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Linearizable Feedforward Systems: A Special Class

Issa Amadou Tall, Member, IEEE

Abstract— We address the problem of linearizability of sys-
tems in feedforward form. In a recent paper [22] we completely
solved the linearizability for strict feedforward systems. We ex-
tend here those results to a special class of feedforward systems.
We provide an algorithm, along with explicit transformations,
that linearizes the system by change of coordinates when some
easily checkable conditions are met. We also re-analyze type
II class of linearizable strict feedforward systems provided by
Krstic in [9] and we show that this class is the unique lineariz-
able among the class of quasi-linear strict feedforward systems
(see Definition III.1). Our results allow an easy computation
of the linearizing coordinates and thus provide a stabilizing
feedback controller for the original system. They can also be
implemented via software like mathematica/matlab/maple using
simple integrations, derivations of functions.

I. INTRODUCTION

L INEAR systems constitute, without doubt, the most
well-known class of control systems. Their importance

resides in the fact that several physical systems can be
modeled using linear dynamics making thus their analysis
and design very simple. The controllability, observability,
reachability, and realization of linear systems have been
expressed in very simple algebraic terms. Another crucial
property of linear controllable systems is that they can
be stabilized by linear feedback controllers. Although not
all systems can be modeled using linear dynamics, the
approximation of nonlinear phenomena by linear models has
proved to be a satisfactory tool for their study. It is not then
surprising that the question of transforming nonlinear control
systems into linear ones has attracted much attention. To give
a brief account of that, consider a control system

Σ : ẋ = f(x) + g(x)u, (x, u) ∈ X × U ⊆ <n ×<m,

defined in an open neighborhood X×U of (0, 0) ∈ <n×<m.
The two problems below were investigated in the early 80’s:
Problem 1. Does there exist a diffeomorphism z = Φ(x)
giving rise to new coordinates system z = (z1, . . . , zn)> in
which the system Σ takes the linear form

ż = Fz +Gu, z ∈ <n, u ∈ <m ?

Problem 2. Did there exist a change of coordinates z = Φ(x)
coupled with an invertible feedback u = α(x) + β(x)v that
transform Σ into a linear system ż = Fz +Gv ?

Both problems were solved independently by Jakubczyk
and Respondek [6], and Hunt and Su [4], who gave necessary
and sufficient geometric conditions in terms of Lie brackets
of vector fields defining the system (see Theorem II.2).
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Although those conditions did provide a way of testing
the (feedback) linearizability of a system, they offer little
on how to find the linearizing change of coordinates (and
feedback) except solving a system of partial differential
equations (PDEs).

In [9] (see also [10]), Krstic considered two classes of
nonlinear systems in strict feedforward form, (type I and
type II), and showed that they are linearizable by providing
explicit coordinates changes. A single-input control system

Σ : ẋ = f(x) + g(x)u, (x, u) ∈ X × U ⊆ <n ×<,

defined in an open neighborhood X ×U of (0, 0) ∈ <n×<
is in strict feedforward form if

(SFF)



fj(x) = fj(xj+1, . . . , xn), 1 ≤ j ≤ n− 1,

fn(x) = 0,

gj(x) = gj(xj+1, . . . , xn), 1 ≤ j ≤ n− 1,

gn ∈ <∗ = < \ {0}

and the system is in feedforward form (FF) if

(FF)

{
fj(x) = fj(xj , . . . , xn), 1 ≤ j ≤ n,

gj(x) = gj(xj , . . . , xn), 1 ≤ j ≤ n.

In providing those classes, Krstic mentioned the difficulty
of finding the linearizing diffeomorphism saying there is
no systematic way of finding those changes of coordinates.
Inspired by his work, we extended the two classes to all
linearizable (resp. feedback linearizable) strict feedforward
systems and proved that there is indeed a systematic way
of finding the linearizing coordinates [22] (resp. feedback
linearzing coordinates [23]). Let us mention that (strict)
feedforward systems have been introduced as early as in the
papers of Teel [24], [25] which have been followed since
by a growing literature [13], [7], [18], [8], [19], [3], [12],
[16], [1], [2], [14], [21], [9], [10], [11], [17], [20], [22].
What made strict feedforward systems appealing is that a
stabilizing feedback controller can always be constructed
when their linear approximation around the equilibrium is
controllable [24], [25].

The objective of this paper is to tackle the feedforward
case. If there is a component fj or gj that is nonlinear
with respect to the variable xj , then finding an explicit lin-
earizing coordinates becomes almost impossible and would
necessitate solving PDEs. For that reason we will restrict
our study to a special class of feedforward systems, called
feedforward-nice, for which the components fj and gj are
affine with respect to the variable xj for all 1 ≤ j ≤ n.
In Section II we will give our first result as an algorithm
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allowing to construct explicitly the linearizing coordinates
in a finite number of steps (≤ (n−1)(n+2)

2 ). In Section III we
will consider a subclass of type II and give necessary and
sufficient conditions for their linearizability.

II. MAIN RESULTS

For reasons mentioned previously, we consider here a sub-
class of feedforward systems (FF) for which the components
fj(xj , . . . , xn) and gj(xj , . . . , xn) are affine with respect to
the variable xj for all 1 ≤ j ≤ n. This subclass, call it
feedforward-nice (FFnice), is described by

(FFnice)


ẋ = f(x) + g(x)u,

fj(x) = xj f̃j(xj+1, . . . , xn) + f̂j(xj+1, . . . , xn),

gj(x) = xj g̃j(xj+1, . . . , xn) + ĝj(xj+1, . . . , xn)

with f̂j(0) = 0, ĝj(0) = 0, fn = 0, and f̃j(0), gn ∈ <∗.
If, in addition, the control vector field g is rectified in the

coordinates x, that is, g(x) = (0, . . . , 0, 1)> ∈ <n, we say
that the (FFnice)-system is control-normalized.

The first result of this paper provides an algorithm for
linearizing (FFnice)-systems and is stated below.

Theorem II.1 (i) Consider a system Σ in (FFnice). There
exists an explicit change of coordinates z = Φ(x) that
transforms Σ into a control-normalized (FFnice)

Σ̄ : ż = f̄(z) + ḡ(z)u, z ∈ <n,

that is, such that

f̄j(z) = zj
˜̄fj(zj+1, . . . , zn) + ˆ̄fj(zj+1, . . . , zn),

1 ≤ j ≤ n− 1

f̄n(z) = 0,

ḡ(z) = (0, . . . , 0, 1)>.

(ii) Any (FFnice)-system that is linearizable can be trans-
formed into a linear controllable system via a diffeomor-
phism x̃ = Ψ(x) whose components are obtained by com-
posing, differentiating, inverting, and integrating those of the
(FFnice)-system using a maximum of (n−1)(n+2)

2 steps.

Let us first point out that (FFnice)-systems form a well-
defined class of feedforward systems that remain invariant
under any change of coordinates x̃ = Ψ(x) of the form
Ψj(x)=xjφj(xj+1, . . . , xn) + ψj(xj+1, . . . , xn),

Ψn(x)=xn,

ψj(0)=0, φj(0) 6= 0,

(II.1)

for all 1 ≤ j ≤ n− 1.
A consequence of Theorem II.1 is that, for linearizable

(FFnice)-systems, we can construct a stabilizing feedback

controller u = −
n∑

j=1

kjΨj(x), where Ψ = (Ψ1, . . . ,Ψn)>

is the linearizing diffeomorphism given by (ii) and the

polynomial p(λ) = λn +
n∑

j=1

kjλ
j−1 is Hurwitz.

Proof of Theorem II.1

A. We will first prove (i) by constructing an explicit change
of coordinates that normalizes the control vector field g.
Step 1. Consider the system Σ : ẋ = f(x) + g(x)u in
(FFnice) form.

We can assume without loss of generality that gn = 1;
otherwise replace xn by xn/gn. We look for a change of
coordinates z = Φ(x) of the form (II.1) whose components
are given by

zj = Φj(x) = xj , j 6= n− 1,

zn−1 = Φn−1(x) = xn−1φn−1(xn) + ψn−1(xn)

in order to annihilate the component gn−1 of the transformed
vector field. This is possible only if we have{

φ′n−1(xn) + g̃n−1(xn)φn−1(xn) = 0,

ψ′n−1(xn) + ĝn−1(xn)φ(xn) = 0.

A solution is given by

φn−1(xn) = exp
(
−

∫ xn

0

g̃n−1(s) ds
)
,

ψn−1(xn) = −
∫ xn

0

ĝn−1(s)φn−1(s) ds.

Hence we can transform the system so as to annihilate
the component gn−1 of the system. Because the change of
coordinates is of the form (II.1), the transformed system is
also in a (FFnice) form.

For simplicity of the exposition, we will always reset the
variable of the transformed system to x after having applied
a change of coordinates z = Φ(x). Before we proceed to the
general step, let us notice that the inverse x = Φ−1(z) of
the diffeomorphism z = Φ(x) is easily computable as:

xj = zj , j 6= n− 1,

xn−1 =
[
zn−1 − ψn−1(zn)

]
exp

∫ zn

0

g̃n−1(s) ds.

General Step. We assume that the system has been trans-
formed, via a sequence of coordinates changes of the form
(II.1), into a (FFnice) form Σ : ẋ = f(x)+g(x)u for which
the components gn−1, gn−2, . . . , gk+1 are all zero. Consider
the kth component of the system which decomposes as

gk(x) = xkg̃k(xk+1, . . . , xn) + ĝk(xk+1, . . . , xn).

We then look for a change of coordinates z = Φ(x) whose
components are given by

zj = Φj(x) = xj , j 6= k,

zk = Φk(x) = xkφk(xk+1, . . . , xn) + ψk(xk+1, . . . , xn)

in order to annihilate the component gk of the transformed
vector field. Because

żk = φk(·)
(
fk(xk, . . . , xn) + gk(xk, . . . , xn)u

)
+

n−1∑
j=k+1

(
xk
∂φk

∂xj
+
∂ψk

∂xj

)
fj(·) +

(
xk
∂φk

∂xn
+
∂ψk

∂xn

)
u,
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we obtain the following PDEs:
∂φk

∂xn
+ g̃k(xk+1, . . . , xn)φk(xk+1, . . . , xn) = 0,

∂ψk

∂xn
+ ĝk(xk+1, . . . , xn)φk(xk+1, . . . , xn) = 0.

A simple solution can be chosen to be

φk(·) = exp
(
−

∫ xn

0

g̃k(xk+1, ..., xn−1, s) ds
)
,

ψk(·) = −
∫ xn

0

ĝk(xk+1, ..., xn−1, s)φk(xk+1, ..., xn−1, s) ds.

We can thus annihilate the kth component of the control vec-
tor field by a change of coordinates (II.1) and still transform
the system into a (FFnice). The inverse x = Φ−1(z) of the
diffeomorphism z = Φ(x) is here given by:

xj = zj , j 6= k,

xk =
[
zk − ψk(zk+1, ..., zn)

]
exp

∫ zn

0

g̃k(zk+1, ..., zn−1, s) ds.

This completes the proof of Theorem II.1 (i) and provides
an algorithm allowing to transform a (FFnice)-system into a
control-normalized (FFnice) form. �
B. Consider a (FFnice)-system. By Theorem II.1 (i), bring it
to a control-normalized (FFnice)-form (keep same notation)

(FFnice)



ż = f̄(z) + ḡ(z)u,

f̄j(z) = zj
˜̄fj(zj+1, . . . , zn) + ˆ̄fj(zj+1, . . . , zn),

f̄n(z) = 0,

ḡ(z) = (0, . . . , 0, 1)> ∈ <n.

Before we proceed to the linearization algorithm, recall the
following from [6] and [4] (see also [5], [15]).

Theorem II.2 A control-affine system Σ : ż = f(z)+ug(z)
is locally equivalent, via a change of coordinates x̃ = Φ(z),
to a linear controllable system ˙̃x = Ax̃+ bu if and only if
(S1) dim span {adq

fg(z), 0 ≤ q ≤ n− 1} = n;
(S2) [adq

fg, ad
r
fg] = 0, 0 ≤ q < r ≤ n.

Above, adk
fg stands for the kth iterative Lie bracket:

ad0
fg = g, adfg = [f, g], . . . , adk

fg = [f, adk−1
f g]

and (A, b) for the Brunovský canonical pair.
Step 1. Condition (S2) of Theorem II.2 for q = 0, r = 1
(denoted by (£n)) implies

(£n) =⇒ ∂2f̄j

∂z2
n

≡ 0, for all 1 ≤ j ≤ n− 1.

The condition (£n) stands for a very strong necessary
condition that is equivalent of saying that all components of
the system should be affine in the variable zn. Thus, if it fails
to be satisfied, the algorithm stops: a change of coordinates
linearizing the system can’t be found. So let us assume that
the condition is satisfied. Since the system is (FFnice) we

have f̄n−1(z) = zn−1
˜̄fn−1(zn) + ˆ̄fn−1(zn) and using (£n)

we have ˜̄fn−1(zn) = αzn and ˆ̄fn(zn) = βzn which implies
f̄n−1(z) = (αzn−1 +β)zn with β ∈ <∗. Replacing zn−1 by∫ zn−1

0
ds

αs+β we obtain f̄n−1(z) = zn.

Now, let us assume that we have found a change of coor-
dinates that brings the (FFnice)-system into a new control-
normalized (FFnice)-system (f, g) for which f̄n−1(zn) = zn

and f̄j(z) = f̄j(zj , . . . , zn−1) for all j = n − 2, . . . , k + 1
for some 1 ≤ k ≤ n− 2.

Consider the kth component and decompose it in the form

f̄k(z) = zk
˜̄fk(zk+1, . . . , zn) + ˆ̄fk(zk+1, . . . , zn)

= Fk(zk, . . . , zn−1)

+ zn

(
zkθk(zk+1, . . . , zn−1) + µk(zk+1, . . . , zn−1)

)
,

where Fk(·) = zkF̃k(zk+1, . . . , zn−1) + F̂k(zk+1, . . . , zn−1)
is affine in zk and independent of the variable zn.

We apply a change of coordinates of the form

x̃j =Ψj(z) = zj , j 6= k,

x̃k =Ψk(z) = zkφk(zk+1, . . . , zn−1) + ψk(zk+1, . . . , zn−1)

that transforms the kth component. We have

˙̃xk =φk

[
Fk + zn

(
zkθk(zk+1, ..., zn−1) + µk(zk+1, ..., zn−1)

)]
+

n−2∑
j=k+1

(
zk
∂φk

∂zj
+
∂ψk

∂zj

)
f̄j(·) +

(
zk

∂φk

∂zn−1
+

∂ψk

∂zn−1

)
zn.

Collecting the affine terms in zk that are coefficients of zn,
we obtain the following PDEs:

∂φk

∂zn−1
+ θk(zk+1, . . . , zn−1)φk(zk+1, . . . , zn−1) = 0,

∂ψk

∂zn−1
+ µk(zk+1, . . . , zn−1)φk(zk+1, . . . , zn−1) = 0.

A simple solution can be chosen to be

φk(·)=exp
(
−

∫ zn−1

0

θk(zk+1, ..., zn−2, s) ds
)
,

ψk(·)=−
∫ zn−1

0

µk(zk+1, ..., zn−2, s)φk(zk+1, ..., zn−2, s) ds.

Thus, the proposed change of coordinates allows to cancel
the terms containing the variable zn in the kth component
of the system. Moreover, it preserves the (FFnice)-form and
the fact that the system is control-normalized because

∂Ψj

∂zn
= 0, 1 ≤ j ≤ n− 1 and Ψn(z) = zn.

The inverse z = Ψ−1(x̃) is easily obtained as following:

zj = x̃j , j 6= k,

zk =
[
x̃k − ψk(x̃k+1, .., x̃n−1)

]
exp

∫ x̃n−1

0

θk(x̃k+1, .., x̃n−2, s) ds.
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It follows that a change of coordinates can be found
that transforms the system into a new control-normalized
(FFnice)-form (we keep same notation)

Σ̄ :



ż = f̄(z) + ḡ(z)u,

f̄j(z) = zj
˜̄fj(zj+1, . . . , zn−1) + ˆ̄fj(zj+1, . . . , zn−1),

1 ≤ j ≤ n− 2,

f̄n−1(z) = zn, f̄n(z) = 0,

ḡ(z) = (0, . . . , 0, 1)> ∈ <n.

General Step. Consider the projection π : <n −→ <n−1

defined as π(z1, . . . , zn) = (z1, . . . , zn−1)>. Let π(Σ) be the
projection of Σ via π : obviously π(Σ) is a (FFnice)-system
in <n−1 control-normalized with control input v = zn. Thus
the necessary condition for linearizability becomes

(£n−1) =⇒ ∂2f̄j

∂z2
n−1

≡ 0, for all 1 ≤ j ≤ n− 2.

We can repeat the same procedure as in Step 1 to construct
the change of coordinates that annihilate the terms containing
the variable zn−1. The same procedure will be repeated
(n− 2) times as long as the corresponding (£k) conditions
are satisfied for the corresponding reduced system. The
diffeomorphism Φ transforming a system into a control-
normalized (FFnice)-form as well as the diffeomorphism
taking the control-normalized (FFnice) into the Brunovský
canonical form are obtained by integrations, derivations,
compositions of the components of the (FFnice)-system, and
control-normalized (FFnice), respectively. It can be easily
verified that there is a maximum of (n−1)(n+2)

2 steps. �

Example II.3 Consider the (FFnice)-system
ẋ1 = x2 + ax1x2 + (1 + ax1)

(
1
2x2 − 1

12x3x4

)
u,

ẋ2 = x3 + 1
2x3u,

ẋ3 = x4 + x4u,

ẋ4 = u

with a ∈ < a real parameter. We can apply the change of
coordinates

x̄1 =
∫ x1

0

1
1 + as

ds, x̄3 = x3 − 1
2x

2
4,

x̄2 = x2, x̄4 = x4

to transform the system into{
˙̄x1 = x̄2 + 1

24

(
12x̄2 − 2x̄3x̄4 − x̄3

4

)
u, ˙̄x3 = x̄4,

˙̄x2 = x̄3 + 1
2 x̄

2
4 + 1

2

(
x̄3 + 1

2 x̄
2
4

)
u, ˙̄x4 = u.

Then, the change of coordinates

x̂1 = x̄1, x̂2 = x̄2 − 1
2

(
x̄3x̄4 + 1

6 x̄
3
4,

)
x̂3 = x̄3, x̂4 = x̄4

transforms the system into{ ˙̂x1 = x̂2 + 1
2 x̂3x̂4 + 1

12 x̂
3
4 +

(
1
2 x̂2 + 1

6 x̂3x̂4

)
u, ˙̂x3 = x̂4,

˙̂x2 = x̂3, ˙̂x4 = u.

Finally, we apply the change of coordinates

x̃1 = x̂1 − 1
2 x̂2x̂4 − 1

12 x̂3x̂
2
4, x̃3 = x̂3,

x̃2 = x̂2, x̃4 = x̂4

to transform the system into a linear one

˙̃x1 = x̃2, ˙̃x2 = x̃3, ˙̃x3 = x̃4, ˙̃x4 = u.

The linearizing diffeomorphism is then computed as

x̃1 =
∫ x1

0

ds
1 + as

− 1
2
x2x4 +

1
6
x3x

2
4 −

1
24
x4

4, x̃3 = x3 − 1
2x

2
4

x̃2 = x2 − 1
2x3x4 + 1

6x
3
4, x̃4 = x4. 4

III. LINEARIZABLE SYSTEMS OF TYPE II

Consider a subclass of (SFF)-forms (type II) given in [9]:

ẋ1 = x2 + g1(x2, . . . , xn)u,
ẋ2 = x3 + g2(x3, . . . , xn)u,

· · ·
ẋn−1 = xn + gn−1(xn)u,
ẋn = u.

(III.1)

Krstic [9] defined recursively µn(xn), . . . , µ1(xn) as:
µn =

1
xn

∫ xn

0

gn−1(s) ds,

µi =
1
xn

∫ xn

0

(
gn−1(s)−

n∑
j=i+1

µj(s)gi+n−j(0, ..., 0, s)
)

ds

(III.2)
for i = n− 1, . . . , 1. Next, he defined the functions γk(xn)
for k = 1, . . . , n in terms of µ1, . . . , µn recursively as:
γ1 = µ′n(xn),

γk =
k−1∑
l=1

γl(xn)µl+n+1−k(xn) + µ′n+1−k(xn).
(III.3)

He then showed that (III.1) is linearizable if

gi(xi+1, .., xn) =
n−1∑

j=i+1

γj−i(xn)xj+gi(0, .., 0, xn). (III.4)

Notice that (III.4) is in the form

gi(xi+1, . . . , xn) =
n∑

j=i+1

βi,j(xn)xj , 1 ≤ i ≤ n−1 (III.5)

with βi,j(xn) = γj−i(xn) and βi,j(xn) = gi(0, .., 0, xn).

Definition III.1 We say that (III.1) is a quasi-linear (SFF)-
system if (III.5) holds for some functions βi,j(xn).

It is clear that (III.1) given by (III.4) is a quasi-linear (SFF)-
system that is linearizable provided the coefficients γk satisfy
(III.3) with µk given by (III.2). Now, does any quasi-linear
(SFF)-form that is linearizable satisfy (III.2)-(III.3)-(III.4)?

Let us first notice that quasi-linear (SFF)-systems can be
represented in the more compact form

ẋ = Ax+ g(x)u = Ax+ bu+B(xn)xu, (III.6)
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where (A, b) is the Brunovský canonical pair, and

B(xn) =


0 β1,2(xn) β1,3(xn) · · · β1,n(xn)
0 0 β2,3(xn) · · · β2,n(xn)
...

...
...

. . .
...

0 0 0 · · · βn−1,n(xn)
0 0 0 · · · 0


is an upper triangular matrix (u.t.m) whose entries are smooth
(resp. analytic) functions of xn. We have the following
characterization about the linearizability of (III.6).

Theorem III.2 The following conditions are equivalent.
(i) System (III.6) is linearizable by change of coordinates.

(ii) There exists an invertible u.t.m M = M(xn) such that{
AM = MA,

Mb+ (MB +M ′)x = b for all x ∈ <n.
(III.7)

(iii) System (III.6) is in the form (III.4) with γk given by
(III.3) and µk given by (III.2).

A consequence of Theorem III.2 is the following algorithm:
Linearization Procedure. Consider the (SFF)-system (III.6).
Step 1: Take the matrix B̂ obtained from B by deleting the
last row and last column. If B̂ is not an u.t.m in Toeplitz
form, then STOP the system is not linearizable.
Step 2: If B̂ is an u.t.m in Toeplitz form, then solve the
first-order ordinary differential equation M̂B̂ + M̂ ′ = 0.
Then solve the 1st equation of (III.9) for i = 2 to find α1,n.
Because M has to be Toeplitz the obtention of M̂ and α1,n

yields that of M by extending the last column and last row.
Step 3: If Bn and Mn denote the last columns of B and M ,
respectively, verify if Mn +xn(MBn +M ′

n) = b. If yes the
system is linearizable by z = M(xn)x; otherwise it is not.
Proof of Theorem III.2 (ii) ⇒ (i) Let M = M(xn) be an
invertible u.t.m satisfying (III.7). Then z = M(xn)x implies

ż = M(xn)ẋ+M ′(xn)xẋn

= M(xn)Ax+
(
Mb+ (MB +M ′)x

)
u

= AM(xn)x+ bu = Az + bu.

• (i) ⇒ (ii) We already proved (see [22]) that a system (III.1)
in <3, with g1(0) = g2(0) = 0, is linearizable if and only if

γ1(x2, x3) = x2γ1(x3) + θ1(x3)

where
γ1(x3) =

d

dx3

(
1
x3

∫ x3

0

g2(s)ds
)
.

If the linearizability condition holds, then the coordinates

z = M(x3)x ,

 z1
z2
z3

 =

 1 α1(x3) α2(x3)
0 1 α1(x3)
0 0 1

  x1

x2

x3


with α1(x3) = − 1

x3

∫ x3

0

g2(s)ds and

α2(x3) = − 1
x3

(∫ x3

0

γ1(s)ds−
∫ x3

0

α1(s)g2(s)ds
)

linearize the system. Thus, the matrix M satisfies (III.7).
Assume the implication true for (n− 1)-dimensional sys-

tems. Let (III.1) be an n-dimensional system linearizable by

z = Φ(x)= (Φ1(x1, . . . , xn),Φ2(x2, . . . , xn), . . . ,Φn(xn))>.

Define the projection

ρ : <n −→ <n−1 by ρ(x1, . . . , xn) = (x2, . . . , xn)>.

The projection ρ(Σ) is a (n−1)-dimensional system lineariz-
able by ρ(Φ(x)) = (Φ2(x2, . . . , xn), . . . ,Φn(xn))>. By the

induction argument we have Φi(x) = xi +
n∑

j=i+1

αi,j(xn)xj

for 2 ≤ i ≤ n with αi,j = αi−1,j−1. Because z = Φ(x)
linearizes the system, we obtain

ż =
∂Φ
∂x

Ax+
∂Φ
∂x

bu+
∂Φ
∂x

B(xn)xu = AΦ(x) + bu

which implies, in particular, that AΦ(x) = LAxΦ(x). In one
hand side Φ2(x) = LAxΦ1(x), and in the other hand side

Φ2(x) = x2 +
n∑

j=3

α2,j(xn)xj = LAx

(
x1 +

n−1∑
j=2

α1,j(xn)xj

)
.

We then deduce that Φ1(x) = x1 +
n−1∑
j=2

α1,j(xn)xj + θ(xn).

Thus the change of coordinates z = Φ(x) is in the form
z = M(xn)x, where M(xn) satisfies (III.7) necessarily.
• (iii) ⇒ (ii) Consider (III.1) and define µk as in (III.2)
and γk as in (III.3). Let βi,n(xn) = gi(0, . . . , 0, xn)/xn and
βi,j(xn) = γj−i(xn) for 1 ≤ i < j ≤ n − 1. We denote by
αi,j(xn) = −µi+1+n−j(xn) for 1 ≤ i < j ≤ n and take
αi,i = 1 for 1 ≤ i ≤ n. Notice that

αi,j(xn)= αi+1,j+1(xn)=··=αi+n−j,n(xn),

βi,j(xn)= βi+1,j+1(xn)=··=βi+n−j−1,n−1(xn).
(III.8)

Define the invertible u.t.m M(xn) =
(
αi,j(xn)

)
1≤i≤j≤n

and the nilpotent u.t.m B by B(xn) =
(
βi,j(xn)

)
1≤i<j≤n

.

We want to show that (M,B) satisfies (III.7).
Because M is Toeplitz, AM = MA is trivial. Remark

that Mb+(MB+M ′)x = b for all x ∈ <n is equivalent to:

αi−1,n +
n∑

k=i−1

n∑
j=k+1

αi−1,kβk,jxj +
n∑

j=i−1

α′i−1,jxj = 0

for any 2 ≤ i ≤ n and for all x ∈ <n. This latter condition
is equivalent to the following two conditions:
αi−1,n +

n−1∑
s=i−1

αi−1,sβs,nxn + α′i−1,nxn = 0,

βi−1,j +
j−1∑
s=i

αi−1,sβs,j + α′i−1,j = 0

(III.9)

for all 2 ≤ i ≤ j ≤ n−1. The 1st equation of (III.9) rewrites

µi(xn)−βi−1,n(xn)xn+
n−1∑
s=i

µi+n−s(xn)gs(xn)+µ′i(xn)xn=0
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which is equivalent to (we recognize (III.2) after integration)

(xnµi)′ = gi−1(0, . . . , 0, xn)−
n∑

j=i+1

µjgi+n−j(0, . . . , 0, xn).

The 2nd equation of (III.9) is equivalent to

γj−i+1(xn)−
j−1∑
s=i

µi+n−s(xn)γj−s(xn)− µ′i+n−j(xn) = 0.

Taking k = j − i+ 1 and l = j − s, the above is equivalent
to (compare with (III.3))

γk(xn) =
k−1∑
l=1

µl+n+1−k(xn)γl(xn) + µ′n+1−k(xn).

• (iii) ⇒ (ii) Consider the system (III.6) and assume that
M(xn) =

(
αi,j(xn)

)
1≤i≤j≤n

exists and satisfies (III.7).

Define µk and γk such that for 1 ≤ i < j ≤ n − 1 we
have βi,j(xn) = γj−i(xn) and for 1 ≤ i < j ≤ n we
have αi,j(xn) = −µi+1+n−j(xn). This is possible provided
that (III.8) is satisfied. That’s the only point we need to
clarify because Mb + (MB +M ′)x = b for all x ∈ <n is
already equivalent to (III.2)-(III.3)-(III.4). The 1st condition
of (III.8) is satisfied since AM = MA. Let M̂ and B̂
denote respectively the matrices M and B with the last row
and last column deleted. Mb + (MB + M ′)x = b for all
x ∈ <n implies that M̂B̂+M̂ ′ = 0. The matrix M̂ being in
Toeplitz form (hence is M̂ ′) and invertible, it thus follows
that B̂ = M̂−1M̂ ′ is also in Toeplitz form. �

Example III.3 Reconsider Example II.3 and assume a = 0:{
ẋ1 = x2 +

(
1
2x2 − 1

12x3x4

)
u, ẋ3 = x4 + x4u,

ẋ2 = x3 + 1
2x3u, ẋ4 = u.

This is a quasi-linear (SFF)-system in <n (n = 4) with

B=


0 1

2 − 1
12x4 0

0 0 1
2 0

0 0 0 1
0 0 0 0

 and B̂=

 0 1
2 − 1

12x4

0 0 1
2

0 0 0


We search for an invertible u.t.m

M̂=

 1 α1,2(x4) α1,3(x4)
0 1 α1,2(x4)
0 0 1


such that M̂B̂ + M̂ ′ = 0. This yields the system of ODEs:

α′1,3(x4)−
1
12
x4 +

1
2
α1,2(x4) = 0, α′1,2(x4) +

1
2

= 0.

A solution is α1,2(x4) = − 1
2x4 and α1,3(x4) = 1

6x
2
4. The 1st

equation of (III.9) for i = 2, β1,4 = β2,4 = 0, β3,4 = 1 gives

α1,4(x4) + α1,3(x4)x4 + α′1,4(x4)x4 = 0.

Its solution is α1,4(x4) = − 1
24x

3
4. Thus z = M(x4)x is as

z1 = x1 − 1
2x2x4 + 1

6x3x
2
4 − 1

24x
4
4, z3 = x3 − 1

2x
2
4,

z2 = x2 − 1
2x3x4 + 1

6x
3
4, z4 = x4.

We rediscover the coordinates in Example II.3 for a = 0. 4
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