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The Type I error and power properties of the parametric F test and three nonparametric competitors were compared
in terms of a 3 x 4 factorial analysis of covariance layout. The focus of the study was on the test for interaction
either in the presence and/or absence of main effects. A variety of conditional distributions, sample sizes, levels of
variate and covariate correlation, and treatment effect sizes were investigated. The Puri and Sen (1969a) test had
ultra-conservative Type I error rates and power losses when main effect(s) were present. The adjusted rank
transform (Blair & Sawilowsky, 1990; Salter & Fawcett; 1993) had liberal Type I error rates when sampling was
from moderate to extremely skewed distributions. The Hettmansperger (1984) chi-square test displayed acceptable
Type I error rates for all distributions considered when sample sizes were ten or twenty. It is suggested that the
Hettmansperger (1984) test be considered as an alternative to the parametric F test provided sample sizes are
relatively equal and at least as large as ten.

The rank transform (RT) procedure was recommended as an alternative to the parametric
procedure in multiple regression (lman & Conover, 1979) and factorial analysis of covariance
(Conover & Iman, 1981, 1982) when the assumption of population normality was violated. The
steps for hypotheses testing using the RT consists of (a) replacing the raw scores with their

respective rank order, (b) conducting the classical normal theory tests on the ranks, and (c) referring to the
usual tables of percentage points.

Unfortunately, the parametric F test is not invariant with respect to monotone transformations (such
as the RT). More specifically, the nonlinear nature of the RT may add (remove) interactions when such
interactions were absent (present) in the original raw scores. For example, and contrary to the suggestions
above, it has been demonstrated that the RT fails as a viable alternative to the parametric procedure with
respect to tests for (a) interaction in factorial ANOVA (Blair, Sawilowsky, & Higgins, 1987; Thompson,
1991; 1993), (b) parallelism and interaction in factorial ANCOVA (Headrick, 1997; Headrick &
Sawilowsky, 2000), and (c) additive and nonadditive models in multiple regression (Headrick & Rotou,
2000).

However, nonparametric tests can be substantially more powerful than the parametric ( or F tests
when the assumption of normality is violated. For example, the Marin-Whitney U-test has an impressive
asymptotic relative efficiency of 3 relative to the two independent samples r-test when the population
sampled from is exponential (Conover, 1999). Thus, nonparametric or distribution free tests should be
considered when these tests demonstrate both (a) robustness with respect to Type I error and (b) a power
advantage relative to the parametric test.

Sawilowsky (1990) reviewed ten competing tests for interaction in the context of factorial ANOVA
and ANCOVA. On the basis of Type I error and power properties, three potential competitors to the
parametric F test remain. These alternative nonparametric tests are: the adjusted RT procedure (Blair &
Sawilowsky, 1990; Salter & Fawcett, 1993); the Hettinansperger (1984) procedure; and the Puri and Sen
(1969a) procedure. It should be noted that the Hettmansperger (1984) and Puri and Sen (1969a)
procedures consider only the total group regression slope. As such, it is assumed that the within group
regression slopes are equal for these tests.

Purpose of the Study
The purpose of the study is to compare and contrast the relative Type I error and power properties of

the parametric F test and the three aforementioned nonparametric procedures in the context of factorial
ANCOV A using Monte Carlo techniques. From the results of the Monte Carlo study, a statement will be
made with respect to the conditions under which any of the nonparametric tests are useful alternatives to
the parametric F test. Because good nonparametric tests exist for main effects, the focus of this study is
concerned with the test for interaction in the presence and/or absence of main effects.
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Methodology
A completely randomized balanced design with fixed effects and one covariate was used. The

structural model representing the design was:

Yijk = fl + P(X ijk - X') + a; + rj + (ar)ij + £ijk' (I)

(i= 1,... , J; j = I, ... , J; and k = 1,... , n), where J = 3, J = 4, and n = 5, 10, and 20.
The levels of variate (~k) and covariate (Xijk) correlation were p = 0, .3, .6, and .9. Note that the

regression slope coefficient in (1), p, remained constant across groups.
The treatment effect patterns modeled in (1) were as follows:

I. The main effect r nonnull, the main effect a null, and the interaction (ar) null:

l(a).rl=d;

I(b). rl =r2 =d;and r3 ='4 =-d.
2. The main effects r and a nonnull, and the interaction (ar) null:

2(a). r2 =al =d;and r3 =a2 =-d;and

2(b). r3 = al = d ;and 'I = r2 = r4 = a3 = -d.
3. The (ar) interaction nonnull, and the main effects r and a null:

3(a). (ar)11 = (ar)33 = d; and (ar)13 = (ar)31 = -d;
3(b). (ar)11 = (ar)14 = (ar)32 = (ar)33 = d; and

(ar)12 = (ar)13 = (ar)31 = (ar)34 = -d .
4. The main effect r and the (ar) interaction nonnull, and the main effect a null:

4(a). (ar)11 = d; and (ar)14 = =d ;
4(b). (zzr),, = (ar)12 = (ar)31 = (a')32 = d; and

(ar)13 = (ar)14 = (ar)33 = (ar)34 = -d .
5. The main effects r, a, and (ar) interaction are nonnull:

5(a). (ar)21 = (ar)24 = d;
5(b). (ar)11 = (a')12 = (ar)32 = (arb = (ar)34 = d; and

(ar)J3 = (ar)31 = (ar)14 = +d .
The treatment effect sizes (d) ranged from d= 0.1 Do- to d= 2.000-, where 0- is the standard deviation of
the population from which samples were drawn, in increments of 0.100-. The null case was represented
when d = 0.00 for all effects.

The parametric F statistic was calculated using the OLS sums of squares approach given in Winer,
Brown, and Michels (1991) for factorial ANCOYA. The Fstatistic for interaction was then compared to
the critical value from the usual F tables of percentage points.

The adjusted RT (adjRT) statistic was computed as follows: (a) the residuals were obtained from
conducting a two-way ANOYA on the reduced model that included only the grouping variables; (b) the
residuals and the covariate were then ranked without respect to group membership; and (c) the usual
parametric ANCOYA procedure was conducted on the ranked residuals and ranked covariate to obtain the
test statistic for interaction. This statistic was then compared to same critical F value as the parametric
test.

The Hettmansperger (H) (1984) chi-square statistic was computed as follows: (a) the residuals (RES)
were obtained from the regression of the variate on the reduced model that included the covariate and the
grouping variables; (b) the residuals were then ranked (denoted as RRES) without respect to group
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membership; (c) the standardized ranked residuals (SRRES) were obtained according to the following

equation: SRRES = -. ( ~:~ - ~)] ;

(d) the SRRES were then submitted to a two-way ANOYA; (e) the sums of squares for interaction term
obtained from the ANOY A was then compared to the critical value from a chi-square distribution with
(1- 1)(J - 1) degrees offreedom (Hettmansperger, 1984).

The Puri and Sen (PS) (1969a) chi-square statistic was computed as follows: (a) the variate and
covariate were ranked irrespective to group membership; (b) the cell means (Ryij, RXij)' column means

(Ryj, Rxl), row means (RYi' Ry,), and overall grand means (RyH, Rx) were then obtained from the

ranks of the variate and covariate scores; (c) the ij-th difference score was then obtained as follows:

DIFF(Ryij) = (RYij - RyJ - (RYj - RyJ - (Ry, - RyJ, and

DIFF(Rxij) = (Rxi/ - RxJ - (Rxj - RxJ - (RXi - RxJ;
(d) the ij-th residual scores were obtained from subtracting the predicted differences from the observed
differences as follows: RESij = DIFF(Ryij»)- pYXDIFF(RXij)' where PYX is the total group rank

correlation coefficient between the variate and covariate; (e) the In statistic (Puri & Sen, 1969a) was

then formulated as: In = VII I I nRES,~ , where VII is the first element on the principal diagonal of
j

the inverted variance-covariance matrix (V); and (f) the computed value of In was subsequently

compared to the critical value from a chi-square distribution with (l-I)(J -1) degrees of freedom (Puri
& Sen, 1969a).

Nine conditional distributions were simulated with zero means (J1 = 0), unit variances ( (7' 2 = 1 ), and

varying degrees of r I' r 2' r 3' and r 4' The distributions approximated in the simulation were:

I = normal (rl =0, r2 =0, r3 =0, and r4 =0), 2= uniform (rl =0, r2 = -6/5, r3 =0, and

r 4 = 48/7); 3 = Cauchy (r I = 0, r 2 = 25, r 3 = 0, and r 4 = 4000); 4 = double exponential tr I = 0,

Y2 =3, r3 =0, and r4 =30); 5 = logistic (rl =0, r2 =6/5, r3 =0, and r4 =48/7); 6=chi-square

8df(r I = I, r 2 = 3/2, r3 =3, and r4 = 15/2), 7 = chi-square 4df(r I = .J2, r 2 =4, r3 = 6.J2, and

r 4 =30), 8 = chi-square 2df (r I =2, r 2 =6, r3 =24, and r4 = 120), and 9 = chi-square I df( r I = J8,
r 2 = 12, r 3 = 48.J2 , and r 4 = 480). The preceding values of r I (coefficient of skew), r 2 (coefficient

of kurtosis), r 3' and r 4 are the third, fourth, fifth, and sixth standardized cumulants from their associated
probability density functions with the exception of the Cauchy distribution. Because the moments of a
Cauchy pdf are infinite, the above values of r I' r 2' r 3' and r 4 associated with this density were
selected to yield a symmetric distribution with heavy tail-weight.

The steps employed for data generation follow the model developed by Headrick (2000). The
Headrick (2000) procedure is an extension of the Headrick and Sawilowsky (1999, 2000) procedure for
simulating multivariate nonnormal distributions. The Headrick (2000) procedure generated the J;"/k and

XI/k for the ij-th group in (1) from the use of the following equations:
* .2 ",3 .4 .5

r;;k = Co + Clr;;k + C2Y,jk + C3Y,jk + C4Y,jk + C5Y,jk + tJijd , and (2)

'" .2 .3 .4 .5 '" '"Xijk = Co + clX ijk + C2X,/k + C3Xljk + c4X ijk + c5Xijk' where Y,;k' X ijk - iid N(O, 1). (3)
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The resulting ~k and Xijk were distributed with group means of 6ijd and zero (respectively), unit

variances, the desired values of 1 I' 12' 13' 14' and the desired within group correlation (p). In all

experimental situations, ~k and XUk followed the same distribution. The value of 6'jd was the shift

parameter added to the ij-th group for the treatment effect pattern considered. The coefficients co' c.,
c2' c3' c4' and c5 were determined by simultaneously solving equations 37, 38, 39, 40, 41, and 42 from

Headrick (2000) for the desired values of 1 I' 12' 13' and 14, The values of ~: and X;k in (2) and (3)

were generated using the following algorithms:
• • 1.2

Y;jk = Z ijkP + VUk-V 1- P , and
• • 1.2Xijk =ZijkP + Wijk-V1-p , (5)

where the Zijk' ~jk' and ~jk ~ iid N(O, I). The resulting Y;;: and X;k were normally distributed with

zero means, unit variances, and correlated at the intermediate value P;~x' . The intermediate correlation,
Uk IJk

(4)

which is different from the desired post-correlation (PY x ) except under conditional normality, was
Ijlr Ijt

determined by solving equation 26 from Headrick (2000) for the bivariate case for p;.x" When both

variables follow the same distribution, equation 26 from Headrick (2000) can be expressed as follows:
2 2 2 .2 •.2 2 .2

PYij,«: = Co + 9c4 + 2co (c2 + 3c4) + ci Pyij,X,;, + 6CIC3PY.~X,j, + 9c3 Pyij,x,;, + 30 x
•.2 .2 2 .2 2 •.4 2 .6 .6

CIC5Py'X' +90C3C5Py'X' + 225c5py•x• + 72c4Py'X' +6c3Py'X' +120c3c5Py'x' (6)
I}k Ijk iJk Ijlc Ijlt 1}1t Ijlr iilt 'lit Ijlt ljlr iJk

2 2 .6 2 .8 2.10 2.4 .4

+ 600c5 c5 Pv: x; + 24c4 py• x: + 120c5 Pv: x: + c2 (l + 2py. x: ) + 6c2 (c, + 4c4Py' x' )
iJlc !J1t Ijlc !Jk iJk !Jk ljk Ijlt ifft IJIt

Values of Co '''., c5 ' and p'. . were solved for (6) using Mathematica (Version 4.0, 1999). The solution
YljltX'jk

values of Co '''., c5' the intermediate correlations (Py': .), and post-correlations (py x. ) for the
ijkXljk Ijk Ijk

conditional distributions considered are compiled in Table I.
The computer used to carry out the Monte Carlo was a Pentium III-based personal computer. All

programming was done using Lahey Fortran 77 version 3.0 (1994), supplemented with various
subroutines from RANGEN (Blair 1986). Using the chi-square and F tables of percentage points, the
proportions of hypotheses rejected were recorded for the four different procedures. The nominal alpha
level selected was .05. Twenty five thousand repetitions were simulated for each of the 9(type of
distribution) x 4(1evel of correlation) x 21 (effect size) x IO(treatment effect pattern) experiments.

Results
Adequacy of the Monte Carlo
For each repetition, separate values of Pi and 1 I ' 12 ' 13 ,and 14 for the variate and covariate for

r.J Ij IJ IJ I)

each of the IJgroups were computed. Average values of Pij(PM)' 11.(riM)' 12. (r2J, 13. (Y3.), and

14" (Y4.) were obtained by averaging the PI)' 11",12",13,,' and 14if across the IJgroups. The values

of P.., riM' r2M' Y3 .. , and Y4 .. were subsequently averaged across 25,000 (replications) x 21 (effect
size) situations in the first treatment effect pattern for each conditional distribution. The average values of
riM' r2M' Y3 .. , and Y4 .. were then further averaged across the four levels of correlation. The overall
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Table 1. Values of constants (Co , ... , cs) used in equation (3), population correlations (Pr x ), and
Ijk Ijk

intermediate correlations (p': .) to simulate and correlate the desired conditional distributions (Dist).y x

0.000000 0.0000001.000000 0.000000 0.000000 0.000000 .00 .000000
.30 .300000
.60 .700000
.90 .900000

2 0.0018080.000000 1.347438 0.000000 -0.140177 0.000000 .00 .000000
.30 .326197
.60 .634118
.90 .913613

3 0.0011320.000000 0.306093 0.000000 0.184686 0.000000 .00 .000000
.30 .374236
.60 .683980
.90 .929263

4 -0.0022320.000000 0.727709 0.000000 0.096303 0.000000 .00 .000000
.30 .309371
.60 .612882
.90 .905531

5 -0.0004050.000000 0.879467 0.000000 0.040845 0.000000 .00 .000000
.30 .302233
.60 .603260
.90 .901368

6 0.000014-0.163968 0.950794 0.165391 0.007345 -0.000474 .00 .000000
.30 .311431
.60 .612677
.90 .904625

7 -0.227508 0.0000550.900716 0.231610 0.015466 -0.001367 .00 .000000
.30 .322263
.60 .624030
.90 .908552

8 0.000159-0.307740 0.800560 0.318764 0.033500 -0.003675 .00 .000000
.30 .341958
.60 .643339
.90 .914879

9 0.000044-0.397725 0.621071 0.416907 0.068431 -0.006394 .00 .000000
.30 .376853
.60 .673908
.90 .924127

averages of YI' Y2' )/3' )/4' and p are listed in Table 2 and Table 3, respectively. Inspection of Tables

2 and 3 indicate that the Headrick (2000) procedure produced excellent agreement between YI' Y2' )/3'

)/4' and p and the population parameters considered.
The Type I error and power analyses are compiled in Tables 4 through 13. The column entries from

left to right denote (a) the test statistic, (b) the standardized treatment effect size "d", and (c) the
proportion of rejections for the four different tests of interaction under the various levels of variate and
covariate correlation and the other parameters considered.

Type I Error
Normal Distribution: The Type I error rates for the competing procedures are compiled in Tables 4, 6,

and 8, for n = 5, 10, 20, and treatment pattern 2(b). This particular effect pattern is reported because the
commonly used rank transform test statistic (Conover & Iman, 1981) under these circumstances is not
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Table 2. Average values of YI (YI ), Y 2 (Y2)' Y 3 (Y3)' and Y 4 (Y4) simulated by the Headrick (2000)

procedure. The average values (YI ' Y2' Y3' Y4) listed below were based on a sample size is n = 20.
Distribution Population parameter (YI , Y2' Y3' Y4 )

I YI =0 Y2 =0 Y3 =0 Y4 =0
Variate (Y) YI = 0.000 124 Y2 = -0.000284 Y3 =0.001073 Y4 = -0.00 1339
Covariate (X) YI =-0.000084 Y2 =0.000452 Y3 = 0.000795 Y4 = 0.002845

2 11 =0 12 = -6/5 13 =0 14 = 48/7
Variate (Y) YI = 0.000005 Y2 = -1.200004 Y3 =0.0000238 Y4 = 6.857894
Covariate (X) YI = 0.000039 Y2 =-1.200163 Y3 = 0.000 1685 Y4 =6.853492

3 11 =0 12 =25 13 =0 14 =4000
Variate (Y) YI =-0.001318 Y2 =24.975520 Y3 = -.3386690 Y4 = 3958.22114
Covariate (X) YI = 0.000290 Y2 =24.941770 Y3 = -0.799517 Y4 = 3988.30400

4 11 =0 12 =3 13 =0 Y4 =30
Variate (Y) YI = 0.000342 Y2 = 2.999848 Y3 =0.014447 Y4 = 30.0 I0830
Covariate (X) YI = 0.000032 Y2 =3.000327 Y3 = 0.004328 Y4 = 30.006732

5 11 =0 12 = 6/5 13 =0 Y4 = 48/7
Variate (Y) YI = 0.000224 Y2 = 1.199900 Y3 = .004258 Y4 = 6.846827
Covariate (X) YI = 0.000034 Y2 = 1.200087 Y3 = .001478 Y4 = 6.858595

6 YI = 1 12 = 3/2 Y3 =3 Y4 = 15/2
Variate (Y) YI = 1.000071 Y2 = 1.500197 Y3 =3.001597 Y4 =7.496629
Covariate (X) YI = 0.999992 Y2 = 1.500053 Y3 = 3.005218 Y4 = 7.538564

7 11 = .fi 12 =3 13 = 6.fi 14 =30

Variate (Y) YI = 1.414330 Y2 =3.000764 Y3 = 8.489000 Y4 =29.978800
Covariate (X) YI = 1.413904 Y2 =3.001067 Y3 = 8.484897 Y4 = 30.004765

8 11 =2 12 =6 13 =24 Y4 = 120
Variate (Y) YI = 2.000254 Y2 = 6.002129 Y3 = 24.008980 Y4 = 119.868700
Covariate (X) YI = 1.999989 Y2 =6.000573 Y3 =24.010045 Y4 = 120.158647

9 11 = .J8 12 = 12 13 = 48.fi Y4 =480

Variate (Y) YI = 2.828878 Y2 = 12.003800 Y3 =67.884840 Y4 =479.035600
Covariate (X) YI =2.827901 Y2 = 12.000050 Y3 =67.885672 Y4 =480.001874

asymptotically chi-squared (Thompson, 1991, 1993) and is liberal for even small samples (Headrick,
1997; Headrick & Sawilowsky, 2000).
As expected, the parametric F test maintained Type I error rates close to nominal alpha and were within

the closed interval of a ± I .96~ a(J - a) / 25000 . This occurred across all treatment conditions, sample
sizes, and levels of variate/covariate correlation.

The adjRT also generated acceptable Type I error rates. Inspection of Tables 4, 6, and 8 indicates that
the Type I error rates were similar to the parametric F test. With respect to the H test, inspection of
Tables 6 and 8 indicates that this test maintained appropriate Type I error rates for sample sizes of n = 10
and n = 20. However, for n = 5, inspection of Table 4 indicates that the H test generated liberal Type I
error rates. For example, with an effect size of d= 0.80, the Type I error rates were approximately .060
across all levels of variate/covariate correlation.
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Table 3. Average values of variate and covariate correlation (p) simulated by the Headrick (2000)

procedure. The value p denotes the population correlation. The average values (p) listed below were
bas d I 20e on a sample size IS n =

Distribution
n P I 2 3 4 5 6 7 8 9
20 .00 .000 .000 -.001 .000 .000 .000 .001 .000 -.000

.30 .300 .299 .300 .301 .300 .299 .300 .300 .301

.60 .600 .601 .602 .599 .600 .598 .600 .599 .600

.90 .900 .899 .901 .900 .900 .901 .899 .900 .900

The PS test became conservative when either one or both main effects were present. Ceteris paribus,
the stronger the nonnull main effect(s) the more conservative the Type I error rates became. These
conservative Type I error rates occurred across all levels of variate and covariate correlation. For
example, with an effect size of d = 0.80, inspection of Table 4 indicates that the Type I error rates were
.001, .000, and .000 across the three levels of variate/covariate correlation. The PS procedure maintained
Type I error rates close to nominal alpha only when both main effects were null.

Nonnormal Distributions: Type I error rates are compiled in Tables 10 and 12 for some of the
nonnormal distributions considered. The approximate distributions reported in these tables are the chi-
square 1df and Cauchy. These distributions are reported because previous empirical investigations
demonstrated that Type I error inflations associated with the rank transform test statistic (Conover &
Iman, 1981) were most severe under extreme departures from normality (Headrick, 1997; Headrick &
Sawilowsky,2000).

The parametric F test was slightly conservative under the nonnormal conditional distributions
reported. For example, with an effect size of d = 1.30, variate/covariate correlation of r = .30, an
inspection of Table 12 indicates that the Type I error rate was .040 when the conditional distribution was
approximate Cauchy.

The adjRT generated inflated Type I error rates when the conditional distribution considered was
skewed (e.g., chi-square Idf or 2d/). For example, with an effect size of d=0.80, a variate/covariate
correlation of r = .90, inspection of Table 10 indicates that the Type I error rate for the adjRT was .076. In
general, increases in skew i.e., chi-square 4df, chi-square 2df, chi-square 1df were associated with
increases in Type I error inflation for the adjRT.

The H test maintained appropriate Type I error rates for all nonnormal conditional distributions
considered when sample sizes were n = 10 and n = 20. When samples were n = 5, the H test generated
liberal Type I error rates. The inflated Type I error rates were similar to those error rates generated under
conditional normality.

As with the standard normal case, the PS test generated ultra-conservative Type I error rates when
main effects were present. For example, with an effect size d = 0.80 and a variate/covariate correlation of
r = .60, inspection of Table 12 indicates that the Type I error rate was .000. This occurred for all
nonnormal distributions considered in this study.

Power Analysis
Normal Distribution: Power analyses for the competing procedures are compiled in Tables 5, 7, and

9, for n = 5, 10, 20, and treatment pattern 5(a). This effect pattern is reported because under these
conditions the usual rank transform statistic has been demonstrated to display severe power losses
(Headrick, 1997; Headrick & Sawilowsky, 2000).
As expected, the F test displayed a power advantage over the three nonparametric competitors when the
conditional distribution was standard normal. Specifically, the F test was substantially more powerful
than the PS test when both main effects became increasingly nonnull. Although the F test was more
powerful than the H test when sample sizes were n = 10 and n = 20, the H test held a slight power
advantage over the adjRT. When sample sizes were n = 5, inspection of Table 5 indicates that the H test
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Table 4. Type I error results for the test of interaction. The sampling distribution was standard normal.
The sample size was n = 5. Both main effects were nonnull. The Type I error rates were based on 25,000
repetitions and a nominal alpha level of a = .05

Level of Correlation
Test Effect Size (d) 0.3 0.6 0.9
F 0.30 .051 .052 .050
adjRT .052 .053 .051
H .057 .060 .060
PS .023 .020 .004
F 0.80 .050 .051 .050
adjRT .052 .053 .049
H .059 .056 .058
PS .001 .000 .000
F 1.30 .052 .047 .052
adjRT .052 .050 .051
H .059 .060 .061
PS .000 .000 .000

Table 5. Power analysis for the test of interaction when sampling was from a standard normal
distribution. The sample size was n = 5. Both main effects were nonnull. The rejection rates were based on
25,000 repetitions and a nominal alpha level of a = .05.

Level of Correlation
Test Effect Size (d) 0.3 0.6 0.9
F 0.30 .062 .067 .110
adjRT .062 .066 .100
H .069 .077 .121
PS .055 .056 .081
F 0.80 .145 .202 .622
adjRT .143 .187 .531
H .159 .217 .632
PS .106 .132 .315
F 1.30 .359 .507 .983
adjRT .349 .473 .954
H .372 .517 .983
PS .211 .272 .272

was rejecting at a higher rate than F test. For example, with an effect size of d = 0.80, a vanate/covanate
correlation ofr=.30, inspection of Table 5 indicates that the H test had a rejection rate of .16 while the F
test was rejecting at a rate of .145. This higher rejection rate is attributed to the liberal nature of the Type I
error rates that were associated with the H test when n = 5.

Nonnormal Distributions: In general, when departures from normality were small (e.g., approximate
logistic) to moderate (e.g., approximate chi-square 8dj) the F test rejected at rates slightly less than the
Hettmansperger and adjRT procedures. The power advantages in favor of either the H or adjRT tests were
contingent on the conditional distribution considered and the other parameters being simulated. It should
be noted that the power advantages in favor either the H test or adjRT test were marginal. On the other
hand, when the conditional distribution was approximate uniform the parametric F test held a slight
advantage over the nonparametric procedures.
When the conditional distributions were extremely skewed and/or heavy tailed, both the adjRT and H
tests held large power advantages over the F test. Further, when the adjRT test generated reasonable Type
I error rates, the adjRT displayed some power advantages over the other competing nonparametric
procedures. For example, inspection of Table 13 indicates that when the conditional distribution was
approximate Cauchy, an effect size of d =0.80, and a variate/covariate correlation of r = .60, the adjRT
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Table 6. Type I error results for the test of interaction. The sampling distribution was standard normal.
The sample size was n = 10. Both main effects were nonnull. The Type I error rates were based on 25,000
repetitions and a nominal alpha level of a = .05

Level of Correlation
Test Effect Size (d) 0.3 0.6 0.9
F 0.30 .053 .052 .049
adjRT .054 .051 .049
H .052 .055 .053
PS .027 .019 .003
F 0.80 .050 .050 .050
adjRT .051 .049 .051
H .053 .052 .053
PS .006 .001 .000
F 1.30 .050 .048 .050
adjRT .051 .048 .051
H .054 .051 .054
PS .000 .000 .000

Table 7. Power analysis for the test of interaction when sampling was from a standard normal
distribution. The sample size was n = 10. Both main effects were nonnull. The rejection rates were based
on 25,000 repetitions and a nominal alpha level of a = .05.

Level of Correlation
Test Effect Size (d) 0.3 0.6 0.9
F 0.30 .078 .088 .208
adjRT .077 .087 .179
H .076 .089 .201
PS .069 .077 .155
F 0.80 .294 .418 .951
adjRT .284 .386 .911
H .288 .402 .943
PS .232 .306 .779
F 1.30 .715 .879 1.000
adjRT .693 .848 .999
H .697 .863 1.000
PS .531 .683 .987

was rejecting at a rate of .942 whereas the H test was rejecting at a rate of .844. Power comparisons
between these two tests were not considered where the adjRT generated liberal Type error rates (e.g.,
approximate chi-square 2df or chi-square Idj). When the conditional distributions were approximately
chi-square 2df or chi-square Idf, the H test was a much more powerful than the parametric F. For
example, when sampling was from an approximate chi-square distribution Idf, d=0.80, a
variate/covariate correlation of r= .30, inspection of Table II indicates that the H test was rejecting at a
rate of .731 while the F test was rejecting at a rate of only .326.

The PS procedure held a power advantage over the Hand adjRT tests only when both main effects
were either weak or null. Otherwise, the PS test statistic had the problem of power loss when juxtaposed
to either the H or the adjRT tests as the magnitude of the main effect(s) increased. For example, when
sampling was from an approximate chi-square distribution Idf, d=0.30, a variate/covariate correlation of
r = .30, inspection of Table II indicates that the PS test was rejecting at a rate of .182 while the H test was
rejecting at a rate of .148. However, when the effect size increased from d=.30 to d= 0.80, the H test was
rejecting at a rate of .731 while the PS was rejecting at a rate of only .524. This pattern of power loss
associated with the PS test was consistent across all nonnormal distributions considered in this study.
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Table 8. Type I error results for the test of interaction. The sampling distribution was standard normal.
The sample size was n=20. Both main effects were nonnull. The Type Ierror rates were based on 25,000
repetitions and a nominal alpha level of a = .05

Level of Correlation
Test Effect Size (d) 0.3 0.6 0.9
F 0.30 .050 .050 .049
adjRT .050 .050 .050
H .051 .052 .050
PS .028 .019 .003
F 0.80 .051 .049 .052
adjRT .052 .052 .051
H .052 .052 .052
PS .001 .000 .000
F 1.30 .050 .050 .050
adjRT .050 .049 .048
H .052 .051 .052
PS .000 .000 .000

Table 9. Power analysis for the test of interaction when sampling was from a standard normal
distribution. The sample size was n = 20. Both main effects were nonnull. The rejection rates were based
on 25,000 repetitions and a nominal alpha level of a = .05

Level of Correlation
Test Effect Size (d) 0.3 0.6 0.9
F 0.30 .109 .133 .410
adjRT .105 .127 .360
H .105 .131 .393
PS .099 .119 .328
F 0.80 .596 .775 1.000
adjRT .569 .734 1.000
H .573 .754 1.000
PS .505 .661 .994
F 1.30 .976 .998 1.000
adjRT .968 .996 1.000
H .969 .997 1.000
PS .920 .978 1.000

Discussion
The PS test is computationally arduous. Further, the results of this study indicate that this test had the

problems of ultra-conservative Type I error rates and power loss when main effects were nonnull.
Toothaker and Newman (1994) found similar results with respect to the PS test in the context of factorial
ANOYA. Thus, it is recommended that this procedure not be considered as a viable alternative to the
parametric F test in factorial ANCOY A.

It is possible to base the PS statistic on normal or expected normal scores instead of the ranks (Puri &
Sen, I969a). And, this might correct the problem of ultra-conservative Type I error rates. However,
additional nonlinear transformations present the problem with respect to the correct interpretation of the
statistical results in terms of the original metric.

The adjRT is arguably the simplest of the three nonparametric procedures to compute. However,
because the adjRT has the problem of liberal Type Ierror rates when the distributions possess moderate to
extreme skewness, it is also recommended that the adjRT procedure not be used in place of the parametric
F test.
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Table 10. Type I error results for the test of interaction. The sampling distribution was an approximate
chi-square distribution with Idegree of freedom. The sample size was n = 10. Both main effects were
nonnull The Type I error rates were based on 25,000 repetitions and a nominal alpha level of a = .05 .

Level of Correlation
Test Effect Size (d) 0.3 0.6 0.9
F 0.30 .046 .043 .045
adjRT .069 .068 .075
H .053 .048 .048
PS .010 .006 .001
F 0.80 .044 .047 .047
adjRT .067 .072 .076
H .051 .050 .049
PS .004 .001 .000
F 1.30 .045 .046 .046
adjRT .070 .070 .073
H .052 .049 .049
PS .000 .000 .000

Table 11. Power analysis for the test of interaction when sampling was from was an approximate chi-
square distribution with Idegree of freedom. The sample size was n = 10. Both main effects were nonnull.
The rejection rates were based on 25,000 repetitions and a nominal alpha level of a = .05.

Level of Correlation
Test Effect Size (d) 0.3 0.6 0.9
F 0.30 .075 .086 .221
adjRT .197 .262 .679
H .148 .182 .522
PS .182 .243 .597
F 0.80 .326 .462 .947
adjRT .815 .926 .999
H .731 .838 .999
PS .524 .672 .973
F 1.30 .739 .881 .999
adjRT .991 .999 1.000
H .981 .995 1.000
PS .762 .885 .998

The H chi-square test maintained appropriate Type I error rates for all conditional distributions
considered in this study when sample sizes were at least as large as n = 10. Thus, the H test could be
considered as an alternative to the parametric F test for interaction provided the within group sample sizes
are relatively equal and at least as large as n = 10. This recommendation is made in view of the large
power advantage that the H test had over the F test when the conditional distributions were contaminated
with outliers and/or possessed extreme skewness.
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Table 12. Type I error results for the test of interaction. The sampling distribution was an approximate
Cauchy distribution. The sample size was n = 10. Both main effects were nonnul1. The Type I error rates
were based on 25 000 repetitions and a nominal alpha level of a = 05,

Level of Correlation
Test Effect Size (d) 0.3 0.6 0.9
F 0.30 .043 .045 .044
adjRT .054 .053 .058
H .046 .050 .050
PS .008 .005 .001
F 0.80 .044 .044 .046
adjRT .053 .055 .056
H .045 .048 .048
PS .000 .000 .000
F 1.30 .040 .044 .045
adjRT .053 .052 .056
H .045 .047 .048
PS .000 .000 .000

Table 13. Power analysis for the test of interaction when sampling was from was an approximate Cauchy
distribution. The sample size was n = 10. Both main effects were nonnul1. The rejection rates were based
on 25,000 repetitions and a nominal alpha level of a = .05

Level of Correlation
Test Effect Size (d) 0.3 0.6 0.9
F 0.30 .075 .096 .244
adjRT .163 .235 .699
H .130 .173 .495
PS .155 .220 .632
F 0.80 .346 .489 .946
adjRT .801 .942 1.00
H .712 .844 .999
PS .563 .754 .993
F 1.30 .750 .884 .999
adjRT .993 .999 1.00
H .981 .996 1.00
PS .804 .934 .999
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