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On Polynomial Transformations For Simulating
Multivariate Non-normal Distributions

Todd C. Headrick
Southern Illinois University - Carbondale

Procedures are introduced and discussed for increasing the computational and statistical efficiency of
polynomial transformations used in Monte Carlo or simulation studies. Comparisons are also made
between polynomials of order three and five in terms of (a) computational and statistical efficiency, (b)
the skew and kurtosis boundary, and (c) boundaries for Pearson correlations. It is also shown how ranked
data can be simulated for specified Spearman correlations and sample sizes. Potential consequences of
nonmonotonic transformations on rank correlations are also discussed.
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Introduction

A common practice used to investigate the
relative Type I error and power properties of
competing statistical procedures under non-
normality is the method of Monte Carlo. For
example, consider the following polynomial
transformation in general form

(I)

where ZI - NID(O, I), and iEN={1,2, ...,m}.
Setting m = 3, Fleishman (1978) derived a
system of four equations that would solve for the
four coefficients CO"",c3 in (I) for a specified
non-normal distribution. Specifically, these
coefficients are determined by simultaneously
solving this system of equations for the first four
standardized cumulants of a distribution. The
coefficients are subsequently entered into (I) to
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generate 1'; with the specified cumulants.
Equation (I) was extended to m = 5 by Headrick
(2002) for controlling the first six standardized
cumulants from a specified probability density
function.

The third-order polynomial (Fleishman,
1978) and the fifth-order polynomial (Headrick,
2002) transformations were also extended for
the purpose of generating multivariate non-
normal distributions (Headrick, 2002, Equation,
26; Headrick & Sawilowsky, 1999, Equation 9;
Vale & Maurelli, 1983, Equation 1I). These
extensions have been demonstrated to be quite
useful when there is a need for correlated non-
normal data sets in a Monte Carlo study.

Some examples include analysis of
covariance (Harwell & Serlin, 1988; Headrick &
Sawilowsky, 1999; Headrick & Vineyard, 200 I;
Klockers & Moses, 2002), hierarchical linear
models (Shieh, 2000), regression (Harwell &
Serlin, 1989; Headrick & Rotou, 2001;
Whittaker, Fauladi, & Williams, 2002) repeated
measures (Beasley & Zumbo, 2003; Harwell &
Serlin, 1997), and multivariate nonparametric
tests (Beasley, 2002; Habib & Harwell, 1989).
The multivariate extension of the fifth-order
polynomial has also demonstrated to be useful
for simulating continuous with ranked or ordinal
data structures (Headrick & Beasley, 2003) and
for generating systems of correlated non-normal
linear statistical equations (Headrick & Beasley,
2004).
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Although the primary advantages of the
third and fifth-order polynomials are their ease
of execution and computationally efficiency,
there are limitations to these transformations.
More specifically, the primary limitations are (a)
the transformations are limited in terms of the
possible combinations of skew and kurtosis, (b)
the polynomials are not, in general, monotonic
transformations and therefore have the potential
to produce biased rank correlation coefficients,
and (c) distributions with bivariate non-normal
structures may have lower and upper boundary
points (-a, a) for Pearson correlations (r)
such that r E [-1 < -a,a < +1) and where it is

possible, for example, that lal < 0.70. It should

be noted that the distribution of 1'; , in general, is
not exact. Headrick (2004) has derived the
probability density function and distribution
function for 1'; when the transformation between

1'; and 21 is monotic.
In view of the above, the purposes of the

study are to introduce and discuss methods that
minimize the limitations of the polynomial
transformations and to develop a procedure for
simulating rank correlations. More specifically,
the intent is to (a) derive and discuss methods
for improving computational and statistical
efficiency for a Monte Carlo study, (b) compare
and contrast the third and fifth order
polynomials in terms of the skew and kurtosis
boundary and in terms of boundaries for Pearson
correlations, (c) provide a method for simulating
Spearman rank correlations with specified
samples sizes, and (d) discuss the potential
effects of nonmonotonic transformations on rank
correlations.

Improving Computational and Statistical
Efficiency

Consider (1) with m = 5 as

or

1'; = Co + 21 ( c1 + 21 (c2 + 21 (c) + 21 (c4 +cs21)))) .

(3)

If the algorithm used to generate 1'; is coded in
the manner as in (3) instead of (2) then the run
time of a Monte Carlo or simulation study can
be substantially reduced. To illustrate (briefly),
on a Pentium-based PC it took approximately 25
seconds of computer time to draw 100,000
random samples of size n = 550 from an
approximate exponential distribution using (3).
On the other hand, using (2), the sample size had
to be reduced to n = 100 to obtain the same
100,000 draws within the same 25 second time
period. Thus, a considerable gain in
computational efficiency can be realized by
using (3) in lieu of (2).

Suppose two standardized random
variables 1'; and Yz based on (3) are generated.
A method that is useful to improve the
efficiency of the estimate of (1'; +Y2)/2 is by

inducing a negative correlation on 1'; and Y2• To

demonstrate, if 1'; and Yz were identically
distributed, then

var[ 1'; + Yz] = ~ + Corr[1';, Yz] .
2 2 2

(4)

By inspection of (4) it would be advantageous if
1'; and Y2 were negatively correlated.

Assume that a monotone relationship
between 21 and Y; for i = 1,2 exists. To induce

a negative correlation on 1'; and Y2 it is only
necessary to simultaneously reverse the signs of
the coefficients with odd subscripts in Yz as

(5)

Because the structure between Y; and 21 is
standard bivariate normal, the correlation
between 1'; and Yz can be defined as

pyy = E[1';YzJ· (7)
12

Expanding (7) and taking expectations using the
moments from the standard normal density
yields
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Pr,r =c; -c~ +2cO(c2 + 3c4)-6cl(c3 +5cs)+12

3(ci + IOc2c4 - 5(C~ - 7c; + 14c3cs + 63c~».
(8)

Thus, the correlation between 1; and 1'; can be
determined by evaluating (8) using specified
values for co,. ..,cs' For example, evaluating (8)
using the coefficients that approximate the
exponential density (see Headrick, 2002, Table
I) gives Pry ::=-0.647.

12

The method of inducing a negative
correlation between 1; and 1'; is analogous to
the method used on distributions generated by
the inverse transform method. More specifically,
consider generating XI and X2 from the single
parameter exponential family with distribution
function G and with an inverse distribution
function denoted as G-I • Let XI = G-I (V) and

X2 = G-I(1- V) where V - U(O,I). Define the
parameters for the first and second moments as
() and (}2. From the definition of the product
moment of correlation exists

As such, the correlation between XI and X2 is

Pxx =1-7l'2/6::=-0.645.
I 2

(9)

Thus, the approximation given by (8) for the
exponential distribution is very close to the exact
result given in (9).

Presented in Table below are
confidence intervals from a Monte Carlo
simulation study that demonstrate the advantage
of inducing a negative correlation on 1; and 1';.
By inspection of Table I when 1; and 1'; are
uncorrelated it takes over 2.5 times the sample
size to obtain a confidence interval that has
approximately the same width as the data with
an induced negative correlation. Thus, whenever
possible it is advantageous to induce a negative
correlation to improve the computational and
statistical efficiency of a Monte Carlo study.

Table 1. Confidence Intervals (Cl's) on the
estimate of (1; + 1'; )/2 with and without a

negative correlation induced. 1; and 1'; are

approximate exponential distributions with
population means of YI = 5. The CI's are

based on 50,000 sample estimates.

Corr[ 1; , 1'; ] Sample Size 95% C.I.

0.000 n= 10 [4.552, 5.448]
-0.647 [4.715,5.252]

0.000 n=26 [4.726,5.273]
-0.647 [4.841,5.158]

Statistical efficiency can also be
improved when using the fifth-order polynomial
in lieu of the third-order polynomial. For
example, consider approximating the uniform
distribution. The kurtosis for this distribution is
theoretically -1.20. However, the lower-
boundary of kurtosis for the third-order
polynomial is -1.15132 (Headrick &
Sawilowsky, 2000) whereas the fifth-order poly-
nomial can generate this distribution with the
required kurtosis (Headrick, 2002, Table I).
Presented in Table 2 is a comparison between
the two polynomials' approximations to the
uniform distribution. By inspection of the values
of RMSE in Table 2, it is evident that the fifth-
order polynomial is superior in its
approximation to the standardized cumulants of
this distribution.

Lower Boundary Points of Kurtosis
The lower boundary points of kurtosis is

another topic of concern because neither the
third nor the fifth-order polynomial
transformations span the entire skew (Y3) and

kurtosis ( Y4) plane given by the general
expression

(10)
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Table 2. Estimates of the first six
standardized cumulants of the uniform
density and the Root Mean Square Errors for
the third and fifth-order polynomials.
Estimates (Yi) are based on a sample size of
n = 50 and averaged across 50,000
repetitions. The same random numbers were
used in both polynomials.

Standardized Parameters
Uniform Distribution (Yi) RMSE

Third-Order Polynomial
0.000

1.000

0.002

-1.152'
0.095

8.711

0.142

0.132

0.338
1.673

15.771
161.61

YI =0.0

Y2 = 1.0

Y3 = 0.0
Y4 = -6/5

r, = 0.0

Y6 =48/7

Fifth-Order Polynomial
Y1 = 0.0 0.000 0.142
Y2 = 1.0 1.000 0.127

Y3 = 0.0 0.001 0.278

Y4 = - 6/5 - 1.200 0.354

Ys= 0.0 0.006 0.897

Y6 = 48/7 6.841 3.301

IThe lower boundary of kurtosis for the third-
order polynomial is - 1.15132.

Proof (Eq. 10). For any random variable with
finite values of Yi define

Without loss of generality, it can be assumed
that the random variable X is standardized such
that E[X]=O and (}x =E[X2]=1 in (II).
From the covariance (or Schwarz) inequality
there is E[XWf:;;; E[X2]E[W2]. If the two

random variables in the covariance inequality
are X and X2 - I , then

(E[X(X2-1)]t :;;;E[X2]xE[(X2-lf]
(E[X3 -X]f:;;; E[X4 -2X + I]

(E[X3]f :;;;E[X4]-1

yi :;;;Y4 - I, thus

Y4 ~ yi + I, and where

subtracting a constant of 3, such that kurtosis for
the normal distribution is zero, gives (10) (It can
also be shown that the equal ity condition in (10)
is not possible. However, in the context of this
paper, the matter is trivial).

Presented in Table 3 are the lower
boundary points of kurtosis for both
polynomials. The values of minimum kurtosis
(Y~' Y:) were obtained by minimizing Equation
14 (Headrick & Sawilowsky, 2000) and
Equation 36 (Headrick, 2002) using the
command 'NMinimize' (Mathematica,
Wolfram, 2003, version 5.0). By inspection of
Table 3, it is evident that the fifth-order
polynomial spans a much larger space in the
plane defined by (10) than the third-order
polynomial.

Pearson Correlations
As mentioned, the third and fifth-order

polynomial transformations are computationally
efficient algorithms for generating multivariate
non-normal distributions. In general, and in
terms of the fifth-order polynomial, the approach
taken is to solve the equation given in Headrick
(2002, Equation, 26) for pairwise intermediate
correlations between k variables.

The intermediate correlations are
subsequently assembled into a correlation matrix
and factored (e.g., a Cholesky factorization).
The components from the factorization are used
to generate multivariate standard normal random
deviates correlated at an intermediate level.
These deviates are then transformed by the
polynomials to produce the specified non-
normal distributions with the desired
intercorrelations.
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Table 3. Lower boundaries of kurtosis for the third (r;) and fifth (r:) order polynomials for a given value

of skew (rJ). The coefficients co, ... ,cs are associated with the fifth-order polynomial.

rJ r; r: Co c1 c2 cJ c4 Cs

0.00 -1.151320 -1.385081 0.000000 -1.643734 0.000000 0.320242 0.000000 -0.011361

0.25 -1.045100 -1.296301 -0.160182 -1.597079 0.195003 0.302208 -0.011607 -0.010437

0.50 -0.741671 -1.038260 -0.298119 1.492904 0.036292 -0.266933 -0.021600 0.008682

0.75 -0.252697 -0.614627 -0.419443 1.357093 0.508113 -0.228251 -0.029554 0.006969
1.00 0.424841 -0.020321 -0.529477 1.190353 0.637194 -0.187141 -0.035906 0.005314
1.25 1.297258 0.753833 -0.632000 0.981640 0.754682 -0.141828 -0.040894 0.003602
1.50 2.370670 1.724592 -0.732543 0.690295 0.866255 -0.087835 -0.044570 0.001719
1.75 3.652341 2.757983 -0.503230 0.829259 0.623359 0.006876 -0.040043 -0.002257

2.00 5.151620 3.983870 -0.524421 0.710491 0.645056 0.048321 -0.040213 -0.004000

There are limitations in simulating
multivariate distributions using the polynomial
transformations. Specifically, the third and fifth-
order polynomials may have lower and upper
boundary points (-a, a) for correlations (r)
such that r E [-I < -a, a < + 1]. In the context of

the bivariate case, this problem is most
pronounced when one distribution is symmetric
and the other skewed.
For example, suppose the distributions are
approximate chi-square (Idj) and normal. The
boundaries of correlation for the third-order
polynomial are a = ± .67481 whereas the
boundaries for the fifth-order polynomial are
a = ± .82024. As another example, if the normal
distribution is replaced by the coefficients for
the uniform distribution, then the boundaries for
bivariate correlation are a = ± .623033 and
a = ± .738553 for the third and fifth-order
polynomials, respectively. Thus, the fifth-order
polynomial can be a remedy for cases where it is
needed to simulate the often used correlation of
r = .70 when the distributional conditions make
it impossible for the third-order polynomial.

Monotinicity and Spearman Correlations
A monotonic relationship between ~

and ZI in (3) is defined as

(12)

Testing for a monotonic relationship can be
accomplished by solving d~/dZI = 0 for ZI. If

only complex solutions of ZI exist then the

transformation between ~ and ZI is considered

globally monotonic. If real solutions of ZI exist,
then the transformation is considered non-
monotonic. For example, all chi-square
distributions (df> I) approximated by fifth-order
polynomials are globally monotonic
transformations. The third-order polynomials,
however, are not monotone transformations for
any approximation of the chi-square family (see
Headrick, 2004). The concern for monotonic
relationships becomes important when there is a
need to simulate ranked data with specified
Spearman correlations.

Consider generating ~ and I; from
equations of the form in (3) with a Pearson
correlation PY,Y,. Let R(~) and R(I;) denote

the ranks of ~ and I; and R(ZI) and R(Z2)
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denote the ranks of ZI and Z2' If monotonic
relationships hold for both transformations as
defined in (12), then PR(y,)R(Y,) = PR(Z,)R(Z,) = p,

and where Ps denotes the Spearman rank
coefficient of correlation.

Because the structure of ZI and Z2 is
standard bivariate normal, ranked data can be
simulated for specified values of p, and n by
making use of the following expression (Moran,
1948)

_ 6{n-2 . -I (PZ1Z2 ) 1 . -I( )} (13)Ps -- --SIO -- +--SIO Pzz .
JT n+l 2 n+1 12

More specifically, to generate R(I;) and R(I';)
with a specified rank correlation P, and sample
size, one need only numerically solve (13) for
Pz,z, given values of Ps and n. For example,

suppose it is desired to generate R(I;) and

R(I';) with a Spearman rank correlation of

Ps =.70, n = 5, and where the distributions I;
and I'; are approximate exponential. For this
example, it is appropriate to use fifth-order
polynomial transformations because (12) holds
for this case. Thus, solving (13) for the specifed
values of Ps and n gives an intermediate

correlation of Pz Z = .811202 .
"

Conclusion

In terms of the procedure for simulating ranked
data with specified Spearman correlations, it
should be pointed out that equation (12) is a
sufficient condition for monotonicity. However,
the procedure will provide adequate simulations
of rank data with specified correlations if the
polynomial transformations are locally
monotonic. More specifically, the simulated
rank correlations may be robust to violations of
(12) even though real sol utions of ZI (or Z2)

exist for dI;/dZI =0 (or dY2/dZ2 =0). For

example, assume more generally, for two
symmetric distributions of the same shape that
Z ± 3.00 are real solutions for dY / dZ = O.

These distributions could be considered
locally monotonic because the probability
associated with drawing such values of
Z :IZI ~ 3.00 is only .0027. Because the

probability of obtaining such values of Z is
very low, the amount of bias introduced into a
Monte Carlo or simulation study would be
negligible.

To provide an empirical definition of
local monotonicity, this author conducted
simulations using fifth-order transformations
with many different non-normal distributions
with nonmonotonic relationships. The
simulation results indicated that Spearman
correlations were close to what (13) would
compute (p, ± .025) if the real solutions of Z

for dY/dZ = 0 were IZI ~ 1.75.
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