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Community Structure in Federal Election Donation Networks,

1980-2008

Andrew Scott Waugh, University of California, San Diego

30 April 2010 (Draft copy. Please do not cite without permission.)

In this paper, I analyze Federal Election Commission donation data from the 1980-2008 election
cycles using the tools of social network analysis. I construct two separate networks for each election
cycle. In the first, political committees are networked based on the number of individual donors from
whom they each receive funds. In the second, committees and candidates are connected based on
monetary transfers among each other. Having constructed these networks, I employ a community
detection algorithm in an attempt to derive the community structure of the donation networks.
Identifying the relevant communities in each donation network, and the strength with which they are
defined, provides insight into the partisan nature of campaign contributions and their relationship
to partisan polarization.

1 Introduction

Studies of campaign finance in United States federal elections have primarily focused on identify-

ing the conditions under which campaigns receive money from various actors, how much money

they receive, when they receive it, how these contributions impact the outcomes of elections, and

the extent to which they influence the behavior of elected officials. These studies are generally

conducted using aggregate data on contributions to campaigns over the course of an election cycle

from particular sources, with particular attention to the actions of party organizations, individual

contributors, and political action committees.

Starting with the 1979-1980 electoral cycle, the Federal Election Committee (FEC) maintains

a comprehensive database of contributions data for these actors, both aggregated and itemized,

making large-scale longitudinal analysis possible. Still, the majority of analyses have concentrated

on small subsets of the available data, often limited to particular election cycles, particular actors,

and aggregated rather than itemized contributions data. As such, we know a great deal less than
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we might about the overall structure of campaign contributions in federal elections. In particular,

we know little about how this structure has evolved, and how it influences or is influenced by,

for example, changes in political institutions, partisan control of government, campaign finance

laws, and partisan polarization. The increasing popularity of network analysis methodologies in

political science, however, provides with appropriate tools to analyze the structure of itemized

FEC contributions data, visualize and measure changes in this structure over time, and estimate

the influence of structural change on variables of interest.

This paper takes the first step in that process by assembling itemized contributions data for

each federal election, from 1980-2008, into networks. I assemble two networks for each election.

In the first, which employs data on individual contributions, weighted links are drawn between

pairs of political committees, with weights equal to the number of individual contributors that

have donated to both. In the second, which employs data on contributions among committees

and candidates, weighted links are drawn between pairs of committees/candidates, with weights

equal to the amount of the contribution. To find the structure of these networks, we require a

way of dividing the nodes of the network (in this case committees and candidates) into discrete

communities, and a way of assessing the quality of that division.

I use an algorithm that maximizes a network science statistic called modularity (Newman &

Girvan 2004, Newman 2006b). Modularity measures the quality of a community partition for a

given network by comparing the number and weight of connections that occur within a community

to the number and weight of connections that occur between communities. Modularity increases

as the ratio of in-community to between-community edges increases. The community partition

that maximizes modularity, therefore, gives us the network structure that best divides the nodes

based on their contribution activity. Compared to colloquial definitions of community, this measure

makes intuitive sense. Communities are routinely defined based on shared behavior. In this case

that behavior is a political contribution. The modularity statistic not only allows us to locate

community structures within electoral cycles, but also allows us to compare the strength of com-

munity divisions across electoral cycles. This gives us the opportunity to analyze the conditions

under which communities of donors coalesce, when they break down, and how these changes are
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associated with important political variables.

Though these networks have many potential scholarly uses, this paper focuses primarily on

the relationship between community structure and modularity in donation networks and partisan

polarization. Examining the membership of the largest communities in each network, I find that

these communities are, for the most part, highly partisan. This is coupled with the finding that, over

time, modularity increases dramatically in both network types, suggesting that increasing partisan

divisions may be causing donors to choose sides, thus reducing the number of between-community

links. Interestingly, modularity does not spike in both network types at the same time. In the

networks of committee and candidate contributions, modularity spikes in the 1987-1988 electoral

cycle, whereas in the networks of individual contributions, modularity does not spike until the

2001-2002 electoral cycle. This suggests that donations among elite political actors polarized some

14 years prior to donations from individual contributors.

The plan of the paper is as follows. Section 2 provides a brief review of the study of community

structure in campaign contributions, as well as the use of community detection methods in political

networks, generally. Section 3 describes the construction of the network datasets. Section 4 provides

a more complete definition of modularity and the other methods used in this analysis. Section 5

analyzes the results of the community detection process. Section 6 concludes.

2 Background

Despite considerable interest in the study of campaign contributions generally speaking, very little

work has been done concerning the community structure of donations in federal elections. Some

attention, however, has been paid to the relationship between campaign contributions and partisan

polarization.

One branch of research concerns the contribution behavior of political action committees. PACs

have been shown to primarily spend money primarily on incumbent candidates, and candidates

who have held seats on committees relevant to their business (Herrnson 2004, Jacobson 2004).

Despite this regularity, there is some evidence that PACs have ideological leanings, or at least act

as if they do. Poole and Romer (1985, 1987), for example, demonstrate that PAC contributions
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to Congressional races can be explained with a spatial model, and that PACs rarely donate to

candidates who occupy opposite extremes of the political spectrum.

A second branch concerns the contributions of party organizations to Congressional candidates.

Numerous studies have shown that parties distribute funds based on the perceived competitiveness

of campaigns, with an eye towards maximizing seat shares in Congress, and that comparatively little

attention is paid to party loyalty (Jacobson 1985-1986, Herrnson 1989, Damore & Hansford 1999).

There is some evidence that the Democratic Party has used campaign funding as a reward for

loyalty (Leyden & Borreli 1990). However, no clear relationship has been established between

party funding and future loyalty in voting (Cantor & Herrnson 1997).

Generally speaking, the connections between campaign contributions and partisan polarization

remain difficult to establish empirically. With the use of community detection algorithms on FEC

contribution data, however, we are able to measure the strength of community divisions within

contribution networks, and chart the development of these divisions and their strength over time.

Community detection algorithms have previously been employed in the study of committees (Porter,

Mucha, Newman & Warmbrand 2005, Porter, Mucha, Newman & Friend 2007), cosponsorships

(Zhang, Friend, Traud, Porter, Fowler & Mucha 2008) and roll-call voting in Congress (Waugh

et al. 2010). In each set of Congressional data, the authors found evidence of increased partisan

polarization over time.

3 Data

In this section, I describe the data and processes used to assemble the donation networks. I begin

by discussing the FEC data generally, and subsequently describe issues particular to the creation

of each of the two network types employed.

3.1 Dataset Assembly

The networks analyzed in this paper were assembled using data made available online by the FEC

(www.fec.gov). For each federal election, 1980-2008, the FEC maintains two datasets. The first

contains itemized contributions from individuals to federal committees. The second contains item-
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ized contributions from federal committees to candidates. Additionally, for the 1986-2008 elections,

the FEC maintains a third dataset, containing itemized transactions between any two federal com-

mittees. I employ these data to create two network types for each election. The first network type,

which I term shared individual donations, employs the individual contributions dataset. The sec-

ond, termed monetary transfers, employs the data on contributions from committees to candidates

and committees to committees. In all networks I exclude contributions less than $200. Commit-

tees/candidates are not required by law to report contributions less than $200, and indeed they are

not regularly reported, making data on these small contributions unreliable. The nodes in these

networks consist of federal committees and candidates, which are given unique identification codes

by the FEC.

3.2 Shared Individual Donations as Weighted, Undirected Networks

In the shared individual donation networks, an undirected edge is drawn between two nodes if those

nodes both receive money from the same individual donor. The weight of the edge is equivalent to

the number of individual donors that the two nodes share. Theoretically, a heavily weighted edge

between two nodes should indicate similarity between these nodes in the eyes of individual donors.

Unfortunately, identifying the number of shared individual donors between two nodes using

the FEC data proves to be a non-trivial task. Individual contributors, unlike candidates and

committees, are not given unique identification. Furthermore, FEC does not keep a master list of

individual contributors. Rather, each individual contribution is identified by the name, address, and

occupation of the contributor. Many individuals donate to multiple candidates/committees and

therefore appear multiple times in the itemized datasets. Irregularities in the coding of identifying

variables make the generation of unique donor lists difficult. I decided to combine the name and

zip code variables for the individual contributions and used this combination to generate unique

individual donor lists for each electoral cycle. Certainly, this process is not without error, as two

individuals with the same name in the same zip code will be coded as one person, and individuals

who donate money and then change zip codes will be counted as two separate people, but given

the available data, it is unclear that a better option was available.
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Having assembled unique donor lists, I then identified all of the committees/candidates to which

each individual contributed using the FEC data, and assembled the finished networks in R using

the igraph package (Csardi & Nepusz 2006). The finished networks, it should be noted, do not

contain all of the committees/candidates that took part in a given election cycle. Rather, they

contain only those that share an individual donor with at least one other committee/candidate.

3.3 Monetary Transfers as Weighted, Directed Networks

In the monetary transfer networks, a directed edge is drawn between two nodes, A and B, if node

A transfers money to node B. The weight of the edge A → B is equal to the amount of money

transferred. Frequently, there are multiple transfers from one node to another in this network.

Since these transfers vary in date, amount, and type, among other interesting variables kept by

the FEC, I chose to allow multiple edges to remain, rather than collapsing them into a single edge

and summing the weights. Though these variables are not analyzed in this paper, they will be the

subject of future work.

Assembling the monetary transfer networks was relatively straightforward. Each itemized trans-

fer over $200 in the FEC committee-candidate and committee-committee datasets was simply added

as an edge in a network, again using the igraph package in R. At this point, the monetary transfer

networks were ready for community detection with no further data processing.

4 Methods

In this section, I describe the network science concept of modularity, which I use to evaluate

community structures in the federal election donation networks. I then describe the algorithm used

to find the community structure that maximizes modularity. Finally, I review the techniques used

to evaluate the identified communities.

4.1 Using Modularity to Evaluate Community Structure

We begin our discussion of community structure by defining a community partition. In a community

partition, every node in a given network is assigned to precisely one community, with no overlap
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between communities. In order for a community partition to be meaningful, however, we must have

a criterion for evaluating its quality.

Modularity provides a conceptually simple way to evaluate the quality of a given community

partition using the information contained in the edges of the network (Porter, Onnela & Mucha

2009, Newman & Girvan 2004, Newman 2006b, Fortunato 2010). In a network, however constituted,

nodes relate to one another through the presence or absence of shared edges. Modularity assumes

that nodes in the same community should share more ties with each other (intra-community ties)

than with nodes in other communities (extra-community ties) (Newman & Girvan 2004, Newman

2006b).

Considering a contribution network, this assumption makes intuitive sense. Suppose we parti-

tioned a contribution network into Democratic and Republican communities. Under normal circum-

stances we would expect Democratic committees to contribute money almost exclusively to other

Democratic committees, and would believe the community structure to be quite strong. If, how-

ever, we encountered a situation in which Democratic and Republican committees were regularly

sharing money with one another, we might question the value of the party label as an informative

cue, and consider the party communities to be weaker. In either case, the modularity score of such

a community partition would reflect our intuition. Importantly, however, the modularity score is

calculated based solely on the presence or absence of network connections, and is agnostic to other

assumptions about the structure of the political system. This allows us to calculate the modularity

statistic for any hypothesized community partition.

More formally, for a given community partition, modularity Q represents the fraction total tie

strength m contained within the specified communities minus the expected total strength of such

ties. The expected strength depends on an assumed null model. I use the standard Newman-Girvan

null model that posits a hypothetical network with the same expected degree distributions as the

observed network (Newman 2006b, Newman 2006a), yielding the equation

Q =
1

2m

∑
ij

[
Aij −

kikj

2m

]
δ(gi, gj) , (1)
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where m = 1
2

∑
i ki is the total strength of ties in the network, ki =

∑
j Aij is the weighted degree

(i.e., the strength) of the ith node, gi is the community to which i belongs, and δ(gi, gj) = 1 if i

and j belong to the same community and 0 if they do not. If the community partition is strong,

a greater percentage of the total tie strength of the network will be contained in the communities

than would be expected by chance, and the modularity score will be large and positive.

4.2 Community Detection Using Modularity Maximization

The modularity statistic gives us an intuitively satisfying criterion for evaluating the quality of

a given community partition. Given the assumption about community strength that underlies

modularity, it follows that the best community partition for a network is the one that maximizes

the modularity score. Modularity optimization, however, is an NP-complete problem (Brandes,

Delling, Gaertler, Goerke, Hoefer, Nikoloski & Wagner 2008), so identifying the correct partition

requires the use of a computational heuristic, several of which have been developed for this purpose

(Danon, Diaz-Guilera, Duch & Arenas 2005, Porter, Onnela & Mucha 2009, Fortunato 2010).

In this paper, I use the walktrap algorithm (Pons & Latapy 2005), as implemented in the R

package igraph (Csardi & Nepusz 2006). This implementation is particularly useful because it

allows the use of weighted edges, and can also process the directed edges and multiple connections

present in the monetary transfer networks.

The walktrap algorithm starts by partitioning the network into n communities, which each

contain a single node. It calculates a measure of the distance between each pair of communities

and begins merging groups by taking short random walks between them, operating under the

principle that such walks should connect closely tied nodes and identify relevant communities. After

each merging step, one calculates the modularity score for the current partition. The algorithm

finishes after n?1 steps when the nodes have been merged into a single community consisting of

the full network. Although the algorithm always begins with n communities and ends with a single

community, it returns the community partition with the highest modularity value it was able to

find.
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4.3 Modularity Over Time

Using the modularity values derived from the walktrap algorithm, I examine the strength of com-

munity partitions in federal election donation networks over time. The data span 15 federal election

cycles from 1980-2008. Because the two network types I examine rely on different types of data,

one using shared individual donors, and the other using monetary transfers among committees and

candidates, I am able to separately examine the evolution of modularity on two different aspects

of donation network structure.

In the shared individual donor networks, increases in modularity reflect a world in which the

individual donors themselves are divided. The communities in the network (i.e. political commit-

tees) become more strongly defined as more individuals choose to donate explicitly to committees

within that community as opposed to outside it. To the extent that these communities are divided

on a partisan basis, increases in modularity suggest that individual donors themselves are becoming

more partisan.

Interpretation of the monetary transfer networks is more straightforward, and follows directly

from the definition of modularity. In these networks, increases in modularity reflect increased

intra-community transfers of funds and decreased extra-community transfers. By comparing the

evolution of modularity in the two network types, therefore, we have the capacity to understand

when and why the donation communities of political elites, as opposed to individual donors, become

more consolidated.

4.4 Analysis of Communities

In addition to analyzing the evolution of modularity, I examine the size and composition of the

largest communities in each network over time. The relative sizes of the largest communities

in each network provide insight into the number of relevant divisions in each donation network.

The composition of these communities also offers a number of insights. I am able to identify, for

example, which communities lean Republican and Democratic, and what types of PACs Republican-

and Democratic-dominated communities tend to contain.
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5 Findings

Results from the longitudinal analysis of modularity in the donation networks are presented in

Figure 1. Comparison of the modularity in the monetary transfers network to that in the shared

individual donors network reveals that both networks have become dramatically more modular over

time, and in both cases the increase in modularity occurred almost entirely over the course of a

single electoral cycle. In the monetary transfer network, the leap in modularity occurred in the

1987-1988 electoral cycle, whereas in the shared individual donors network the leap occurred in the

2001-2002 electoral cycle.

The time disparity between the modularity increases in the two time series is of particular

interest in this case, as it suggests that political elites (party committees, PACs, and candidates)

developed and sustained consolidated group structures some 14 years before individual donors.

To the extent that these group structures reflect partisan separation, this finding suggests that

groups of elite actors in the campaign contributions network polarized (in the sense that they

began donating more exclusively to one party), long before individual donors did. This provides

some evidence supporting the theory that partisan polarization in the United States is elite-driven,

and not the product of increasing polarization at the grass-roots level (Jacobson 2006). In order

to examine this possibility more fully, however, we must examine the size and composition of the

communities in these networks.

Figure 2 plots the size difference (as a percentage of total nodes) between the two largest

communities in each network. Two observations are noteworthy. First, the two largest communities

in the shared individual donor networks are approximately the same size in every electoral cycle

save three: 1980, 2000 and 2008. Interestingly, each of these elections resulted in a switch in the

party controlling the Presidency. Second, the two largest communities in the monetary transfer

networks start out vastly different in size in the early 1980s, but this difference nearly disappears

in the 1987-1988 electoral cycle; the same cycle in which modularity skyrocket. This suggests

that the modularity increase in the monetary transfer network is associated with a balancing of

community sizes in the network, which could also be evidence of increased partisan polarization in

contributions. The modularity spike in the individual donor network also occurs simultaneously
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with a balancing of group size, but the change is not nearly as dramatic, relative to the increase in

modularity.

In order to confirm the relationship between these findings and partisan polarization in the

donation networks, it is important to understand who belongs to these communities. Table 1

provides information on the membership of the two largest communities in each of the monetary

transfer networks, while Table 2 provides the same information for the shared individual donor

networks. These tables list the size of each community, along with the percentage of its membership

that is Democratic and Republican. Since many of the committees in these networks are non-

partisan, the tables also list the percentage of each communitys membership occupied by corporate,

labor, trade, and membership PACs.

Modularity in FEC Networks 1980-2008

Election Year

M
od
ul
ar
ity

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

0.
3

0.
4

0.
5

0.
6

Monetary Transfers
Shared Individual Donors

Figure 1: Modularity in FEC Networks, 1980-2008

5.1 Community Analysis in Monetary Transfer Networks

It is immediately apparent from looking at these tables that, in the vast majority of cases, the largest

communities are extremely divided on a partisan basis. In the monetary transfer networks, however,

the emergence of partisan divisions follows a different course than in the shared individual donor
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Group 1-2 Size Differences 1980-2008
(% of total nodes)
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Figure 2: Group 1-2 Size Differences, 1980-2008

networks. As shown in Figure 2, the monetary transfer networks from 1980-1986 are characterized

by the presence of dominant largest communities. In each of these electoral cycles, the largest

community contains roughly similar numbers of Republican of Democratic nodes, with between

party differences ranging from 0.8% to 3.7%, and neither party holding a consistent advantage in

membership. This community structure may reflect the divided status of Congress during these

years, in which Republicans held the Senate and Democrats held the House.

In the 1987-1988 electoral cycle, however, which would see the Democrats regain unified control

of Congress, the community structure changes drastically. The largest community shrinks from

3918 to 2242 nodes, while the second-largest community grows from 302 to 1420 nodes. This

shift appears to be driven by a mass-exodus of Democratic nodes from the largest community,

which shrinks from 14.9% Democratic in 1986 to 4.7% in 1988. Republican nodes in the largest

community open up a 5.9% membership advantage over Democratic nodes in 1988, and maintain an

advantage ranging from 3.4% to 12.8% for the rest of the time series. The second-largest community,

meanwhile, remains predominantly Democratic from 1988 onward, never containing more than 5.4%

Republican nodes. It appears that the basic partisan structure of campaign contributions in the
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monetary transfer network remains stable from 1988-2008.

The shift in community structure that occurs in 1988 also appears to be influenced by changing

donation behaviors on the part of corporate and labor PACs that take place over a longer period of

time. From 1984 onward, at least 10% of the second-largest community is composed of labor PACs.

This is no surprise, given the long history of association between organized labor and the Democratic

Party. More surprising is the changing behavior of corporate PACs. When the Democratic nodes

first split off from the largest community in 1988, the second-largest community contains a roughly

equal balance of corporate and labor PACs (16.1% and 12.5% respectively). The second-largest

community maintains this balance until the 1993-1994 electoral cycle. Here, corporate PACs make

up only 8.6% of the second-largest community compared to labors 15.9%. Interestingly, this is

also the electoral cycle that saw the Democrats lose control of both chambers of Congress. The

second-largest community obtains greater than 10% corporate PAC membership only one time after

1992 13.8% in the 2000 electoral cycle. Even when the Democrats retook Congress in 2006, and

the Presidency in 2008, the second-largest community fails to realize meaningful gains in corporate

PAC membership.

5.2 Community Analysis in Shared Individual Donor Networks

The shared individual donor networks begin to show highly partisan community divisions starting

with the 1981-1982 electoral cycle, suggesting that individual donors have a long history of favoring

either one political party or the other. In each electoral cycle the after 1980, the two largest

communities are both skewed toward one party or the other, and in each case both the Democrats

and Republicans are represented in one of the two largest communities. Compared to the monetary

transfer networks, the two largest communities are also much closer in size. Furthermore, in every

electoral cycle save 1993-1994, the largest community is dominated by affiliates of the party that

went on to win control of the House of Representatives.

Despite the prevalence of party divisions in the communities throughout the time series, however,

modularity does not increase dramatically until the 2001-2002 electoral cycle. Examining the two

largest communities alone in the 1999-2000 and 2001-2002 electoral cycles does not suggest an
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adequate explanation for this change. Figure 3 plots the sizes of the six largest communities in

each of these two cycles in an attempt to further understand the structural changes at work. Table

3, in turn, provides the membership information for these communities. Figure 3 shows that while

the 1999-2000 network has only 3 communities of 100 nodes or more, the 2001-2002 network has 5

such communities. In this case, the increase in modularity appears to be driven by the breaking

down of large, weakly constituted communities into smaller communities that are better defined.

1 2 3 4 5 6
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20
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40
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60
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80
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00

Community Size in the 1999-2000 and 2001-2002 Individual Donor Networks

Community

# 
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1999-2000 EC
2001-2002 EC

Figure 3: Community Size in 1999-2000 and 2001-2002 Shared Individual Donor Networks

Table 3 shows that in 1999-2000 the largest community is predominantly Republican, whereas

the next two communities are predominantly Democratic. In 2001-2002, however, Republicans are

divided over three large communities, and the Democrats remain in two large communities. It

is tempting to attribute this change in community structure to the midterm election. We might

expect, for example, that the presence of a presidential election inspires more individuals to donate

money, and that these individuals are generally less-partisan than those who donate in midterm

elections, and thus are more likely to split their donations between parties, resulting in weaker ratios

of intra-community to extra-community ties during presidential election years. This would explain

the presence of a large and weak Republican community in 1999-2000, presumably assembled
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from Bush donors. In a midterm election, with fewer, more partisan donors forming edges in the

network, we might expect smaller and stronger communities. Unfortunately, this reasoning does

not explain the further increase in modularity observed in the 2003-2004 election cycle, or the

fact that community structure remains fairly constant with respect to party in 2003-2004, with

Republicans once again occupying three large communities and the Democrats occupying two.

6 Conclusion

In this paper, I have constructed two sets of networks for each electoral cycle from 1980-2008 using

data available from the FEC. Using a computational heuristic, I derive the community structure

for each network that maximizes a network science statistic called modularity. Examining these

networks over time, I find that both sets demonstrate large increases in modularity, and that these

increases are likely related to increased partisan polarization in the United States.
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Year Size % Dem % Rep % Corp % Labor % Member % Trade 

80 3247 0.157 0.180 0.308 0.058 0.048 0.128 
80 234 0.709 0.256 0.004 0.000 0.009 0.000 
82 3854 0.163 0.126 0.315 0.063 0.079 0.129 
82 355 0.025 0.817 0.023 0.003 0.017 0.000 

84 2553 0.076 0.084 0.468 0.042 0.078 0.169 
84 607 0.489 0.023 0.049 0.148 0.082 0.028 
86 3918 0.149 0.121 0.353 0.052 0.092 0.143 
86 302 0.894 0.053 0.000 0.007 0.013 0.000 
88 2242 0.047 0.106 0.485 0.016 0.087 0.177 
88 1420 0.320 0.026 0.161 0.125 0.118 0.079 
90 1931 0.042 0.076 0.492 0.016 0.082 0.197 
90 1136 0.316 0.017 0.129 0.150 0.124 0.074 
92 2411 0.041 0.124 0.414 0.013 0.064 0.158 
92 2119 0.272 0.054 0.168 0.107 0.075 0.103 
94 3219 0.058 0.128 0.390 0.027 0.055 0.169 
94 958 0.376 0.021 0.086 0.159 0.066 0.047 

96 3062 0.048 0.138 0.398 0.019 0.046 0.183 
96 976 0.414 0.023 0.059 0.175 0.058 0.046 
98 2752 0.033 0.133 0.427 0.014 0.042 0.182 
98 1071 0.327 0.012 0.090 0.173 0.063 0.073 
00 2531 0.019 0.135 0.407 0.009 0.042 0.180 
00 1329 0.309 0.015 0.138 0.148 0.057 0.084 

02 2534 0.031 0.151 0.392 0.011 0.037 0.185 
02 1039 0.382 0.017 0.086 0.154 0.055 0.056 
04 2834 0.028 0.156 0.399 0.014 0.029 0.179 
04 1108 0.429 0.053 0.059 0.142 0.032 0.055 
06 3203 0.030 0.154 0.377 0.013 0.026 0.185 
06 1143 0.456 0.040 0.062 0.128 0.025 0.044 

08 3001 0.036 0.128 0.392 0.021 0.024 0.183 
08 958 0.459 0.004 0.065 0.114 0.020 0.058 

Table 1: Membership of Two Largest Communities in Monetary Transfers Network 
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Year Size % Dem % Rep % Corp % Labor % Member % Trade 

80 1599 0.197 0.248 0.196 0.002 0.081 0.085 
80 577 0.383 0.355 0.014 0.000 0.005 0.014 
82 394 0.058 0.439 0.079 0.000 0.124 0.056 

82 320 0.450 0.050 0.047 0.006 0.163 0.038 
84 860 0.392 0.088 0.088 0.002 0.147 0.063 
84 764 0.050 0.432 0.182 0.001 0.113 0.077 
86 289 0.083 0.450 0.087 0.000 0.142 0.066 
86 261 0.456 0.080 0.088 0.000 0.080 0.034 
88 520 0.419 0.042 0.065 0.008 0.169 0.056 

88 397 0.136 0.320 0.108 0.000 0.108 0.106 
90 656 0.441 0.026 0.085 0.003 0.143 0.072 
90 471 0.159 0.299 0.104 0.000 0.066 0.119 
92 933 0.375 0.015 0.083 0.009 0.105 0.055 
92 848 0.021 0.327 0.137 0.000 0.071 0.118 
94 795 0.414 0.026 0.075 0.005 0.096 0.060 

94 576 0.019 0.438 0.118 0.000 0.056 0.122 
96 1267 0.032 0.393 0.161 0.002 0.040 0.127 
96 1085 0.456 0.032 0.079 0.007 0.069 0.063 
98 872 0.080 0.347 0.128 0.000 0.028 0.153 
98 779 0.449 0.018 0.068 0.013 0.073 0.054 
00 1186 0.015 0.347 0.152 0.001 0.041 0.141 
00 566 0.329 0.081 0.104 0.004 0.048 0.101 
02 714 0.111 0.464 0.069 0.004 0.031 0.094 
02 602 0.510 0.023 0.050 0.003 0.058 0.065 
04 933 0.139 0.371 0.085 0.001 0.029 0.102 
04 609 0.537 0.005 0.074 0.013 0.049 0.061 
06 996 0.518 0.030 0.053 0.005 0.037 0.070 

06 885 0.024 0.416 0.116 0.000 0.019 0.136 
08 1282 0.461 0.027 0.105 0.009 0.030 0.086 
08 515 0.008 0.443 0.130 0.000 0.019 0.138 
Table 2: Membership of Two Largest Communities in Shared Individual Donors Network 

 
Year Size % Dem % Rep % Corp % Labor % Memb % Trade 

00 1186 0.015 0.347 0.152 0.001 0.041 0.141 
00 566 0.329 0.081 0.104 0.004 0.048 0.101 
00 492 0.445 0.004 0.063 0.016 0.087 0.043 

00 32 0.219 0.219 0.156 0.000 0.031 0.031 
00 26 0.000 0.654 0.115 0.000 0.038 0.038 
02 714 0.111 0.464 0.069 0.004 0.031 0.094 
02 602 0.510 0.023 0.050 0.003 0.058 0.065 
02 270 0.019 0.363 0.111 0.000 0.022 0.156 
02 238 0.374 0.046 0.042 0.008 0.088 0.063 

02 121 0.058 0.364 0.058 0.000 0.025 0.231 
Table 3: Membership of 5 Largest Communities in 2000 and 2002 Shared Individual Donors 

Network 
 

!"#$%#!" 

 
Year Size % Dem % Rep % Corp % Labor % Member % Trade 
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86 289 0.083 0.450 0.087 0.000 0.142 0.066 
86 261 0.456 0.080 0.088 0.000 0.080 0.034 
88 520 0.419 0.042 0.065 0.008 0.169 0.056 

88 397 0.136 0.320 0.108 0.000 0.108 0.106 
90 656 0.441 0.026 0.085 0.003 0.143 0.072 
90 471 0.159 0.299 0.104 0.000 0.066 0.119 
92 933 0.375 0.015 0.083 0.009 0.105 0.055 
92 848 0.021 0.327 0.137 0.000 0.071 0.118 
94 795 0.414 0.026 0.075 0.005 0.096 0.060 

94 576 0.019 0.438 0.118 0.000 0.056 0.122 
96 1267 0.032 0.393 0.161 0.002 0.040 0.127 
96 1085 0.456 0.032 0.079 0.007 0.069 0.063 
98 872 0.080 0.347 0.128 0.000 0.028 0.153 
98 779 0.449 0.018 0.068 0.013 0.073 0.054 
00 1186 0.015 0.347 0.152 0.001 0.041 0.141 
00 566 0.329 0.081 0.104 0.004 0.048 0.101 
02 714 0.111 0.464 0.069 0.004 0.031 0.094 
02 602 0.510 0.023 0.050 0.003 0.058 0.065 
04 933 0.139 0.371 0.085 0.001 0.029 0.102 
04 609 0.537 0.005 0.074 0.013 0.049 0.061 
06 996 0.518 0.030 0.053 0.005 0.037 0.070 

06 885 0.024 0.416 0.116 0.000 0.019 0.136 
08 1282 0.461 0.027 0.105 0.009 0.030 0.086 
08 515 0.008 0.443 0.130 0.000 0.019 0.138 
Table 2: Membership of Two Largest Communities in Shared Individual Donors Network 

 
Year Size % Dem % Rep % Corp % Labor % Memb % Trade 

00 1186 0.015 0.347 0.152 0.001 0.041 0.141 
00 566 0.329 0.081 0.104 0.004 0.048 0.101 
00 492 0.445 0.004 0.063 0.016 0.087 0.043 

00 32 0.219 0.219 0.156 0.000 0.031 0.031 
00 26 0.000 0.654 0.115 0.000 0.038 0.038 
02 714 0.111 0.464 0.069 0.004 0.031 0.094 
02 602 0.510 0.023 0.050 0.003 0.058 0.065 
02 270 0.019 0.363 0.111 0.000 0.022 0.156 
02 238 0.374 0.046 0.042 0.008 0.088 0.063 

02 121 0.058 0.364 0.058 0.000 0.025 0.231 
Table 3: Membership of 5 Largest Communities in 2000 and 2002 Shared Individual Donors 

Network 
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