
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Computer Science

10-2003

MPIAB: A Novel Agent Architecture for Parallel
Processing
Shahram Rahimi
Southern Illinois University Carbondale, rahimi@cs.siu.edu

Ajay Narayanan
Southern Illinois University Carbondale

Meha Sabharwal
Southern Illinois University Carbondale

Follow this and additional works at: http://opensiuc.lib.siu.edu/cs_pubs
Published in Rahimi, S., Narayanan, A., & Sabharwal, M. (2003). MPIAB: a novel agent architecture
for parallel processing. IEEE/WIC International Conference on Intelligent Agent Technology, 2003.
IAT 2003, 554-557. ©2003 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE. This material is presented to ensure timely
dissemination of scholarly and technical work. Copyright and all rights therein are retained by
authors or by other copyright holders. All persons copying this information are expected to adhere to
the terms and constraints invoked by each author's copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder.

This Article is brought to you for free and open access by the Department of Computer Science at OpenSIUC. It has been accepted for inclusion in
Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Rahimi, Shahram, Narayanan, Ajay and Sabharwal, Meha. "MPIAB: A Novel Agent Architecture for Parallel Processing." (Oct 2003).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

MPIAB: A Novel Agent Architecture for Parallel Processing

Shahram Rahimi, Ajay Narayanan, Meha Sabharwal

Department of Computer Science, Southern Illinois University

MailCode 4511, Carbondale, Illinois 62901

{rahimi,anara,meha}@cs.siu.edu

Abstract

This paper presents MPIAB, an agent based

architecture for parallel processing. The architecture is

developed to model the functions of standard MPI using
java agents. It remedies the deficiencies that exist in MPI,

including the incapability to operate in heterogeneous

environments. The architecture also addresses other
issues such as effective utilization of system resources by

dynamically selecting the least busy computing nodes

through the computation of a threshold barrier value. Our
proposed agent architecture would integrate the power of

Java technology and agents to support efficient

communication and synchronization of the nodes over the
network for parallel processing.

1. Introduction

The need for parallel processing is increasingly

recognized and is now regarded as an indispensable tool

for various problem domains. The existing de facto

standards for parallel processing are PVM and MPI. PVM

stands for Parallel Virtual Machine. It enables a collection

of different computer systems to be viewed as a single

parallel virtual machine and communicate by message

passing. It operates on a collection of homogeneous or

heterogeneous UNIX computer systems in single or

multiple networks. MPI stands for Message Passing

Interface. The goal of MPI, simply stated, is to develop a

widely used standard for writing message-passing

programs. It attempts to establish a practical, portable,

efficient, and flexible standard for message passing in a

homogeneous environment [1].

The possibility for advancing these traditional parallel

models paves the path for the introduction of MPIAB

(Message Passing Interface-Agent Based), agent

architecture for parallel processing. MPIAB addresses

two major problems faced by both MPI and PVM

traditional models. Firstly, they do not offer automatic

node selection for participating computers in the parallel

process, so load balancing of the network is not possible.

Secondly, they are not fully platform independent;

therefore, interoperability between different kinds of

implementations is not easily possible, hence codes are

not portable.

Lack of elaborate scheduling mechanism for efficient

submission of processes in MPI and PVM, leads to

inefficient parallel execution of codes. MPIAB addresses

the automatic node selection problem by the use of

agents, which select the least busy nodes to participate in

the process. The platform independence is achieved by

the selection of Java as the language support for this

architecture.

The major design objective of MPIAB is to optimize

the scheduling mechanism and to provide an improved

load balancing scheme via the use of resource

management agents that select the least busy nodes based

on a threshold value. MPIAB uses agent cloning which

subsumes agent migration with less overhead. This is

because agent cloning does not require the agent state to

be transferred to the destination. MPIAB models MPI

which is more widely used standard for parallel

computing compared to PVM. The closest related work to

MPIAB is Mobile Agent Team System (MATS) [2].

MATS is developed to extend the concept of PVM

architecture. MATS architecture is quite impressive but

lacks the support for automatic load balancing (selection

of the least busy nodes) which our architecture provides.

The remaining parts of the paper are organized as

follows: section 2 presents the proposed agent

architecture. Section 3 and 4 discuss the behavior of the

system and its design and implementation specifications.

Finally, section 5 summarizes the discussion and sets a

course for future work.

2. MPIAB architecture

In general, the architecture employs Java agents at

different functional levels to accomplish parallel

processing tasks in a heterogeneous environment. The

application, we are developing using the architecture, has

a GUI as the front end through which a user interacts with

the MPIAB environment to submit a parallel processing

task.

Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology (IAT’03)
0-7695-1931-8/03 $ 17.00 © 2003 IEEE

 There are four main types of agents in this

architecture:

Manager Agent

Resource Agent

Task Agent

Collecting Agent

2.1 Manager agent (MA)

The MA is a persistent stationary agent which resides

on the root node (terminal with which the user interacts).

Every participating node in the network, where users are

allowed to submit jobs from, has a MA. The MA receives

tasks (parallel program to be executed) from the user

through a GUI, generates the task agents (described

below) with the help of the local agency and distributes

them to the dynamically selected least busy nodes in the

network, the number of which has specified by the user.

To allocate the least busy nodes for the task, the MA

sends requests to the resource agents, located on the hosts

available to the system (described below). If the response

performance value returned by a resource agent is greater

than the selected threshold value, then the corresponding

node is chosen to be a prospective candidate for node

allocation. The threshold value is an adjustable value

which can be incremented or decremented by the user and

is calculated based on the memory and CPU utilization of

the system. In this way, the system randomly selects a set

of nodes from the list of the prospective candidates (the

least busy nodes) to participate in the process.

The MA retrieves physical addresses of the selected

hosts from a local data structure called HostRegistry (HR)

that contains tuples of the hostname and IP address for

each node in the network. It then generates task agents

and disperses them to the corresponding selected hosts.

For the root node, MA generates a Local Task Agent

(LTA).We talk more about MAs and LTAs when we

describe the behavior of the system.

2.2 Resource agent (RA)

On receiving a request from the MA for node

allocation, RA computes a performance value for the

node on which it resides based on memory and CPU

utilization and returns this value as a response to the MA.

2.3 Task agent (TA)

Created by the MA, the TA contains a data structure

called SubHostRegistry referred to as SHR (which is a

sub-domain of the HostRegistry data structure and

contains tuples of type [IP, rank]) and an executable task

code. The SHR contains information about the selected

nodes (computers participating in the process).The TA is

also associated with a Transfer Handler Tree Structure

(THT) for storing the received data, which is described

below.

The TA initially creates a collecting agent to collect the

incoming data from the sender threads of other TAs and

places them in the local THT. It then begins the execution

of its task code. On encountering certain communication

function calls, such as Send in the task code, it generates

the sub-task threads (discussed in the next paragraph).

After the task code runs to completion, the task agent

suspends the CA and sends the computed results back to

the MA to be displayed to the user via the GUI. The TA is

then terminated.

The sub-task threads are spawned by the TAs to

perform Send related functions. The need for threads as a

medium of communication between TAs arises in the case

that a TA is delayed by the communication process. By

spawning a separate thread to take care of the Send

function, the execution of the code base and the

communication can take place simultaneously thereby

maintaining the characteristic parallelism of the system.

When a TA needs to communicate with another TA, it

generates a thread with the destination address and data to

be sent. The thread looks up the destination from the local

SHR to retrieve the physical address of the destination

node. The Send thread, spawned by the source TA,

passes the message to the remote ‘putData’ method of the

destination CA and invokes it. This method puts the data

in the THT structure. When a Receive function is

encountered then the left most node’s data is collected

from the THT (deleting that node) and stored in the

buffer. At the end of the process, the computed result is

passed back to the MA.

Transfer Handler Tree (THT). This data repository

class holds a tree data structure and synchronized member

functions for its manipulation. Both the CA and the TA

have access to the THT. In this structure, the root node at

the top level is followed by a level of nodes, each

representing a participating computer in the process

(called the source node). Multiple receive requests for the

same source node are identified by a tag or label at the

second level. At the next level, each node represents the

data sent by the respective source. The CA stores the

incoming data in the tree data structure and then notifies

the TA. The TA retrieves the data (and deletes the data

node) by traversing the tree in pre-order (the left most

node is read first). We refer the reader to figure 1 for the

THT structure.

2.4 Collecting agent (CA)

Generated by the TA, the CA monitors the THT for

synchronizing communication between TA’s. The CA has

access to the tree structure, requested by the TA threads.

Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology (IAT’03)
0-7695-1931-8/03 $ 17.00 © 2003 IEEE

r

N1 N2 N3

T1 T3T2

Data Data Data

tag nodes identifying each request

roo t node

data nodes

participating

nodes

The CA collects the data from the thread of the message-

sender TA. It creates a child node holding the data and

appends it to the corresponding parent source node of the

tree structure, and also notifies the TA. At the end of the

communication operation CA is terminated by its TA

when the task agent completes execution.

3. Behavior of the system

 In this section, the behavior of the system for more

common MPI functions is presented.

Scenario 1: Send-receive function call

Consider a scenario where a user runs a parallel

program on node N1 in the network. We refer the reader

to figure 2 for the illustration of the scenario. The user

interacts with the MPIAB GUI by passing the executable

task code and the number of nodes to the system. The

MA1 sends a request for node allocation to the other nodes

in the network. To respond to the request, the RA (created

by the MA) on each node computes a performance value

for the local node and sends the value to MA1. Comparing

these response performance values with the corresponding

threshold, the MA selects a set of least-busy nodes for the

process. Then, the MA generates a TA for each selected

node (nodes participating in the parallel process) and

writes the list of all the selected nodes to the SHRs of the

TAs. The system also generates a LTA on the root node

(N1). The TAs, after reaching the destination nodes, binds

with the local agencies. Each TA then generates a CA to

mediate access to the data repository class THT and starts

execution of its task code.

Consider the case when N3 wants to send data to N2

(N2 doing a corresponding receive).On encountering a

Send function call in its task code, TA13
1 spawns a thread

that holds the message to be sent and also the destination

rank of the node to be sent to (obtained by referencing the

SHR). The send thread invokes the CA’s method to put

the data in the THT. Then, TA12, on finding the

corresponding Receive function call in its task code,

collects the data from the tree data structure (THT) based

on the rank of the source computer. If the Receive is

encountered in the code before the data is actually put in

the THT by the Send thread, then the destination TA

must periodically check the tree for the messages until the

data is available.

CA: Collecting agent HR: Hostregistry LTA: Local task agent
MA: Manager agent N: Node RA: Resource agent
SHR: Subhostregistry TA: Task agent T: Thread
THT: Transfer handler tree

Scenario 2: BroadCast function call

Broadcasts a message from the process with rank ‘root’

to all other processes of the group. Consider the MPI

function MPI_Bcast as a case study which has the

signature:

int MPI_Bcast (void *buffer, int
count, MPI_Datatype datatype, int
root, MPI_Comm comm)

This function is modeled in MPIAB as follows:

On the ‘root’ node, when the TA encounters an

MPIAB_Bcast function call, it generates threads for

sending the data in ‘buffer’ to all the other nodes present

in the network. In every other node (other than the root),

when the TA encounters an MPIAB_Bcast function call,

it retrieves the data from its THT.

1 TA13 refers to the task agent of node 3 created by the manager agent of

the node 1.

 N2N3

N1

TA13

T
SHR

MA1 RA1

 HR

LTA

MA3 RA3

 HR

THT THT TA12

CA13

CA12

MA2 RA2

HR

SHR

TFigure 1. Transfer handler tree

Figure 2.Send-receive communication scenario

Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology (IAT’03)
0-7695-1931-8/03 $ 17.00 © 2003 IEEE

 Figure 3. UML sequence diagram

MA RA TA Mpiab_pkg

CreateRA

computePerfVal

createTA

createCAServerProxy

 createCA

createEnvObject

executeCodeBase

MPIAB_Init

MPIAB_Send

MPIAB_Recv

 MPIAB_print

getCAserverProxy

createMAServerProxy

initTA

 createSendThread

 putIntoTHT

getData

CA THT

 putData

printbuffer

getCode&NumNodes

 CreateSHR

Scenario 3: Gather function call

Gathers values from a group of processes. Consider

the MPI function MPI_Gather as a case study which

has the signature:

int MPI_Gather (void *sendbuf, int
sendcnt,MPI_Datatype sendtype,void
*recvbuf,int recvcount, MPI_Datatype
recvtype,int root, MPI_Comm comm)

This function is modeled in MPIAB as follows:

When the TA on a node with rank equal to ‘root’

encounters an MPIAB_Gather function call, it collects

data from the THT for all the participating nodes. On the

nodes with rank other than ‘root’, the TAs, on

encountering the same function, generate threads for

sending data in ‘sendbuf’ to the ‘root’.

Scenario 4: Scatter function call

Sends data blocks from one task to all other tasks in a

group. Consider the MPI function MPI_Scatter as a

case study which has the signature:

 int MPI_Scatter (void *sendbuf, int
sendcnt, MPI_Datatype sendtype, void
*recvbuf, int recvcnt, MPI_Datatype
recvtype, int root,MPI_Comm comm)

This function is modeled in MPIAB as follows:

For the ‘root’ node, the TA generates threads for

sending blocks of data of size ‘sendcnt’ from ‘sendbuf’

when the MPIAB_Scatter function is invoked. For

every other node, the TA retrieves the data from THT

with the source node equal to ‘root’ and ‘recvbuf’ as the

receiving buffer of size ‘recvcnt’.

4. Design and implementation specifications

The first version of MPIAB is being implemented on

the Grasshopper platform. The implementation of the

scenarios of “Send”, “Receive”, “BroadCast”and

“Gather” is complete. As an initial step to develop the

complete system, we have worked out a design strategy

for send-receive communication scenario. This

incorporates the key steps and the flow of control between

the different modules of MPIAB.

A UML sequence diagram, depicting the flow of

control between modules, is shown in Figure 3. This

diagram describes the timing sequence of method calls

between different classes.

5. Summary

In this paper, we discussed the design of MPIAB, an

agent-based heterogeneous MPI environment for parallel

processing. We have addressed two major concerns: The

first regards effective utilization of system resources

through the selection of the least busy nodes, and the

second concerns the support for heterogeneous operability

through the use of Java based agents. Agent technology

has the potential to manage these complexities and to

produce satisfactory results. Grasshopper environment is

used for the implementation of MPIAB. The performance

evaluation of separate modules of MPIAB looks

promising; however, a thorough evaluation of the system

will be performed upon completion of the

implementation.

6. References

 [1] The MPI Forum.The MPIMessage Passsing

 Interface Standard ,

 URL:http://www.mcs.anl.gov/mpi/mpi-

 report/mpi-report.html,Dec 1995.

[2] Hercock Ghanea-R ;Colis-J.C.;Ndumu-D.T,” Co-

 operating Mobile Agents For Distributed Parallel

 Processing “.

Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology (IAT’03)
0-7695-1931-8/03 $ 17.00 © 2003 IEEE

	Southern Illinois University Carbondale
	OpenSIUC
	10-2003

	MPIAB: A Novel Agent Architecture for Parallel Processing
	Shahram Rahimi
	Ajay Narayanan
	Meha Sabharwal
	Recommended Citation

