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Robustness of Decentralized Tests with 
€-Contamination Prior 

Chandrakanth H. Gowda and R. Viswanathan, 
Senior Member, IEEE 

Absfract- We consider a decentralized detection problem where the 
prior density is not completely known, but is assumed to belong to an E -  
contamination class. The expressions for the infimum and the supremum 
of the posterior probability that the parameter under question is in a given 
region, as the prior varies over the e-contamination class, are derived. 
Numerical results are obtained for a specific case of an exponentially 
distributed observation and an exponentially distributed nominal prior. 
Asymptotic (as number of sensors tends to a large value) results are also 
obtained. The results illustrate the degree of robustness achieved with 
quantized observations as compared to unquantized observations. 

Zndex Terms-Decentralized detection, e-contamination prior, posterior 
robustness. 

I. INTRODUCTION 
Research issues in decentralized detection problems have re- 

ceived increased attention in recent years. Tenny and Sandell [ 11 ex- 
tended the classical Bayesian decision theory to distributed Bayesian 
detection problems, in particular to a two-sensor system. Later 
works include a generalized Bayesian formulation of the distributed 
detection problem [2], a decentralized version of the sequential 
Bayesian hypothesis testing problem [3], [4], a survey of results 
on decentralized detection [ 5 ] ,  distributed locally optimal detection 
[6],  and robustness issues in decentralized detection [7], [8]. In [7], 
Veeravalli, Basar, and Poor have studied the decentralized detection 
problem in which the distribution of a sensor observation is not 
completely specified. They have found that under a very general 
regularity condition on the distribution of the observations, the least 
favorable density for a decentralized detection problem is exactly the 
same as the least favorable density for the corresponding centralized 
detection problem. 

We have looked into the posterior robustness in a decentralized 
binary hypothesis testing problem where the prior distribution is 
not completely specified. Specifically, we have applied the work 
of Berger [9] on centralized hypothesis testing to the decentralized 
case. The posterior distribution of the parameter 0 given observation 
z (denoted by n(0lz)) combines the prior beliefs about 0 with 
the information about 0 contained in the sample observation z, 
to give a composite picture of 0. We consider a system of n 
sensors and a fusion center. The ith sensor receives an observation 
X , , i  = 1 , 2 , . . . , n  . When conditioned on O , X I , X Z , . . . , X ,  are 
a set of independent and identically distributed random variables 
with a marginal density function f(zl0). f is assumed to be known 
completely. The prior for O , x ( O ) ,  is not known completely but is 
known to belong to an €-contamination class Q 

*:.(e) = (1 - .)x,(O) + E Q ( 0 ) .  (1)  
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In (l), E is a positive fraction, x ,  is known completely, and q is 
considered to belong to the set of all distributions. Let C denote a 
subset of the parameter space. The three different cases considered 
are as follows. 

a) All observations, X I ,  X z , .  . . , X ,  , are given to the fusion 
center and no decision is made. In this case we compute the 
supremum and the infimum of P(0 E C ( X 1 ,  X 2 , .  . . , X , )  as 
the prior varies over the €-contamination class. 

b) A decision U, based on the observations X I ,  X Z ,  . . . , X ,  
is made at the fusion center. In this case we compute the 
supremum and the infimum of P(0 E ClU,). 

c) The fusion center makes decision U, based on the decisions 
made at the sensors. We compute the supremum and the 
infimum of P(@ E ClU,). 

Case a), which corresponds to centralized detection, is considered so 
that the losses associated with quantization in the other two cases 
can be assessed. 

For illustration we take a specific case where the observations X ,  
and the nominal distribution of 0 are exponentially distributed, and 
the confidence inlerval C = (O,O,),O,>O. Another case where 
these variables are normally distributed is considered in [lo]. The 
conclusions drawn from the normal example are similar to those 
presented here. 

This correspondence is organized as follows. For the three scenar- 
ios, we state the equations for the infimum and the supremum of the 
posterior probabilities in Section II and discuss the numerical results 
obtained in Section III. In Section IV, the convergence of the posterior 
probabilities for a large number of sensors is discussed. In Section V, 
we consider an optimization problem in terms of the choice of k in 
the k-out-of-n fusion rule. Section VI concludes this correspondence. 

11. POSTERIOR ROBUSTNESS OF DECENTRALIZED TESTS 

Consider the following hypothesis testing problem: 

H,: 0 E C (0 5 0,) versus H I :  0 E ?? (0 > 0,). 

Based on the scheme chosen, either i) each sensor sends its ob- 
servation directly to the fusion center or ii) each sensor sends its 
decision to the fusion center. Let U, -r l(0) represent the action 
that the fusion center decides the hypothesis H l ( H , ) .  Similarly, 
U, = l(0) represents the ith sensor decision favoring hypothesis 
Hl(H,) .  In case c), the fusion rules considered are k-out of- 
n rule&", AND(k = n), OR(k  = l), Majority Logic (k = 
n + 1/2, n odd). The k-out-of-n rule implies U, = 1 if and only if at 
least k of the U,'s equal 1, where the integer k satisfies 1 5 k 5 n. 

The calculation of the posterior probabilities for an -E-contamination 
class of priors and a single observation is given in Berger [9]. The 
infimum and the supremum posterior probabilities for such a case 
are given by 

(2) 
N 

1--E 

inf P ~ ( " ~ ) ( o  E C )  = 
a€* M + E Z  

sup P"(+)(O E C )  = 1 - 
r€Q M + E Y  

(3) 
M - N 

1--E 
where M = m ( z l x , )  is the marginal density of the observation X ,  
with the nominal prior x o ( 0 ) ,  Po is the posterior probability that 
0 E C,  with the nominal prior 

N = MP,, 2 = sup f(zl0) 
sec 
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Scheme M Z 

.. s"-' -' 1 p - 1  --s 
(-)n -,(coin) 
80 /n  r ( n )  

S E  c 

1165 

Y 

e-" n" - 
sr(n) 

Case(a) Same as in SE C 

I 

Interchange Z and Y shown for SE C 

and 

Y = sup f(zl0). 
e m  

If M is written as se I d 0 ,  then N is simply sC I d @ .  In (2) and 
(3) the notation 7r E 9 shows that the extremum probabilities are 
obtained for the 9 class of priors. For notational simplicity, 7r E 9 
is omitted from the rest of the material. One can straightforwardly 
extend (2) and (3) to the three scenarios mentioned earlier. For exam- 
ple, replace the single observation z with the vector (ZI,XZ, . . . , 2,) 
or with a sufficient statistic s, if it exists, for a), replace the single 
observation z with the fusion decision U, for c), etc. Also, in cases b) 
and c), where the random variable of interest is discrete, the densities 
in (2) and (3) are replaced by appropriate probabilities. 

In the sequel, we assume an exponential distribution with mean 0, 
for the observation, and an exponential nominal prior with mean A, 
for 0. Sensor decision U, can be written as U, = U ( X ,  - t), where 

1, x, 2 t  
0, otherwise. U ( X ,  - t )  = 

In case b), the fusion center decision based on sufficient statistic 

s = 1 /n  x, 
* = 1  

is given by 
U,=l 

u,=o 
S $ h  

where h is a threshold. Therefore, the infimum and the supremum 
posterior probabilities for different cases a), b), and c) can be derived 
[lo]. The derivations are straightforward but care must be exercised 
in the evaluation of 2 and Y. The expressions for M, 2, and Y are 
given in Table I. 

111. NUMERICAL RESULTS 
In all of the numerical results, we have assumed X = 1, E = 0.1, 

and 0, = 1. Fig. 1 shows the posterior probability for different 
values of the sufficient statistic s. This describes the situation of 
a), where all sensor observations are available at the fusion center 
and the extrema of P(O E CIS) are computed. As seen in Fig. 1, 
both the posterior probabilities are very high when s is close to zero 
and are low for sufficiently large values of s. For example, if n = 5 
and s = 3, then the supremum and the infimum probabilities are 
0.009799 and 0.00131, respectively. That is, with the observation 
s = 3, small values for the two probabilities indicate that one can 
confidently decide on hypothesis H I ,  in spite of the fact that the prior 
is not known completely. The data s = 3 exhibit strong posterior 
robustness. Also we can observe that as n tends to infinity, 

This shows that s correctly estimates the parameter. The prior being 
not known completely does not entail any loss of information because 
we have a large number of (unquantized) observations from f(zl8). 
The same inference is validated by the asymptotic analysis in Section 
IV. 

Fig. 2 describes the situation of b), where the fusion center makes 
a decision U,  based on S. When U, = 1, we would like the posterior 
probability to be as small as possible (ideally zero) and when U, = 0, 
we would like the posterior probability to be as large as possible 
(ideally one). However, as seen from the figure, this is not possible. 
The performances of case b) and case a) can be compared by taking 
some specific values for the design parameters. Consider n = 5 
and h = 2. If the sufficient statistic s observed is, say 2.2, the 
decision in case b) would be U, = 1, and from Fig. 2, with h = 2, 
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Fig. 1. Posterior probability versus sufficient statistic. 
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Fig. 2. Posterior probability versus threshold for case-b). 

the corresponding supremum and infimum probabilities are 0.03306 
and 0.005585, respectively. For case a), with s = 2.2 in Fig. 1, the 
two corresponding probabilities are 0.08052 and 0.01785. Therefore, 
for a relatively weak data close to the threshold, case b) exhibits a 
slightly better robustness than case a). On the other hand, if s = 4, 
the two probabilities corresponding to case b) are unchanged, but the 
two corresponding probabilities for the central case are 0.00044 and 
0.000034. Certainly with a strong data, the central scheme exhibits 
superior posterior robustness. The loss due to quantization is evident. 

Figs. 3-5 describe the situation of c), where the fusion center 
makes a decision U, based on the sensor decisions (U1, U Z ,  . . . , Un). 
Figs. 3-5 correspond to the AND, OR, and ML rules, respectively. 
For the AND rule, for both U, = 1 and 0, the posterior probabilities 
decrease as the number of sensors increases as shown in Fig. 3. 
This monotonicity is proved theoretically in the Appendix . Even 
though, with an increasing number of sensors, the decrease of the 
posterior probability for U, = 1 is desirable, this is achieved at the 
cost of decreasing probability for the U, = 0 case. Recall that a 
higher posterior probability is desirable when the decision U, = 0 is 
made. The effect of the loss of information due to I-bit quantization 
of sensor observations on the robustness of posterior probability is 
evident from the figure. Also, even though a large t would achieve a 
desirable vanishing probability when U, = 1, this would also produce 
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Fig. 3. Posterior probability versus sensor threshold for the AND rule. 
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Fig. 4. Posterior probability versus sensor threshold for the OR rule. 

a posterior probability of lowest possible value for U, = 0. Therefore, 
as a compromise, a not too large or a not too small t value is needed. 
For the OR rule, the posterior probabilities increase as the number of 
sensors increases (Fig. 4). This behavior is opposite to that of AND. 
At any given t, the behavior of posterior probabilities with increasing 
n is desirable for U, = 0 and is undesirable for U, = 1. As in the 
AND case, a compromise t value is required for OR as well as for 
ML (Fig. 5) rules. A quantitative comparison of cases b) and c) has 
to take into account many possible choices for the values of t and 
h. Because of greater quantization of data in c) as compared to b), 
the former is, in general, less robust than the latter. In Section V we 
consider the choice of k in the k-out-of-n rule, from a worst case 
viewpoint. 

IV. ASYMPTOTIC PERFORMANCE 

In this section, the convergence of posterior probabilities as n 
become large is considered. We consider only situations a) and b). 
The analysis of case c) is in general more involved when either the 
sensor threshold changes with n and the fusion rule is fixed or when 
the sensor threshold is fixed and the fusion rule is dependent on n 
11 11. 
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Fig. 5 .  Posterior probability versus sensor threshold for majority logic rule. For the parameters values as in (IO) 

inf P"(81uo=o)(B E C )  =0.5689, at h = 03 (19) 
Case a ) :  In this case, where the sufficient statistic is available at 

the fusion center and no decision is made, we see from the expression 
for M in Table I, that as n increases without bound 

SUP p"(elvo=o)(B E C )  = 0.6689, at h = 00 (20) 

Ideally we would like 

p"(@luo=1)(@ E C )  = 0 
l i m - = { 1 1  N S E C  

n-m M 0 s e c .  
Using this value of N / M ,  (2) as well as (3), and Table I, we get and 

(4) 

1, S E C  
(6 E C )  = { 0. s @ c. 

But this is not achieved, whatever may be the value of h. Because a 
decision (1-bit quantization) is made, there is a loss of information. 
Therefore, even with a large number of observations, one cannot 
compensate for the quantization loss. However, the best performance 
is obtained when h is chosen as a number arbitrarily close to 8,. This 
makes sense because 8, is the boundary between the hypotheses, the 
sufficient statistic S asymptotically estimates 8 correctly, and best 
inference regarding the hypotheses is achieved when S is compared 
to 8,. 

( 5 )  sup P"(@I.) 

Hence, a perfect decision is possible. 
Case b): Asymptotically, as n 4 M, the sufficient statistic 

s = - p c  1 "  
n 

1=1 

is degenerate at S = 8. As n becomes unbounded, we get 

1, h<O 
0, h>B P(U, = 118) = P(S > h(8) = 

(7) 
1, h > 8  
0, h<B. P(Uo = 010) = P ( S  < hlB) = 

Using (2), (3), (6), (7), and Table I, we obtain the following results 
vol. 

Case i): Let U, = 1 and h < 8,. 

If we let 

8, = 1, X = 1, and -E = 0.1 (10) 

then we get 

inf Pff('lu0=l)(8 E C) =0.5689, at h = 0 (11) 

sup Pr(e1uo=1)(8 E C) =0.6689, at h = 0. (12) 

v. OFTIMAL k IN k-OUT-OF-?l COUNTING FUSION RULE 
It is desirable to have a high posterior probability when U, = 0 

and at the same time have a low posterior probability when U, = 1. 
Keeping this in mind, let us use the following criterion. For a specific 
value of IC in the k-out-of-n fusion rule, we place a lower bound 
on the infimum posterior probability when U, = 0 and find the 
sensor decision threshold t k  that attains the lower bound. We then 
find the supremum posterior probability given U, = 1 when the 
threshold equals t k .  This is repeated for all values of k. The value of 
k that gives the lowest of the supremum posterior probabilities given 
U, = 1 is found and we call this optimal k among the k-out-of-n 
fusion rules. 

The values of -E, A, and 8, are the same as in (IO). The lower bound 
for the infimum posterior probability when U, = 0 is 0.9 in Table I1 
and is 0.8 in Table 111. As we can see from Tables I1 and 111, for the 
case of an exponentially distributed observation and an exponentially 
distributed nominal prior, the optimal k is close to or equal to 1. That 
is, for small values of n, the optimal rule is nearly the OR rule for this 
exponential example. The result in [ 101 for the normal example shows 
that the optimal rule is nearly the ML rule. In any case, given the 
observation density, the contamination proportion, and the nominal 
prior, an optimal k in the above sense can be obtained. 
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TABLE 11 
OFTIMAL k FOR DIFFERENT R 

TABLE 111 
ORIMAL IC FOR DIFFERENT R 

exponential density, and ii) a family of f(xl8) with 0 as the location 
parameter. Rewriting (3) for case c) yields, 

sup P"(@lU,)(O E C )  = 1 - (1  - Po) 
€sup P( U,  18) 

. (AI) 1 
Let 

f(n) = p"(@lUo,") ( 0  E C ) .  

Then 

where 

J-00 

M ( n )  = lm P(Uo10,n)x,(8)d0 
m 

Below we are interested in the infimum and the supremum of the 
posterior probability that 0 is in C. For convenience, the explicit 
notation 0 E C is suppressed. 

We observe that the following relations are equivalent: 

VI. CONCLUSIONS 
A binary hypothesis decentralized detection problem with an 6- 

contamination prior is considered. The performance figures of interest 
are the supremum and the infimum of the posterior probability that 
the parameter 8 is in a given set C, as the prior varies over the 
contaminant class. Numerical results are obtained for a specific case 
of exponentially distributed observation and an exponentially dis- 
tributed nominal prior. The results illustrate the degree of robustness 
achievable with quantized observations as compared to unquantized 
observations. It can be expected that similar general conclusions 
would result from a study of other examples. It is also shown that 
given the observation density, the contamination proportion, and the 
nominal prior, the value of IC in the k-out-of-n fusion rule that gives 
the minimum 

(0 E C )  sup pr(eiuo=l) 

when 

(1 - € ) [ M ( n ) X ( n +  1) - M ( n +  1)X(n)] 

+ e [ H ( n ) X ( n  + 1) - H ( n  + l ) X ( n ) ]  $ 0 (A2) 

where X ( n )  = M ( n )  - N ( n ) .  

and the decision is U, = 1. 
Consider the specific case where the fusion rule is the AND rule 

M ( n )  = lm [ P ( X ,  > t l 8 ]"x0(8 )  do, 

X ( n )  = L [ P ( X *  > t l O l " ? ~ , ( O )  d8 

H ( n )  = [ P ( X ,  > tlOi]" 

m 

where 81 E C is the value of 0 for which the sup P(U, = 118) is 
attained. The factor multiplying (1 - E )  in (A2) is 

is lower-bounded, can be found. M ( n ) X ( n  + 1) - M ( n  + l )X(n )  

APPENDIX 
VARIATION OF POSTERIOR PROBABILITY AS 
A FUNCTION OF THE NUMBER OF SENSORS 

In this Appendix, we establish the monotonicity of the posterior 
probabilities with respect to n, for the AND and OR rules, for 
any arbitrary observation density and nominal prior density with the 
restriction that the family f(zl0) is stochastically increasing. That 
is, the CDF's satisfy Fe, (x) 5 FoZ(z) for all z, when 81 > 82. 

Examples of stochastically increasing families include i) simple 

Because Of the stochastically larger property Of 

f(zlO), P ( X ,  > t l b )  - P ( X ,  > t la)  

and (A3) are positive. Similarly, the factor multiplying E in (A2) 
is positive. Hence the left-hand side of (A2) is positive. That is, 
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the sup P.r(eluo=l) for the AND rule decreases as n increases. 
Considering U, = 0 

M ( n )  = ll{l- [ P ( X ,  > t18)]n}~o(8) d8 

X ( n )  = h{l- [ P ( X ,  > tl8)]”}n0(8) d8 
H ( n )  = 1 - [ P ( X ,  > t l O , ) ] ”  

where 8 2  E C is the value of 8 for which the sup P(U, = 010) is 
attained. The factor multiplying (1 - E) in (A2) is positive, since 

n-1 \ 

(‘44) 

and the quantity inside the curly bracket is positive. Similarly, the 
factor multiplying E in (A2) is positive. Therefore, the left-hand side 
of (A2) is positive. That is, the sup P”(elUo=O) for the AND rule 
decreases as n increases. Based on similar steps, we can prove that 
both inf P.r(eluo=l) and inf PT(eluo=o) decrease with increasing n. 

Similarly, for the OR rule, we can prove that 
sup p“(Wo=1) sup p”(Wo=0) inf p “ ( @ l U o = 1 )  

3 3 

and inf P ” ( ~ I U O = O )  

all increase with n. 
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Asymptotically Optimum Detection of a Weak 
Signal Sequence with Random Time Delays 

Igor M. Arbekov 

Abstract-The problem of designing asymptotically optimum detectors 
for a weak signal sequence with random time delays in the presence of 
a white Gaussian noise is considered. The multidimensional probability 
distribution of the time delays is assumed to be known. As a result 
of asymptotic analysis of the log-likelihood ratio, the asymptotically 
optimum linear or quadratic detectors and their probability distributions 
and efficiencies are found. 

Zndex Term- Detection of dependent random weak signals, 
log-likelihood ratio, limiting probability distribution. 

“The cognitive essence of the theory of probability is 
opened only by the limiting theorems.” 

B. V. Gnedenko and A. N. Kolmogorov [7] 

I. INTRODUCTION 

The problem of detecting a signal with unknown time delay is 
one of the most important problems of statistical radioengineering 
and has applications in the construction of broadcasting systems, 
radiolocation, etc. When the signal power is much less than the 
noise power, the signal can be repeated a few times to improve 
signal reception. At the receiver, the detection of the signal can be 
complicated by several factors. One of them is the random time delay 
of each transmitted signal. 

In this correspondence, we will be concemed with detection of a 
weak signal sequence with random dependent time delays in additive 
white Gaussian noise. In Section 11, we will prove the theorems 
establishing the limiting distribution of the log-likelihood ratio for 
the corresponding statistical hypotheses when m (the “depth” of the 
dependence of the time delays) is much less than n (the length of the 
signal sequence, m << n). Here we will assume that the signal-to- 
noise ratio p decreases to zero and the length of the signal sequence 
n grows to infinity, so that the following asymptotic representation 
of the log-likelihood ratio A(X) is true: 

where the variance of Ln(X) is constant and + 0 in probability 
under both hypotheses. In this case the contiguity of the sequences of 
the probability measures corresponding to the statistical hypotheses 
takes place [5 ] .  

In addition it will be proved that the limiting distribution of L,  (X) 
is Gaussian under both hypotheses. These results give the opportunity 
to determine the minimum value n under which confident (efficient) 
detection of a weak signal sequence with given detection errors takes 
place. This is considered in Section 111. 

The observation s(t)  of a deterministic signal s ( t )  with random 
time delay 17 in additive noise n(t)  can be written as 

X ( t )  = s( t  - 17) + n(t) .  
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