
Southern Illinois University Carbondale
OpenSIUC
Miscellaneous (presentations, translations,
interviews, etc) Department of Mathematics

12-2006

Explicit Symmetries of Strict Feedforward Control
Systems
Issa Amadou Tall
Southern Illinois University Carbondale, itall@math.siu.edu

Witold Respondek
INSA de Rouen

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_misc
Part of the Control Theory Commons, and the Mathematics Commons

Published in Tall, I. A., & Respondek, W. (2006). Explicit symmetries of strict feedforward control
systems. Proceedings of the 45th IEEE Conference on Decision and Control 2006, CDC, 2006
3813-3818. doi: 10.1109/CDC.2006.377104. ©2006 IEEE. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from the IEEE. This
material is presented to ensure timely dissemination of scholarly and technical work. Copyright and
all rights therein are retained by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by each author's copyright.
In most cases, these works may not be reposted without the explicit permission of the copyright
holder.

This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in
Miscellaneous (presentations, translations, interviews, etc) by an authorized administrator of OpenSIUC. For more information, please contact
opensiuc@lib.siu.edu.

Recommended Citation
Tall, Issa Amadou and Respondek, Witold, "Explicit Symmetries of Strict Feedforward Control Systems" (2006). Miscellaneous
(presentations, translations, interviews, etc). Paper 30.
http://opensiuc.lib.siu.edu/math_misc/30

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_misc?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_misc?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_misc?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/116?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_misc/30?utm_source=opensiuc.lib.siu.edu%2Fmath_misc%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


Explicit Symmetries of Strict Feedforward Control Systems

Issa Amadou Tall and Witold Respondek

Abstract— We show that any symmetry of a smooth strict
feedforward system is conjugated to a scaling translation and
any 1-parameter family of symmetries to a family of scaling
translations along the first variable. We compute explicitly
those symmetries by finding the conjugating diffeomorphism.
We deduce, in accordance with our previous work, that a
smooth system is feedback equivalent to a strict feedforward
form if and only if it gives rise to a sequence of systems,
such that each element of the sequence, firstly, possesses
an infinitesimal symmetry whose flow is conjugated to a 1-
parameter families of scaling translations and, secondly, it is
the factor system of the preceding one, that is, is reduced from
the preceding one by its symmetry. We illustrate our results
by computing the symmetries of the Cart-Pole system.

I. INTRODUCTION

We consider smooth single-input nonlinear control-affine

systems of the form

Σ : ẋ = f(x) + g(x)u,

where f and g are smooth vector fields on R
n.

We will say that the system Σ is in affine strict feedfor-
ward form, (shortly ΣSFF ), if it is in the form

(SFF )
ẋ1 = f1(x2, . . . , xn) + g1(x2, . . . , xn)u

. . .
ẋn−1 = fn−1(xn) + gn−1(xn)u

ẋn = fn + gnu,

where fn, gn ∈ R, gn �= 0.

A basic structural property of systems in strict feedfor-

ward form is that their solutions can be found by quadra-

tures. Indeed, knowing u(t) we integrate fn +gnu(t) to get

xn(t), then we integrate fn−1(xn(t)) + gn−1(xn(t))u(t)
to get xn−1(t), we keep doing that, and finally we in-

tegrate f1(x2(t), . . . , xn(t)) + g1(x2(t), . . . , xn(t))u(t) to

get x1(t).
Another property, crucial in applications, of systems in

(strict) feedforward form is that we can construct for them

a stabilizing feedback. This important result goes back to

Teel [19] and has been followed by a growing literature on

stabilization and tracking for systems in (strict) feedforward

form (see e.g. [4], [6], [13], [20], [2], [7]).

Recently (see [11]), we have proved that feedback equiv-

alence (resp. state-space equivalence) to the strict feed-

forward form can be characterized by the existence of a

sequence of infinitesimal symmetries (resp. strong infinites-

imal symmetries) of the system.
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Witold Respondek is with the Laboratoire de Mathématiques, INSA
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In this paper we give a complete classification of sym-

metries of strict feedforward systems, and we restate the

equivalence conditions obtained in [11] in terms of the

symmetries of strict feedforward systems.

Notice that the problem of transforming a system, affine

with respect to controls, into (strict) feedforward form via

a nonlinear change of coordinates was studied in [5], and

that a geometric description of systems in feedforward form

has been given in [1]. We have also used another approach

to propose a step-by-step constructive method to bring a

system into a feedforward form in [15], [17] and strict

feedforward form in [16].

The paper is organized as follows. Section II deals with

notations and definitions. Section III contains the main

results of the paper along with explicit examples. The proofs

form the Section IV.

II. NOTATIONS AND DEFINITIONS

In this section we will give definitions concerning feed-

back equivalence of control systems and symmetries. The

word smooth will mean throughout C∞-smooth and all

control systems are assumed to be smooth. For simplicity

of notations we will consider here control-affine systems.

Two smooth control systems Σ and Σ̃ are called feedback
equivalent, shortly F-equivalent, if there exist a smooth

diffeomorphism φ : X → X̃ and smooth functions α, β,

satisfying β(·) �= 0, such that

φ∗(f + gα) = f̃ and φ∗(gβ) = g̃.

Recall that for any smooth vector field h on X and any

smooth diffeomorphism x̃ = φ(x) we denote

(φ∗h)(x̃) = dφ(φ−1(x̃)) · h(φ−1(x̃)).

For the single-input control-affine system

Σ : ẋ = f(x) + g(x)u,

where x ∈ X , an open subset of R
n, and u ∈ U = R,

and f and g are smooth vector fields on X , the field of
admissible velocities is the following field of affine lines

A(x) = {f(x) + ug(x) : u ∈ R} ⊂ TxX.

A diffeomorphism ψ : X −→ X is a symmetry of Σ if

it preserves the field of affine lines A (in other words, the

affine distribution A of rank 1), that is, if ψ∗A = A.
A local symmetry at p ∈ X is a local diffeomorphism

ψ of X0 onto X1, where X0 and X1 are, respectively,

neighborhoods of p and ψ(p), such that

(ψ∗A)(q) = A(q) for any q ∈ X1.
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A local symmetry ψ at p is called a stationary symmetry
if ψ(p) = p and a nonstationary symmetry if ψ(p) �= p.

We say that a vector field v on an open subset X ⊂ R
n

is an infinitesimal symmetry of the system Σ if the (local)

flow γv
t of v is a local symmetry of Σ, for any t for which

it exists.

An infinitesimal symmetry v is called stationary at p ∈ X
if v(p) = 0 and nonstationary if v(p) �= 0.

III. MAIN RESULTS

Consider the class of smooth single-input control systems

in strict feedforward form (SFF)

ΣSFF :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = f(x) + g(x)u,

fj(x) = fj(xj+1, . . . , xn), 1 ≤ j ≤ n − 1,

gj(x) = gj(xj+1, . . . , xn), 1 ≤ j ≤ n − 1

fn(x) = fn ∈ R and gn(x) = gn ∈ R
∗.

Notice that for any 1 ≤ i ≤ n, the subsystem Σi
SFF ,

defined as the projection of ΣSFF onto R
n−i+1 via

πi(x1, . . . , xn) = (xi, . . . , xn), is a well defined system

whose dynamics are given, for any i ≤ j ≤ n, by

ẋj = fj(xj+1, . . . , xn) + gj(xj+1, . . . , xn)u.

Define the linearizability index of ΣSFF to be the largest

integer p such that the subsystem Σr+1
SFF , where p + r = n,

is feedback linearizable. Clearly, the linearizability index is

feedback invariant and hence the linearizability indices of

two feedback equivalent (SFF)-systems coincide. We will

assume that the linear approximation around the origin is

controllable which implies that p ≥ 2.

For any nonzero real numbers λ1, . . . , λr, λ ∈ R
∗ and

any c1, . . . , cr+1 ∈ R, put Λ = (λ1, . . . , λr, λ, . . . , λ)
and C = (c1, . . . , cr+1, 0, . . . , 0) and define a scaling
translation by

TΛ,C(x) = (λ1x1 + c1, . . . , λnxn + cn),

with cr+2 = · · · = cn = 0 and λr+1 = · · · = λn = λ.

Theorem III.1 Consider a smooth system ΣSFF in strict
feedforward form with linearizability index p = n− r. Any
symmetry ψ of ΣSFF is of the form

ψ = σ−1 ◦ TΛ,C ◦ σ,

for a fixed (Λ, C), where z = σ(x) is the diffeomorphism of
the transformation taking ΣSFF into its strict feedforward
normal form ΣSFNF given by Definition III.2 below. Any
local 1-parameter family of symmetries ψc1 of ΣSFF is of
the same form with c1 ∈ (−ε1, ε1).

Theorem III.1 says basically that strict feedforward sys-

tems have 1-parameter families of symmetries conjugated to

scaling translations. Recall that in [9] we showed that any

symmetry is conjugated to at most two 1-parameter families

of translations along the first variable; those translations

being the only symmetries of the canonical form.

The constant parameters λ1, . . . , λr, λ are likely to be

either +1 or −1 and will be uniquely determined by

c2, . . . , cr (given by other equilibrium point) because, to-

gether, they should satisfy some strong conditions (SC), see

below. The only free parameter is c1. In Example III.8 we

provide a case where some of the parameters λ1, . . . , λr, λ
are not equal to +1 or −1 as well as some constants

c2, . . . , cr+1 that are non zero. We then compare the results

obtained here with those of [9], and show no ambiguity

between them.

The importance of this result is that we can always put a

(SFF)-system into a strict feedforward normal form (SFNF)

via smooth feedback transformation while the canonical

form is only guaranteed in the formal category. Moreover,

the feedback transformation taking the system into its

strict feedforward normal form (SFNF) can be constructed

explicitly, for smooth systems, see Section IV.

The notion of strict feedforward normal form plays a

crucial role in proving Theorem III.1 and is as follows.

Definition III.2 A smooth strict feedforward normal form,

denoted ΣSFNF , is a strict feedforward form

ẋ1 = F̂1(x2, . . . , xn)
. . .

ẋr = F̂r(xr+1, . . . , xn)
ẋr+1 = xr+2

. . .
ẋn−1 = xn

ẋn = u

for which p = n − r is the linearizability index and

(SFNF ) F̂j(x) = hj(xj+1)+
n∑

i=j+2

x2
i P̂j,i(xj+1, . . . , xi)

for any 1 ≤ j ≤ r, where hj and P̂j,i are smooth functions

of the indicated variables.

The above strict feedforward normal form ΣSFNF was

introduced in [12], where we proved the following:

Theorem III.3 Any smooth strict feedforward form can
be transformed into a strict feedforward normal form via
smooth feedback transformation.

Remark III.4 (i) In the proof of Theorem III.1, we will

give an algorithm showing how to construct explicitly the

feedback transformation (in particular, the diffeomorphism

z = σ(x)) that takes a (SFF)-system into its (SFNF).

Then using the commutative diagram

ΣSFF
� ΣSFF

�
ΣSFNF ΣSFNF

�
�

σσ

ψ

ψ̃
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where ψ̃ is a symmetry of the strict feedforward normal

form ΣSFNF , all we will have to prove is that all ψ̃’s are

exhausted by scaling translations TΛ,C defined above.

(ii) We will use this item to deduce, as a corollary,

necessary and sufficient condition for a system to be brought

to a strict feedforward form (see Theorem II.4 of [11]).

Corollary III.5 Consider a smooth affine system Σ with
linearizability index p = n − r. The following conditions
are equivalent.

(i) Σ is, locally at q ∈ X , feedback equivalent to the
affine strict feedforward form (SFF);

(ii) Each system Σ1, Σ2,. . . ,Σr possesses an infinitesi-
mal symmetry vi, whose local flow γvi

ci
is conjugated

to a scaling translation

γvi
ci

= σ−1
i ◦ T

i
Λ,C ◦ σi, ci ∈ (−εi, εi),

where Σ1 is the restriction of Σ to a neighborhood
Xq and

Σi+1 = Σi/∼vi
, 1 ≤ i ≤ r − 1.

Above, the equivalence relation ∼vi
is induced by the local

action of the 1-parameter local group γvi
ci

defined by vi,

that is, such that q1 ∼vi q2 if and only if they belong to the

same integral curve of vi, and for any 1 ≤ i ≤ r − 1 the

scaling translation T
i
Λ,C is the composition of TΛ,C with

the projection πi:

T
i
Λ,C(x) = (λixi + ci, . . . , λrxr + cr, λxr+1, . . . , λxn).

EXAMPLES

Example III.6 Cart-Pole System. In this example we con-

sider a cart-pole system that is represented by a cart with an

inverted pendulum on it [8], [18]. The Lagrangian equations

of motion for the cart-pole system are

(m1 + m2)q̈1 + m2l cos(q2)q̈2 = m2l sin(q2)q̇2
2 + F

cos(q2)q̈1 + lq̈2 = g sin(q2),

where m1 and q1 are the mass and position of the cart, m2,

l, q2 ∈ (−π/2, π/2) are the mass, length of the link, and

angle of the pole, respectively.

Taking q̈2 = u and applying the feedback law (see [8])

F = − ul(m1 + m2 sin2(q2))/ cos(q2)

+ (m1 + m2)g tan(q2) − m2l sin(q2)q̇2
2

the dynamics of the cart-pole system are transformed into

ẋ1 = x2, ẋ2 = g tan(x3) − lu/cos(x3)
ẋ3 = x4, ẋ4 = u,

(III.1)

where we take x1 = q1, x2 = q̇1, x3 = q2, and x4 = q̇2.

This system is in strict feedforward form (SFF) with the

linearizability index p = 2. We showed in [9] that the

diffeomorphism

z = σ(x) = (σ1(x), σ2(x), σ3(x), σ4(x))

defined by

z1 = σ1(x) = µx1 + µl

∫ x3

0

ds

cos s
,

z2 = σ2(x) = µx2 + µl
x4

cos x3

z3 = σ3(x) = µg tanx3,

z4 = σ4(x) = µg
x4

cos2 x3
.

takes the system into its canonical form ΣSFCF :

ż1 = z2, ż2 = z3 +
z3

(1 + (g/l)z2
3)3/2

z2
4

ż3 = z4, ż4 = v.

It is straightforward to verify that

T
+
c1

(z) = (z1 + c1, z2, z3, z4) and

T
−
c1

(z) = (−z1 + c1,−z2,−z3,−z4)

constitute two 1-parameter families of symmetries for the

canonical form. By Theorem 4 (see [9]), they exhaust all

possible symmetries of the canonical form.

The symmetries of (III.1) are obtained by computing

ψ(x) = σ−1 ◦ T
±
c1

◦ σ(x)

where the inverse x = η(z) = σ−1(z) is given by

x1 = η1(z) = µ̃gz1 + θ(z3),

x2 = η2(z) = µ̃gz2 − µ̃l
z4√

1 + (µ̃z3)2

x3 = η3(z) = arctan(µ̃z3),

x4 = η4(z) =
µ̃z4

1 + (µ̃z3)2

for a suitable function θ(z3). It follows easily that

σ−1 ◦ T
+
c1

◦ σ = T
+
b1

and σ−1 ◦ T
−
c1

◦ σ(x) = T
−
d1

are both 1-parameter families of translations along the first

component x1 of (x1, x2, x3, x4).

Example III.7 Consider the system in R
4 described by

ẋ1 = sinx2 + x2
4 sin x3, ẋ2 = sinx3 + x3

4

ẋ3 = x4, ẋ4 = u.

This system is clearly in (SFNF) with linearizability index

p = 2. It is easy to check that the forward and backward

translations

T
+
c1c2c3

(x) = (x1 + c1, x2 + c2, x3 + c3, x4) and

T
−
c1c2c3

(x) = (−x1 + c1,−x2 + c2,−x3 + c3,−x4)

are symmetries, where c2 and c3 are any multiples of 2π.

Example III.8 Consider the system

ΣSFF :
ẋ1 = x2 + 2x2e

x3 sin x3 + 2x2e
x3x2

4, ẋ3 = x4,
ẋ2 = ex3 sin x3 + ex3x2

4, ẋ4 = u,
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in strict feedforward form with linearizability index p = 2.

Due to the terms 2x2e
x3 sin x3, this system is not in strict

feedforward normal form. However, it is straightforward to

check that the diffeomorphism z = σ(x) defined by

z1 = x1 − x2
2, z2 = x2, z3 = x3, z4 = x4

takes ΣSFF into the strict feedforward normal form

ΣSFNF :
ż1 = z2, ż3 = z4,
ż2 = ez3 sin z3 + ez3z2

4 , ż4 = u.

We can notice that the scaling translations

z̃ = TΛ,C(z) = (λz1 + c1, λz2, z3 + c3, z4)

with c3 = 2kπ, k ∈ Z, and λ = ec3 form a family of

symmetries of ΣSFNF parameterized by c1.

Indeed, it is easy to see that they map ΣSFNF into

ΣSFNF given, around the equilibrium q = (0, 0, c3, 0), by

Σq
SFNF :

˙̃z1 = z̃2, ˙̃z3 = z̃4,
˙̃z2 = ez̃3 sin z̃3 + ez̃3 z̃2

4 , ˙̃z4 = u.

The composition x̃ = σ−1 ◦ TΛ,C ◦ σ(x) expresses the

coordinates x̃ in terms of the coordinates x as follows

x̃1 = λx1 + (λ2 − λ)x2
2 + c1 x̃3 = x3 + c3

x̃2 = λx2 x̃4 = x4,

where c3 = 2π and λ = ec3 .
A straightforward calculation shows that

˙̃x1 = λ(x2 + 2x2e
x3 sin x3 + 2x2e

x3x2
4)

+ 2(λ2 − λ)x2(ex3 sin x3 + ex3x2
4)

= λx2 + 2λ2x2(ex3 sin x3 + ex3x2
4)

= x̃ + 2x̃2e
x̃3 sin x̃3 + 2x̃2e

x̃3 x̃2
4

because λx2 = x̃2 and

λex3 sin x3 = ex3+c3 sin(x3 + c3) = ex̃3 sin x̃3.

Similarly, we can show that

˙̃x2 = λ(ex3 sin x3 + ex3x2
4) = ex̃3 sin x̃3 + ex̃3 x̃2

4.

Since ˙̃x3 = x̃4 and ˙̃x4 = u, it follows that the composition

x̃ = σ−1 ◦ TΛ,C ◦ σ(x) maps ΣSFF , defined around the

equilibrium (0, 0, 0, 0), into ΣSFF described, around the

equilibrium q = (0, 0, 2π, 0), by the same dynamics

ΣSFF :
˙̃x1 = x̃2 + 2x̃2e

x̃3 sin x̃3 + 2x̃2e
x̃3 x̃2

4, ˙̃x3 = x̃4,
˙̃x2 = ex̃3 sin x̃3 + ex̃3 x̃2

4, ˙̃x4 = u.

Σo
SFF

� Σq
SFF

�
Σo

SFNF Σq
SFNF

�
�

σσ

ψ

TΛ,C

Hence x̃ = ψ(x) = σ−1 ◦ TΛ,C ◦ σ(x) is a 1-parameter

family of symmetries of ΣSFF .

For convenience of notation, we will denote ΣSFF ,

defined around (0, 0, 0, 0), by Σo
SFF and the system ΣSFF ,

defined around q = (0, 0, 2π, 0), by Σq
SFF . The same

notations apply to the systems Σo
SFNF and Σq

SFNF .

Now, in view of the results obtained in [12], we will com-

pute the canonical form of Σo
SFF and the transformations

taking Σo
SFF and Σq

SFF to this canonical form.

It is easy to verify that y = Φ(x), given by

y1 = x1 − x2
2 y3 = ex3 sin x3

y2 = x2 y4 = ex3(sinx3 + cos x3)x4,

followed by an appropriate feedback, takes the system

Σo
SFF into its canonical form

ΣSFCF :
ẏ1 = y2, ẏ3 = y4,
ẏ2 = y3 + Θ(y3)y2

4 , ẏ4 = v,

where Θ(y3) =
1

ex3(sin x3 + cos x3)2

∣∣∣
x3=θ−1(y3)

,

with θ(x3) = ex3 sin x3.
On the other hand, applying the translation

x̂ = T (x̃) = (x̃1, x̃2, x̃3 − c3, x̃4)

to the system Σq
SFF , we can shift back the equilibrium point

to (0, 0, 0, 0). In the new coordinates, Σq
SFF becomes

Σ̃o
SFF :

˙̂x1 = x̂2 + 2λx̂2

(
ex̂3 sin x̂3 + ex̂3 x̂2

4

)
, ˙̂x3 = x̂4,

˙̂x2 = λ
(
ex̂3 sin x̂3 + ex̂3 x̂2

4

)
, ˙̂x4 = u,

where λ = ec3 . The diffeomorphism ỹ = Ψ(x̂) given by

ỹ1 = λ−1(x̂1 − x̂2
2) ỹ3 = ex̂3 sin x̂3

ỹ2 = λ−1x̂2 ỹ4 = ex̂3(sin x̂3 + cos x̂3)x̂4,

followed by an appropriate feedback, takes the system

Σ̃o
SFF into its canonical form

ΣSFCF :
˙̃y1 = ỹ2, ˙̃y3 = ỹ4,
˙̃y2 = ỹ3 + Θ(ỹ3)ỹ2

4 , ˙̃y4 = v.

It follows that the composition ỹ = Ψ ◦ T ◦ ψ ◦ Φ−1(y) is

a 1-parameter family of symmetries of the canonical form

according to the diagram.

Σo
SFF

� Σq
SFF

�
ΣSFCF ΣSFCF

�
���
Σ̃o

SFF

�
�

��
�

T

Φ

ψ

Ψ

Ψ ◦ T ◦ ψ ◦ Φ−1

We explicitly find this family of symmetries by express-

ing the coordinates ỹ as functions of the coordinates y:

ỹ1 = λ−1(x̂1 − x̂2
2) = λ−1(x̃1 − x̃2

2)
= λ−1

(
λx1 + (λ2 − λ)x2

2 + c1 − λ2x2
2

)
= x1 − x2

2 + c̃1 = y1 + c̃1.
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Similarly, we get

ỹ2 = λ−1x̂2 = λ−1x̃2 = λ−1(λx2) = x2 = y2;

ỹ3 = ex̂3 sin x̂3 = ex̃3+2π sin(x̃3 + 2π) = ex3 sin x3 = y3

and

ỹ4 = ex̂3(sin x̂3 + cos x̂3)x̂4

= ex̃3+2π(sin(x̃3 + 2π) + cos(x̃3 + 2π))x̃4

= ex3 sin x3 + ex3x2
4 = y4.

We conclude that the symmetries of the canonical form are

exhausted here by a 1-parameter family of translations along

the first variable. This is in concordance with the results

in [9]. Notice that the composition Φ ◦ ψ ◦ Φ−1 does not

yield a symmetry for the canonical form. The reason is that,

the system Σq
SFF , being defined around the equilibrium q,

is not transformed into the canonical form ΣSFCF by the

same diffeomorphism Φ as Σo
SFF is.

IV. PROOFS

In this section we will prove Theorem III.1. Let us con-

sider a system ΣSFF in strict feedforward form. Applying

Theorem III.3, we can assume that the system ΣSFF is

in the strict feedforward normal form ΣSFNF , given by

definition III.2, (explicit transformations are given in the

second part of this Section).

Notice that if x̃ = ψ(x) is a symmetry of ΣSFF (in

particular, of ΣSFNF ), then it preserves the structure of

the strict feedforward form. Hence (see [17]), we have

x̃j = ψj(x) = ψj(xj , . . . , xn−1) for 1 ≤ j ≤ n − 1. This

implies that πr(ψ) = (ψr(x), . . . , ψn(x)) is a symmetry of

the projection Σr
SFNF of ΣSFF whose dynamics are given

by

ẋr = hr(xr+1) +
n∑

i=r+2

x2
i Pr,i(xr+1, . . . , xi)

ẋr+1 = xr+2

. . .
ẋn−1 = xn

ẋn = u.

We claim that ψj(x) = ψj(xj) for any r ≤ j ≤ n − 1.
Indeed, we have ψn−1(x) = ψn−1(xn−1). Let k be the

largest integer, r ≤ k ≤ n−2, such that
∂ψk

∂xs
�= 0 for some

s ≥ k+1 (we can take s to be the largest integer that yields

this property). Thus

˙̃xk =
∂ψk

∂xk
ẋk + · · · + ∂ψk

∂xs
xs+1 = x̃k+1 = ψk+1(x)

gives a contradiction because ψk+1(x) = ψk+1(xk+1). We

conclude that ψj(x) = ψj(xj) for r ≤ j ≤ n − 1. Since

˙̃xj = ψ′
j(xj)xj+1 = x̃j+1 = ψj+1(xj+1),

we deduce that ψj(xj) = λjxj+cj for all r+1 ≤ j ≤ n−1.

Similarly we get ψr(xr) = λrxr + cr and hence

πr(ψ(x)) = (λrxr + cr, λr+1xr+1 + cr+1, . . . , λnxn + cn).

In fact, it is easy to see that λr+1 = · · · = λn = λ and

cr+2 = · · · = cn = 0 but for homogeneity of notation, we

will carry those constants as such.

Notice that λr, and the pairs (λk, ck), r + 1 ≤ k ≤ n
should satisfy the strong condition:

(SC)r F̂r(·) = λrF̂r(xr+1, . . . , xn),

where (·) = (λr+1xr+1 + cr+1, . . . , λnxn + cn) and

F̂r(xr+1, . . . , xn) = hr(xr+1)+
n∑

i=r+2

x2
i P̂r,i(xr+1, . . . , xi).

We can remark that (SC)r is equivalent to the conditions

(SC)a hr(λr+1xr+1 + cr+1) = λrhr(xr+1)

(SC)b P̂r,i(·) =
λr

λ2
i

P̂r,i(xr+1, . . . , xi), r + 2 ≤ i ≤ n,

where (·) = (λr+1xr+1 + cr+1, . . . , λixi + ci).
A similar argument will imply that ψj(x) = ψ(xj) for

all 1 ≤ j ≤ r − 1. Taking j = r − 1, we should have

˙̃xr−1 = ψ′
r−1(xr−1)F̂r−1(xr, . . . , xn),

= F̂r−1(x̃r, . . . , x̃n)

which implies that ψ′
r−1(xr−1) = λr−1, and consequently,

we have ψr−1(xr−1) = λr−1xr−1 + cr−1.
A straightforward recurrence shows that for any

1 ≤ j ≤ r, we have ψj(xj) = λjxj + cj .

At each step, the constant λj is related to the pairs

(λk, ck), for j + 1 ≤ k ≤ n, by the strong conditions

(SC)j F̂j(·) = λjF̂j(xj+1, . . . , xn),

where (·) = (λj+1xj+1 + cj+1, . . . , , λixn + cn), and

F̂j(xj+1, . . . , xn) = hj(xj+1)+
n∑

i=j+2

x2
i P̂j,i(xr+1, . . . , xi).

Notice that the constant c1 can be chosen arbitrarily. To

complete the proof of Theorem III.1, we will construct the

diffeomorphism z = σ(x) of the feedback transformation

bringing ΣSFF into its strict feedforward normal form.

NORMALIZING COORDINATES

Consider a system ΣSFF in strict feedforward form with

linearizability index p = n − r. To simplify the proof, we

will suppose here that p = 2, and without loss of generality

we can assume the system in the form

ẋ1 = h1(x2) + F1(x2, . . . , xn)
ẋ2 = h2(x3) + F2(x3, . . . , xn)

. . .
ẋn−2 = hn−2(xn−1) + Fn−2(xn−1, xn)
ẋn−1 = xn

ẋn = u,

(IV.1)

where hj , and Fj are smooth functions such that

hj(xj+1) = xj+1 + x2
j+1bj(xj+1)

Fj(xj+1, 0, . . . , 0) = 0 (IV.2)
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for any 1 ≤ j ≤ n − 2.

Denote the system (IV.1)-(IV.2) by Σn and let us suppose

that for some 3 ≤ k ≤ n, the system Σn has been

transformed via a series of transformations into Σk, defined

by (IV.1)-(IV.2), where, in addition, the components Fj are

Fj(xj+1, . . . , xn) = F̃j(xj+1, . . . , xk)

+
n∑

i=k+1

x2
i Pj,i(xj+1, . . . , xi)

(IV.3)

for any 1 ≤ j ≤ n − 2 with F̃j(xj+1, 0, . . . , 0) = 0. (This

is always true for k = n with the identity transformation).

Notice that, when k ≤ j, the components Pj,i are

identically zero for all k + 1 ≤ i ≤ j + 1. Moreover,

F̃j(xj+1, . . . , xk) = 0 if k ≤ j + 1.

Now, let us decompose F̃j(xj+1, . . . , xk) uniquely as

F̃j(xj+1, . . . , xk) = F̄j(xj+1, . . . , xk−1)
+ xkΘj,k(xj+1, . . . , xk−1)
+ x2

kPj,k(xj+1, . . . , xk)

with F̄j(xj+1, 0, . . . , 0) = 0.

The diffeomorphism z = σk(x) whose components are

zj = σk
j (x) = xj −

∫ xk−1

0

Θj,k(xj+1, . . . , xk−2, s) ds,

if 1 ≤ j ≤ k − 1 (IV.4)

zj = σk−1
j (x) = xj , if k ≤ j ≤ n

takes the system Σk into a system Σk−1 of the form

ż1 = h1(z2) + F1(z2, . . . , zn)
ż2 = h2(z3) + F2(z3, . . . , zn)

. . .
żn−2 = hn−2(zn−1) + Fn−2(zn−1, zn)
żn−1 = zn

żn = u,

where for any 1 ≤ j ≤ n − 2

Fj(xj+1, . . . , xn) = F̃j(xj+1, . . . , xk−1)

+
n∑

i=k

x2
i Pj,i(xj+1, . . . , xi)

with F̃j(xj+1, 0, . . . , 0) = 0.

Starting from the original system Σn, we then define a

successive sequence of diffeomorphisms σk given by (IV.4)

for k = n, n − 1, . . . , 3 yielding a successive sequence of

strict feedforward systems Σn, Σn−1, . . . ,Σ2, where for any

3 ≤ k ≤ n, the system Σk−1 is the transform of Σk via σk.

Moreover, each system Σk is in the form (IV.1)-(IV.3).

The composition σ(x) = σ3 ◦ · · · ◦ σn(x) of these

diffeomorphisms transforms (IV.1)-(IV.2) into its strict feed-

forward normal form, which indeed coincides with Σ2.

Remark that there is a finite number of coordinates

changes (actually n − 2) and all changes are smooth.

If the diffeomorphism σ is not unique, say there is a

diffeomorphism η that also takes ΣSFF into ΣSFNF , then

η ◦ σ−1 would be a symmetry of ΣSFNF . Hence

η ◦ σ−1(x) = TΛ̄,C̄(x) = (λ̄1x1 + c̄1, . . . , λ̄nxn + c̄n)

with λ̄r+1 = · · · = λ̄n = λ̄ and c̄r+2 = · · · = c̄n = 0.

It follows that

ψ = σ−1 ◦ TΛ,C ◦ σ

= η−1 ◦ TΛ̃,C̃ ◦ η,

where TΛ̃,C̃ = T
−1
Λ̄,C̄

◦ TΛ,C ◦ TΛ̄,C̄ . �
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