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Outline

Smooth cocycles in Hilbert space. Stationary trajec-

tories.

Linearization of a cocycle along a stationary trajec-
tory.

Ergodic theory of cocycles in Hilbert space.

Hyperbolicity of stationary trajectories. Lyapunov

exponents.

Cocycles generated by stochastic systems with mem-

ory. Via random diffeomorphism groups.

The Local Stable Manifold Theorem for stochastic differen-
tial equations with memory (SFDE’s): Existence of
smooth stable and unstable manifolds in a neighbor-

hood of a hyperbolic stationary trajectory.

Proofs based on Ruelle-Oseledec (non-linear) multi-

plicative ergodic theory and perfection techniques.



The Cocycle

(2, F, P) := complete probability space.

0:R* x Q — Q a P-preserving (ergodic) semigroup on
(Q, F,P).

E := real (separable) Hilbert space, norm | - ||, Borel

o-algebra.

Definition.

Let k be a non-negative integer and ¢ € (0,1]. A Ck<
perfect cocycle (X,0) on E is a measurable random field X :
Rt x F x Q — E such that:

(i) For each w € Q, the map R* x E > (t,r) — X(t,z,w) € E
is continuous; for fixed (t,w) € R* x Q, the map E >

r— X(t,r,w) € Eis OFF,

(ii) X(t+s,,w)=X(t,-,0(s,w))o0X(s,-,w) for all s,t € R* and

all we Q.

(iii) X(0,z,w) = for all z € E,w € Q.



X(t1,~,w) X(tg,-,H(tl,w))

X(t1,z,w)
X(t1 +t2,7,,w)
9(t17') i 9<t27 )
0 X X X
w H(tl,w) 9<t1 +t2,w)
t=0 t=t b=t + 1

Figure illustrates the cocycle property. Vertical solid
lines represent random fibers consisting of copies of E.

(X,0) is a “vector-bundle morphism”.



Definition

The cocycle (X,60) has a stationary point if there exists

a random variable Y : Q — E such that
X(t,Y(w),w) =Y (0(t,w)) (1)

for all t € R and every w € Q. Denote stationary trajectory

(1) by X(t,Y) =Y(0(t).



Linearization. Hyperbolicity.

Linearize a C*< cocycle (X,0) along a stationary ran-
dom point Y: Get an L(E)-valued cocycle (DX (¢,Y (w),w), 0(t,w)).

(Follows from cocycle property of X and chain rule.)

Theorem. (Oseledec-Ruelle)

Let T : RT xQ — L(E) be strongly measurable, such that (T, 6)

is an L(E)-valued cocycle, with each T'(t,w) compact. Suppose that

E sup log™ |T(t,)||nm) < oo, E sup log" |T(1—t,0(t,")|lrm) < .
0<t<1 0<t<1

Then there is a sure event Qo € F such that 0(t,-)(2o) C Qo for all

t € R, and for each w € Qq, the limit

lim [T(t,w)* o T(t,w)]/ ) := A(w)

n—aoo

exists in the uniform operator norm. A(w) is self-adjoint with a non-

random spectrum

eM > et s et s



where the \;’s are distinct. Fach e has a fized finite non-random

multiplicity m; and eigen-space F;(w), with m; := dimF;(w). Define

E\w)=FE, Eiw):=[®_tFWw)],i>1

Then
+C - C Fip1(w) C Ei(w)-++ C By(w) C Erj(w) =F,

lim %log T )] = \(w) i =€ Buw)\ B (w),

t—o0

and

T(t,w)(Ei(w)) € Ei(0(t,w))

forall t >0, 1> 1.

Proof.

Based on the discrete version of Oseledec’s multi-
plicative ergodic theorem and the perfect ergodic theo-
rem. ([Ru.1l], .LH.E.S Publications, 1979, pp. 303-304; cf.
Furstenberg & Kesten (1960), [Mo.1}). O



Spectral Theorem

T(t,w)
T

/ A / -
R - J\ |
Eaw) | || 210 Ee

Definition

A stationary point Y(w) of (I) is said to be hyperbolic

if the linearized cocycle (DX (t,Y (w),w),0(t,w)) has a non-



vanishing Lyapunov spectrum {--- < Ajy1 < X < -+ < Ay <

A}, viz. \; #0 for all i > 1.

Let ip > 1 be such that \;, <0< X\;,_1.

Suppose

Elog"™ sup [[DoX(t2, Y (0(t1)), 0(t1))lln(as)) < o0

Ogtl,tg ST‘
By Oseledec-Ruelle Theorem, there is a sequence of closed

finite-codimen-sional (Oseledec) spaces
. -E,-_l(w) C El(W) C - C EQ(W) C El(w) = E,

El(w> - {(’Uﬂl) € M : thm %log HDX<t7Y(w)aw)(U777)H < )‘l}a i > 1,
for all w € Q*, a sure event in F satisfying 0(¢,-)(Q*) = Q* for
all t € R.

Denote by {U(w), S(w) : w € Q*} the unstable and stable
subspaces associated with the linearized cocycle (DX, 0) as
given by ([Mo.1], Theorem 4, Corollary 2) and ([M-S.1],

Theorem 5.3). Then get a measurable invariant splitting

E=Uw)&S(w), we ",

9



DX(t,Y(w),w)U(w)) =U(0(t,w)), DX(t,Y(w),w)(Sw)) € S(O(t,w)),

for all ¢t > 0, together with the exponential dichotomies
IDX(t,Y (w),w)(x)|| > ||z||e®t for all ¢>7f zecl(w),

|IDX(t,Y (w),w)(x)| < ||x||e_52t for all t> 75,2 € S(w),

where 7 = 77(z,w) > 0,i = 1,2, are random times and §; >

0,i=1,2, are fixed.

10



S(0(t.0)

| U(0(t,w))




Stochastic Systems with Memory

“Regular” It6 SFDE with finite memory:

do(t) = H(x(t), z,) dt + Z Gi(z(t)) dW;(¢), )

(2(0),20) = (v,n) € My := R? x L*([-r,0],R%)

Solution segment x;(s) := z(t +s), t > 0,s € [-7,0].

m-dimensional Brownian motion W := (Wy,--- ,W,,), W(0) =

Ergodic Brownian shift § on Wiener space (Q,F, P).
F := P—completion of F.
State space M,, Hilbert with usual norm || - |.

Can allow for “smooth memory” in diffusion coeffi-

cient.

H : M, — R? of class €%, globally bounded.
G :R% — L(R?,RY) is of class ¢},

B((v,n),p) open ball of radius p and center (v,n) € My;

12



B((v,n), p) corresponding closed ball.

Then (I) has a stochastic semiflow X : Rt x M, x Q —
M, with X(¢,(v,n),) = (z(t),x;). X is of class C*< for any
€ (0,6), takes bounded sets into relatively compact sets

in M. (X,0) is a perfect cocycle on M, ([M-S.4]).

Theorem. ([M-S], 1999) (Local Stable and Unstable Manifolds)

Assume smoothness hypotheses on H and G. LetY : Q — My be
a hyperbolic stationary point of the SFDE (I) such that E(||Y (+)||) <
oo for some €y > 0

Suppose the linearized cocycle (DX (t,Y (w),w),8(t,w),t > 0) of
(I) has a Lyapunov spectrum {--- < Xiy1 < Ay < --- < Ag < A1}
Define X\, := maz{\; : \; < 0} if at least one A\; < 0. If all finite \;
are positive, set \;;, = —oo. (This implies that \;,—1 is the smallest
positive Lyapunov exponent of the linearized semiflow, if at least one
Ai > 0; in case all \; are negative, set \j,—1 = 00.)

Fiz e1 € (0,—X;,) and €2 € (0, \j;—1). Then there exist

(i) a sure event Q* € F with 6(t,-)(2*) = Q* for all t € R,

13



(i) F-measurable random variables p;, B; : Q* — (0,1), B; > p; > 0,
1 = 1,2, such that for each w € Q*, the following is true:
There are C*¢ (e € (0,6) ) submanifolds S(w), U(w) of B(Y (w), p1(w))

and B(Y (w), p2(w)) (resp.) with the following properties:

(a) S(w) is the set of all (v,1) € B(Y (w), p1(w)) such that
1X (n, (v,m),w) = Y (6(n,0))|| < Br(w) ePioFe)
for all integers n > 0. Furthermore,

1
lim sup ? log HX(ta (’U, 77)7 (,U) o Y(e(tv w))” < )‘io

t—o0

for all (v,n) € S(w). Each stable subspace S(w) of the linearized
semiflow DX is tangent at Y (w) to the submanifold S(w), viz.
Ty(w)g(w) = S(w). In particular, codim S(w) = codim S(w), is
fized and finite.

L (X (o)) = X ().
(®) hms“ptlg[ p{ [(vor 1) — (ozoma)]

(v2s2)s (01,0, (o2,7) € @) b| < -

(v1,m) #

t— o0

14



(c) (Cocycle-invariance of the stable manifolds):

There exists 71 (w) > 0 such that
X(t,,w)(SW)) € S(O(t,w))
for allt > 1 (w). Also

DX(t,Y(w),w)(SW)) C S(O(t,w)), t>0.

(d) U(w) is the set of all (v,n) € B(Y (w), pa(w)) with the property
that there is a unique “history” process y(-,w) : {—nr : n >
0} — My such that y(0,w) = (v,n) and for each integer n > 1,

one has X (r,y(—nr,w),0(—nr,w)) = y(—(n — 1)r,w) and
Hy(—m“,w) - Y(Q(—m“,w))HM2 < 52(@0)6_0‘@‘0—1—62)”7“.

Furthermore, for each (v,n) € U(w), there is a unique continuous-
time “history” process also denoted by y(-,w) : (—oc0,0] — Mo
such that y(0,w) = (v,n), X(t,y(s,w),0(s,w)) = y(t + s,w) for
all s <0,0<t < —s, and

i sup 10 [y(~t,) = Y (B(~t,0))]| £ iy 1.

15



FEach unstable subspace U(w) of the linearized semiflow DX is

tangent at Y (w) to U(w), viz. Ty (U (w) = U(w). In particular,

dim U(w) is finite and non-random.

(e) Let y(-, (vi,m;),w),i = 1,2, be the history processes associated

with (Ui777i) = y(07 (viani)7w) < d(w)7 1= 172 Then

t—o0

lim sup 1 log | sup Hy(_ta (Ulﬂh),w) - y(—t, (’U2,7]2),W>|| .
[(v1,m1) — (v2,m2)]] '

(v1,71) # (v3,1m), (vimi) € U(w), i = 1,2}] <

(f) (Cocycle-invariance of the unstable manifolds):

There exists To(w) > 0 such that

Uw) € X (L, 0(—t,w))U(O(—t,w)))

for allt > m(w). Also

and the restriction
DX(t,,0(—t,w)|UO(~t,w))  UO(-t,w)) = U(w), t=>0,

16



15 a linear homeomorphism onto.

(9) The submanifolds U(w) and S(w) are transversal, viz.
M2 - TY(w)a(w) D TY(w)‘g(w)

Assume, in addition, that H,G are Cy°. Then the local stable

and unstable manifolds S(w), U(w) are C>°.

Figure summarizes essential features of Stable Mani-

fold Theorem:

17



X(t,,w)

t> 7'1(&))

A picture is worth a 1000 words!
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Example

Consider the affine linear stde
dr(t) = H(z(t),z,) dt + GdW (1), >0
Il/
$<0) :’UERd, o :77€L2([_T70]7Rd) } ( )

where H : M, — R? is a continuous linear map, G is a fixed
(d x p)-matrix, and W is p-dimensional Brownian motion.

Assume that the linear deterministic (d x d)-matrix-valued
FDE

dy(t) = H o (y(t),y:) dt

has a semiflow
T, : L(R?Y) x L*([-r,0], L(RY)) — L(R?) x L?([-r,0], L(R)),t > 0,
which is uniformly asymptotically stable. Set

Y = / T (L0)GAW () (2)

where I is the identity (d x d)-matrix. Integration by parts
and

W(t, Q(tl,w)) = W(t + tl,w) — W(tl,w), t,t1 € R, (3)

imply that Y has a measurable version satisfying (1). Y is
Gaussian and thus has finite moments of all orders. See

19



([Mo.1], Theorem 4.2, Corollary 4.2.1, pp. 208-217.) More
generally, when H is hyperbolic, one can show that a sta-
tionary point of (I”) exists ([Mo.1]).

In the general white-noise case an invariant measure
on M, for the one-point motion gives rise to a stationary
point provided we suitably enlarge the underlying prob-
ability space. Conversely, let Y : O — M, be a station-
ary random point independent of the Brownian motion
W(t),t > 0. Let p:= PoY~! be the distribution of Y. By
independence of Y and W, p is an invariant measure for

the one-point motion

20



Outline of Proof

e By definition, a stationary random point Y (w) € M, is
invariant under the semiflow X; viz X(t,Y) =Y (0(t,))
for all times t.

e We linearize the semiflow X along the stationary point
Y(w) in M,. In view of the stationarity of Y and the
cocycle property of X, this gives a linear perfect cocy-
cle (DX (t,Y),0(t,-)) in L(M,), where D denotes spatial
(Fréchet) derivatives.

e Ergodicity of ¢ allows for the notion of hyperbolicity of
a stationary solution of (I) via Oseledec-Ruelle theo-
rem: Use local compactness of the semiflow for times
greater than the delay r ([M-S.4]), and apply multi-
plicative ergodic theorem in order to yield a discrete
non-random Lyapunov spectrum {); : i > 1} for the
linearized cocycle. Y is hyperbolic if \; # 0 for every i.

e Assuming that ||V is integrable (for small ¢) and
using the variational method of construction of the
semiflow, we show that the linearized cocycle satis-
fies the hypotheses for “perfect versions” of ergodic
theorem and Kingman’s subadditive ergodic theorem.
These refined versions yield invariance of the Oseledec

21



spaces under the continuous-time linearized cocycle.
In particular, the stable/unstable subspaces will serve
as tangent spaces to the local stable/unstable mani-

folds of the non-linear semiflow X.

We establish continuous-time integrability estimates
on the spatial derivatives of the non-linear cocycle X
in a neighborhood of the stationary point Y. These
esitmates follow from the variational construction of
the stochastic semiflow coupled with known global
spatial estimates for finite-dimensional stochastic flows.

We introduce the auxiliary perfect cocycle
Z(t,w) = X(t,() + Y(w),w) — Y(0(t,w)), teR",we

By refining the arguments in ([Ru.2|, Theorems 5.1
and 6.1), we construct local stable/unstable mani-
folds for the discrete cocycle (Z(nr,-,w),0(nr,w)) near
0 and hence (by translation) for X(nr,-,w) near Y (w)
for all w sampled from a (¢, -)-invariant sure event
in Q. This is possible because of the continuous-
time integrability estimates, the perfect ergodic the-
orem and the perfect subadditive ergodic theorem.
By interpolating between delay periods of length r
and further refining the arguments in [Ru.2|, we then

22



show that the above manifolds also serve as local sta-
ble /unstable manifolds for the continuous-time semiflow
X near Y.

The final key step is to establish the asymptotic in-
variance of the local stable manifolds under the sto-
chastic semiflow X. This is achieved by appealing to
the arguments underlying the proofs of Theorems 4.1
and 5.1 in [Ru.2] and some difficult estimates using
the continuous-time integrability properties, and the
perfect subadditive ergodic theorem. The asymptotic
invariance of the local unstable manifolds follows by
employing the concept of a stochastic history process for
X coupled with similar arguments to the above. The
existence of the history process compensates for the
lack of invertibility of the semiflow.

23



	Southern Illinois University Carbondale
	OpenSIUC
	6-17-1999

	The Stable Manifold Theorem for Stochastic Systems with Memory (Probability Seminar, Université Henri Poincaré Nancy 1)
	Salah-Eldin A. Mohammed
	Recommended Citation



