering and applied them to PLC

programming. By combining these two fields, I believe I have

created a viable language, a language to bring the control

aspect of manufacturing in line with state of the art of

• other manufacturing technologies.

The research began by examining a number of books on PLC

programming, and outlining the differences between the PLC

programming languages. I then examined some of the critiques

of the languages and then evaluated them myself. At the end

of this process, I had gathered an extensive list of what a

PLC language should and shouldn't have. After this I looked

into a number of books on software engineering, and into my

own class notes on the subject. From these sources I

compiled another list of the needs that the designer of a

real-time system needs to address. With these two lists in

mind, I examined the basic idea that I had for a new

language and modified it to conform to the needs that I had

•	 extracted.

Thus I believe that my system is a fair compromise

Page 37

between existing PLC languages and recommended software•
engineering techniques. I think that the system would stand

up both to the scrutiny of the industrial engineer and the

computer scientist.

•

•

Page 38

•
Thoughts About SyCoL

I believe that once a SyCoL system is implemented it

will prove itself as a viable language very quickly. I think

that the design of the language allows both professionals and

students to use it to the fullest. I believe that the

language will make its biggest impact in the medium-scale job

shops due to the quick and efficient program development and

execution of the language. I think that the owners of small-

scale jobs shops would find that it might be more efficient

to use other programming methods.

•

•

,
Page 39

•
Works Cited

Aho,	 Alfred V., Ravi Sethi, and Jeffrey D. Ullman. 1988.
Compilers, Principles. Techniques. and Tools. Reading:
Addison-Wesley.

Barney, George C. 1988. Intelligent Instrumentation. New
York: Prentice Hall.

Johnson, David G. 1987. Programmable Controllers for Factory
Automation. New York: Marcel Dekker.

Lewis, T.G. 1991. CASE: Computer-Aided Software Engineering.
New York: Van Nostrand Reinhold.

Lukas, Michael P. 1986. Distributed Control Systems. New
York: Van Nostrand Reinhold.

•
Sodhi, Jag. 1991. Software Engineering. Blue Ridge Summit:

TAB Professional and Reference Books.

•

	Southern Illinois University Carbondale
	OpenSIUC
	5-1992

	The Systems Control Language (SyCoL): A New Language for Distributed Industrial Control
	Doug E. Martin
	Recommended Citation

	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43

