
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Computer Science

8-2003

ABSA: An Agent-Based Tool for System
Administration
Santosh Ramakrishna
Southern Illinois University Carbondale

Shahram Rahimi
Southern Illinois University Carbondale, rahimi@cs.siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/cs_pubs
Published in Ramakrishna, S., & Rahimi, S. (2003). ABSA: an agent-based tool for system
administration. Proceedings, IEEE International Conference on Industrial Informatics, 2003.
INDIN 2003, 312-319. doi: 10.1109/INDIN.2003.1300288 ©2003 IEEE. Personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works must be obtained from the
IEEE. This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted without the explicit permission
of the copyright holder.

This Article is brought to you for free and open access by the Department of Computer Science at OpenSIUC. It has been accepted for inclusion in
Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Ramakrishna, Santosh and Rahimi, Shahram. "ABSA: An Agent-Based Tool for System Administration." (Aug 2003).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

ABSA: An Agent-Based Tool for System Administration

Santosh Ramakrishna, Shahram Rahimi

Mail Code 4511, Carbondale, Illinois - 62901, USA.
fsrama, rahimi) @cs.siu. edu

Department of Computer Science, Southern Illinois University

ABSTRACT

Studies indicate that because of the difficulty and
complexity, the cost of administering systems is ten times
the cost of the actual hardware. ABSA is an agent-based
solution to automated system administration. ABSA
architecture is introduced to minimize the cost of
administering computers in multi platform networks and
to provide a simple, consistent, expandable, and
integrated system administration tool.

Keywords: Agents, System administration and
Distributed systems.

1. INTRODUCTION

Networks maintained by many sites today contain tens to
hundreds of computers. Managing such a sizeable
collection of computers and their software is a
challenging task, generally referred to as system
administration. Majority of the tasks performed by a
system administrator on a day to day basis include
ensuring all hardware and software is in working order,
managing user accounts, dealing with the security threats,
backups, software upgrades, maintenance, recovery from
system failure and ensuring an adequate supply of
resources such as swap and disk space. Performing all
these tasks manually can prove to be very difficult,
especially when dealing with a sizable collection of
computers. Majority of the day to day activities
performed by system administrators are procedural and
recurring and hence a burden to the system administrator
[l]. This complexity and difficulty of system
administration has been long recognized. Studies indicate
that because of complexity, cost per year of administering
systems is much higher than the cost of the actual
hardware itself [IO]. While system administration is
challenging and burdensome, most of the tasks performed
by an administrator can be automated to great extent.
Moreover there is a limit on the number of systems that
can be maintained by an administrator, which highlights
the need for a scalable approach.

In this paper, we first discuss the current approaches to
automation of system administration tasks and then
present ABSA, an agent-based architecture for system
administration. But before preceding any further we

discus software agents, some of their important
characteristics and their types.

A definition of “software agent” that many agent
researchers might find acceptable is: a software entity
which h c t i o n s continuously and autonomously in a
particular environment, often inhabited by other agents
and processes [2]. The requirement for continuity and
autonomy derives from our desire that an agent be able to
carry out activities in a flexible and intelligent manner
that is responsive to changes in the environment without
requiring constant human guidance or intervention. In
general, software agents are differentiated kom other
applications by their added dimensions of mobility,
autonomy, and the ability to interact independent of their
user‘s presence.

Figure 1 illustrates the typical difference between mobile
agents and client-server architecture. In client-server
architecture, the client constantly interacts with the server
over the network to get its task done. In contrast, in
mobile agent architecture, the agents migrate from the
client to the server, perform the operations locally on the
server, and then come back to the client. This architecture
has advantages such as load distribution, ease of network
traffic, support for off-line operation and temporal
network failures etc.

I Server 1
Traditional I Mobile Agent based

Figure 1 Client - Server Vs. Mobile Agents

There are two types of agents, namely stationary agents
and mobile agents. Stationary agents are permanently
attached to a place (node), while mobile agent can move
from one place to another. An agent is said to be strongly
mobile if its entire code and execution state move with it.

0-7803-8200-5/03/$17.00 02003 IEEE

312

In our architecture, we use stationary agents for
management purposes and mobile agents to distribute the
system administration tasks among the computers in the
network. Agent technology provides a kesh scalable
approach to system administration, which avoids the
difficulties of the traditional cliendserver approach.

Distinctiveness of agents such as autonomous nature,
intelligence, perseverance, adaptability, and of course
mobility are most appropriate for their use in our
architecture. The mobile nature of agents allows keeping
minimum essential environment on the remote host that is
just enough to allow execution of agents on it. This
avoids the concentration of the operations in a single
computer; instead, it uses the computing power of other
computers by distributing the tasks. Moreover, using java
agents in ABSA, provides the system with platform
independency which further distinguishes it korn other
tools available in the market.

The remaining parts of the paper are organized as
follows. Firsf a brief background on system
administration tasks and software agents is given in
sections 2. Then the general architecture of the system is
presented in section 3. In section 4, we describe the
implementation and the tools used. Finally, a brief
summary concludes the paper.

2. BACKGROUND

In this section, we briefly review the current centralized
system administration approach and discuss some of the
existing tools that aid system administrators.

Centralized System Administration
Recently, there has been considerable amount of research
to replace the traditional ad hoc system administration by
client/server based applications, which aim to centralize
the process. These centralized applications use mainly
two protocols, the Simple Network Management Protocol
(SNMP) and the Common Management Information
Protocol (CMIP). Both protocols follow a client/server
approach with managers invoking operations on
management programs. They also provide mechanisms
for reporting of events by management programs.
However, there are fundamental differences between
these two protocols. CMIP offers a much richer set of
protocol operations both on manager and on
management. However SNMP is a simpler tool for and is
more popular in the market.

SNMP, CMIP, and related approaches to network and
system administration are centralized paradigms based on
the client/server architecture. These solutions require
gathering all management functionality in a central
manager which causes complexity and lower
performance. Moreover, they do not address
heterogeneity of the platforms. Scalability is another

disadvantage of centralized approach, which loses
performance to the size of the network.

Analysis of existing Tools aiding System
Administrator
Automated administration of systems is becoming
increasingly important due to the associated costs. Some
work has k e n done in this regard to either, partially
automate the tasks or produce tools to aid administrators.

“Software Update via Mobile Agent Based
Programming” [6] is one such approach for automated
updating of software on the systems. This model has
some limitations such as platform dependency. Moreover,
the software has to be maintained on the server, which
causes centralization of considerable amount of the tasks
and hence a bottleneck. As a second example, we can
name “The Igor System Administration Tool” [7] which
is a tool for performing administration tasks
simultaneously on numerous hosts. Although it eases the
task of system administration, it does not deal with
automation of system administration and it focuses on
UNIX systems only.

“Central System Administration in a Heterogeneous
UNIX Environment: GeNUAdmin“ [SI is another
example. In this tool, configuration profiles for clients are
maintained on the central server and clients are
configured based on their profile on the server.
Administrator has to modify the configuration files to
manage the clients. The modifications are automatically
transferred to the client systems. Its disadvantages are
that it may cause inconsistency among configuration files
and also it is for UNIX systems only. Our last example is
“WEBMIN: A Web-Based System Administration Tool
for U N I X [9], which is a web based tool for configuring
UNIX systems. This one does not support platform
independency either.

All the above tools are based on client-server
architecture. This makes them less scalable since all the
administrative tasks are done on a single computer.

3. AGENT-BASED SYSTEM ADMINISTRATION

General System Architecture
In this section, we present the architecture and the
behavior of ABSA. We divide the computers present in a
network into two categories, the central manager node,
kom which we manage other nodes in the network, and
the client nodes that are managed by the central manager
node. The central manager node is responsible for
receiving the administration requests, analyzing the
requests and dispatching necessary agents to appropriate
client machines to carry out the request(s) and report the
status.

313

Within this overall architecture, there exist multiple agent
classes, both stationary and mobile, and includjng both
intelligent, and less intelligent software agents. Central
manager node has different stationary agents within itself
to perform the necessary tasks. The only mobile agents in
this architecture are the Action Agents which migrate to
the client nodes to perform the requested tasks. We refer
the reader .to figure 2 for the following discussion of the
architecture in a network of heterogeneous systems.

Figure 2 illustrates the general system architecture.
Before progressing to describe how the system operates,
we list the types of the agents that at this moment are
used in the system together with a brief description of
each.

Figure 2 System Architecture

Internet Agent (IA): It receives the administration
requests and also requests for the status of submitted
tasks via internet and is actually the server side for web-
based GUI. The IA is a stationary agent on the central
manager node. For each submitted task 1A generates
unique ID that could be used at a later time to find the
status of the task. IA sends the submitted administration
requests to the processing agent and status related
requests to report agent.

Processing Agent (PA): Receives requests from
the IA. It processes the request and puts them into a data
structure. The PA also deciphers if the task is one time
task or a scheduled task If the task is scheduled one, it is
sent to the scheduler agent, else it is sent to the request
manager. It is also a stationary agent on central manager
node.

Scheduler Agent (SA): It is a stationary agent on
the central manager node. Responsible for generating
requests to the request manager for scheduled tasks and

managing the tree data structure used to keep information
about the scheduled tasks.

Request Manager (RM): Maintains the request
queue on a priority basis. It could receive requests from
PA or SA depending on the type of the task. It is
stationary agent on a central manager node.

Agent Manager (AM): Responsible for
generating mobile agents in the system to carryout the
requested tasks. It receives a task from the Rh4 and
generates an appropriate action agent to perform the task.
It then moves the action agent to the client on which the
task has to be carried out. AM is again a stationary agent
on the central manager node as well.

Report Agent (RA): It is a stationary agent on the
central manager node. RA is responsible for maintaining
status of the tasks being managed by the AM. It also
maintains the log file for all the submitted tasks for each
client machine. RA also responds to requests f?om IA by
performing certain query operations on the log file and
providing the query results to 1A.

Action Agent (AA): These are mobile agents
generated by the AM to perform the requested task. AA is
a broad term given to a set of task-oriented agents. There
are different action agents for different tasks. AA
migrates to the client machine, performs the requested
task and informs the AM about the status.

System Behavior
At this stage of the implementation of the system, we
have focused in automation of just few routine tasks such
as managing user accounts, backup, upgrading
application software, applying patches, antivirus updates
and checking printer status. This section describes a
typical scenario that utilizes the above named agents for
system administration.

As it was mentioned earlier, the Processing Agent
receives requests fkom the Internet Agent. Since these
requests may be simultaneous, the PA maintains a FIFO
queue for the inputs. It decodes the task requests, puts the
information into appropriate data structure and sends
them to the Scheduler Agent or the Request Manager
based on the type of the task. If the task needs to be
scheduled, it would be send to SA; otherwise, one time
tasks are sent to RA.

The IA provides a web-based GUI and is used for
submitting tasks as well as viewing their status. Upon
submission of a task request, the user is given a unique
task ID. The task ID is generated based on the current
time (including month and year, in order to generate a
unique ID), and the user can later use it to obtain the
status of the submitted task. The IA gets the status of the
task from the Report Agent (not shown in the figure).

314

The Scheduler Agent preserves a two level tree struchire
in which the first level contains the hostnames of the
computers in the network and the second level includes
the scheduled tasks for each computer. Each node in the
first level of the tree, in addition to a hostname, holds the
next immediate scheduled task. The next level of the tree
maintains the list of the scheduled tasks to be performed
on each host. This is illustrated in Figure 3. Whenever a
scheduled task is picked for operation or a new task is
added to the tree, the SA searches the second level to find
the next immediate task for each node and place it at the
first level by the hostname. This is done in order to
reduce the search time.

n

Update

Kernel
Patch
Week1

Kernel
Patch

Figure 3 Scheduler Agent Data Structure

The Request Manager receives the task requests fiom the
PA (one time tasks) or the SA (scheduled tasks). It
maintains a priority queue of the requests. The priorities
are assigned based on the origin and the significance of
the requests. If the origin of a request is a regular user, its
priority is less that a request from the administrator. In
addition, the priority of an “antivirus data updating” task
is higher than the priority of a “create user account”
request. The system has a default priority setting;
however, the administrator can change these priorities.

The Agent Manager has a threshold on the number of
Action Agents it can maintain at a time. When the
number of AAs in the system is less than the threshold,
the AM accepts new tasks from the RM and creates
appropriate AAs to be dispatched to the corresponding
client computers. After creating an AA, the AM sends its
task request to the RA which assigns the “in process”
status to the task. Upon completion (or failure), the AA
reports the status to the RA (either “completed” or “error”
with a code number). The AA will be suspended after
completion of its task.

As it was mentioned, there is a different AA for each of
the tasks. For instance, for creating a user account we
have Create User Account AA, for updating antivirus
definitions we have Antivirus AA and so on. AAs are the
only mobile agents in the system and most of them have
some level of intelligence.

An example of one time task such as create user account
will go through the following sequence of agents in the
order specified: IA followed by PA, RM, AM, AA and
RA. An example of scheduled task such as backup will
also go through the same sequence of agents except that
SA is in between PA and RM since it considered a
scheduled task. In order to facilitate the operation of the
system across multiple operating systems, the choice of
implementation tools is vital.

4. IMPLEMENTATION TOOLS

The system is being implemented in Java and over
Grasshopper agent environment, while the knowledge
bases of the intelligent agents are being written in Java
Expert System Shell (JESS). The choice of Grasshopper
platform and JESS were based on a comparative study of
existing tools and environments [3]. Version 0.2 of the
system is actually functioning and is being tested at this
time.

Grasshopper is implemented completely in Java and is
designed in conformance with the Object Management
Group’s Mobile Agent System Interoperability Facility
(MASIF). The platform can be enhanced with an add-on,
which is compliant with the specification of the
Foundation for Intelligent Physical Agents (FIPA) [4].

JESS is a rule engine and scripting environment written
entirely in Java. Jess is Java implementation of CLIPS
expert system shell and is a scripting environment, fiom
which objects can be created and methods can be called
without compiling any Java code [5] . Java provides APIs
for network communications, implements threads, remote
procedure calls, web request processing, and also gives
the system the advantage of platform independence.
Therefore ABSA is capable to manage networks of
different operating system platforms.

Now, we hrther extend this discussion to important data
structures followed by some implementation details for
each of the agents in the system.

One of the important data structure used in the
architecture is the synchronized circular shared buffer.
This buffer is used by all the stationary agents in the
system to communicate with one another. Since the
buffers are shared between concurrently running agents,
only one agent should be allowed to access the buffer in
order to maintain the buffer consistency. Java provides
APIs for synchronize access of objects, which allows

315

only one thread to access an object at a time. We use this
synchronization and create synchronized circular shared
buffer objects for communication.

Another important data structure is the tree structure used
by Scheduler Agent, which was discussed earlier. We
now extend the discussion to some implementation
details of the agents in the system.

Internet Agent: It is a Java Servlet which
responds to web requests. IA communicates with PA and
RA using Datagram Sockets. Using sockets for
communication provides us with the advantage of having
IA either on the central manager node or on a different
web server and still be able to communicate with PA and
RA. For administration related requests, IA first verifies
if the necessary parameters to carry out the task are
submitted, then it concatenates the received parameters in
a particular sequence and passes it on to PA. For status
related requests, IA passes the received query parameters
to RA and displays the output generated by RA to the
user.

Moreover multiple task requests can be batched together
in a file. IA can accept batch files and pass on a request
for each one of the tasks in the batch file to PA. Batching
is very convenient especially when a task has to be
performed on multiple hosts, such as fixing bugs,
installing patches, holiday shutdown etc.

Processing Agent: Receives requests from the IA
using Data- Socket. It decodes the task to be
performed and forms an appropriate data structure, and
then it passes it to SA or RM depending on the task type
using synchronized circular shared buffer object.

Scheduler Agent: It reads from the shared buffer
object of PA and writes it into the tree data structure
(discussed earlier). SA processes the tree in such a way
that the tree always holds the next task to be performed at
the first level. At the scheduled time, SA writes the
request to the shared buffer object of RM.

Request Manager: It reads om the shared buffer
objects of PA and SA, and maintains a priority queue. It
shares this priority queue with AM. AM reads the
topmost request fiom this queue.

Agent Manager: It invokes an appropriate agent
class for the task and migrates the agent to the client
using Grasshopper Agent Plat€orm. It also writes the
status of the tasks to shared buffer object of RA.

Report Agent: It reads from the shared buffer
object of AM and updates the log file for the task status.
RA can search the log file for a task ID, tasks on a
particular host and tasks submitted on a particular day.

Action Agents: They are mobile agent classes.
Each AA is specific to the task and to the operating
platform on which the task has to be performed.

Figure 4 illustrates UML sequence diagram, depicting the
flow of control between agents. This diagram describes
the timing sequence of method calls between different
classes. The flow of control is initiated by user request to
the IA. The arrows in the sequence diagram correspond to
the method calls.

All the stationary agents shown in the UML diagram
(figure 4) are java threads running in parallel. These
agents communicate with each other using either
datagram sockets or circular shared buffers as discussed
earlier. The UML sequence diagram also depicts some of
the important methods used. Flow control starts with a
web request from user to IA either for performing a task
or to know the status of a submitted task. The doPost
method of IA handles these user requests and the
getTaskID method generates a unique task ID for each
task request. The send method of IA transfers the user
request either to PA or RA depending on the type of the
user request.

The send method of IA corresponds to the receive method
in PA which receives the task request. Upon receiving the
request, the decode method of PA determines the type of
the task and calls appropriate method of the GenericDS
class. The writeToMPZ method of PA writes this request
to shared buffer of SA or RM depending on the task
(scheduled or unscheduled).

Let us assume that the task is a scheduled one such as
performing a backup. The SA reads a task request from
the top of the buffer and adds it to SATree using addTusk
method. The SA Tree is processed by processTree method
of SA to arrange the tasks in such a way that the next task
to be performed on the host is at the first level of the tree
as discussed earlier. The taskAvailab1eToPe~or-rn method
of SA periodically checks the SATree to find if any tasks
are available to perform; if available the requests are
written to shared buffer of RM.

RM reads the requests from the buffer shared with SA
and PA and uses its processeueue method to rearrange
the tasks in the queue on a priority basis. The priority
queue maintained by RM is the shared buffer to AM. The
iswriteable method of RM writes the task request to this
priority queue.

The AM reads the priority queue maintained by RM
using isReudable method. This method always reads the
topmost task in the priority queue. For each task read,
AM creates the appropriate AA and migrates it to the
client to perform the task. AA upon completion of the
task, reports the status to AM. AM writes the status of the
performed task to the shared buffer of RA using its report

316

writeTaM P
I
I .

'i-

L

~ vpeTuM PI

run
1

Figure 4 UML Sequence Diagram

Figure 5 ABSA Main Interface

tsR&i?bIe

method. RA reads the shared buffer using isReadabZe
method and writes the status of the task to the log file,
maintained by itself using the process method. The
process method also sorts the log file based on the task
ID.

Figure 5 shows the webbased graphical user interface of
ABSA. System administrators can log in from anywhere
in the world and use the system. Upon choosing a task,
the user gets an interface with parameters specific to that
task. Figure 6 shows the interface for create user account.

317

Figure 6 ABSA: CEate User Account interface

5. SUMMARY

This paper presents ABSA, a new tool for automation of
system administration based on a novel agent-based
architecture. System administration by itself is a
challenging area; besides, the added complexity of
working with different platforms in a heterogeneous
environment is immense. The agent technology in our
architecture, augmented by expert system capabilities,
demonstrates a remarkable capacity for managing these
complexities and producing satisfactory results. By
employing agent technology, ABSA is capable of
distributing the administrative tasks among the computers
in the network and prevents the concentration of the tasks
on a central computer. This gives the system scalability
and more reliability. The first version of the software has
been implemented and the initial results are promising.

REFERENCES

[l] Miller and Donnini, “Relieving the burden of system
administration through support automation” Proceedings-of-
the-Fourteenth-Systems-Administration-Conference-LISA-
XIV. 2000: 167-80

[2] Shoham. Y, “An Overview of Agent-oriented
Programming”, Software Agents, ed J. M. Bradshaw. Menlo
Park, Calif.: AAAl Press. 1997.

[3] S. Rahimi, R. Angryk, J. Bjursell, M. Paprzycki, D. Ali, M.
Cobb and K. Kolodziei, “Comparison of Mobile Agent
Frameworks for Distributed Geospatial Data Integration,”
Proceeding of the 4th Agile Conference on Geographic
Information Science, Brno, Czech, pp. 643-655,2001,

[4] Grasshopper Programmer’s Guide, URL:
http://www. grass hopper .de.

[5] Jess- the Java Expert System Shell, URL:
http://herzberg.ca.sandiagov/jess.

[6] “Software Update via Mobile Agent Based Programming”
Publication: 2002 ACM 1-581 13-445-2/02/03

[7] “The lgor System Administration Tool”, Tenth USENM
System Administration Conference Chicago, IL, USA, Sept.
29-0ct 4, 1996.

[8] “Central System Administration in Heterogeneous Unix
Environment: GeNU Admin” LISA, pp. 1-8, September 19-23,
1994

[9] “WEBMIN:A Web-Based System Administration Tool for
UNW USENIX Annual Technical Conference, San Diego,
California USA, June l8-23,2000.

[lo] Gartner Group. A white paper on Gartner group’s next
generation total cost of ownership methodology, 1997.

318

http://www
http://herzberg.ca.sandiagov/jess

	Southern Illinois University Carbondale
	OpenSIUC
	8-2003

	ABSA: An Agent-Based Tool for System Administration
	Santosh Ramakrishna
	Shahram Rahimi
	Recommended Citation

