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Xiangping Qin and Randall Berry
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2145 Sheridan Rd., Evanston IL 60208
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Abstract— Multiuser diversity refers to a type of diversity
present across different users in a fading environment. This
diversity can be exploited by scheduling transmissions so that
users transmit when their channel conditions are favorable. Using
such an approach leads to a system capacity that increases
with the number of users. However, such scheduling requires
centralized control. In this paper, we consider a decentralized
medium access control (MAC) protocol, where each user only has
knowledge of its own channel gain. We consider a variation of
the ALOHA protocol, channel-aware ALOHA; using this protocol
we show that users can still exploit multi-user diversity gains.
First we consider a backlogged model, where each user always
has packets to send. In this case we show that the total system
throughput increases at the same rate as in a system with a
centralized scheduler. Asymptotically, the fraction of throughput
lost due to the random access protocol is shown to be 1/e. We
also consider a splitting algorithm, where the splitting sequence
depends on the users’ channel gains; this algorithm is shown
to approach the throughput of an optimal centralized scheme.
Next we consider a system with an infinite user population and
random arrivals. In this case, it is proved that a variation of
channel-aware ALOHA is stable for any total arrival rate in a
memoryless channel, given that users can estimate the backlog.
Extensions for channels with memory are also discussed.

I. INTRODUCTION

A fundamental trait of wireless channels is that they exhibit
fading effects, due in part to mobility and other user inter-
ference. As a result of this time-variation, a user’s channel
suffers periods of severe decay, but also periods when the
channel gain is stronger than average. When many users are
present, different users will experience peaks in their channel
quality at different times. This effect has been called multi-user
diversity [7]. It can be exploited by scheduling transmissions
when a user has favorable channel conditions. The more users
that are present, the more likely it is that one user has a
very good channel at any time; hence, the total throughput
of such a system tends to increase with the number of users.
Multiuser diversity has its roots in the work of Knopp and
Humblet [7], where they presented a power control scheme
for maximizing the information theoretic capacity of the uplink
of a single cell with time-varying channels. Given the channel
gain of each user, it is shown that capacity is maximized by
allowing only the user with the best channel to transmit at any
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time. Multiuser diversity underlies much of the recent work on
“opportunistic” downlink scheduling [10], as in Qualcomm’s
High Data Rate (HDR) system (1xEV-DO) [1]. It has also
been studied in the context of ad-hoc networks [5] and in
multi-antenna systems [17].

In this paper, we consider exploiting multiuser diversity
gains in a distributed way. As in [7], we consider an uplink
model where a group of users are all communicating to a single
receiver, such as an access point in a wireless LAN or a base
station in a cellular setting. With a centralized approach, the
scheduler must know each user’s fading level; this could be
gained, for example, by having the users estimate their channel
gain and then transmit this information to the scheduler. In
a large network with many users this type of approach will
not scale well and the delay in conveying this information
to the scheduler will limit performance. Instead of such an
approach, we focus on the case where no centralized controller
is available to schedule user transmissions, and we assume
each user only has knowledge of its own fading level, but no
knowledge of the fading levels of the other users in the cell.
The estimation of a user’s fading level may be based on a
periodic pilot signal broadcast by the base-station.1 Without a
central controller, an approach as in [7] is precluded. This is
similar in some ways to distributed power control problems,
such as those studied in [14]. For this case, we show that
multiuser diversity gains (i.e., a capacity that increases with the
number of users) can still be achieved when the users access
the uplink using a simple variation of the slotted ALOHA
random access protocol [2], which we call channel-aware
ALOHA. With this protocol, users randomly transmit with a
transmission probability that is based on their channel gain.

The approach in this paper jointly addresses both physical
layer and medium access control issues for a wireless net-
work. Such cross-layer approaches in wireless networks have
received much attention recently. Other examples that address
both MAC and physical layer issues in wireless channels
includes [19] and [16]; the focus of these papers is on various
techniques for exploiting multi-user reception. Other work in
this area includes work on power capture, such as [11], [8], and
approaches that use channel coding to recover from collisions

1This pilot signal should be broadcast in the same coherence bandwidth as
the uplink channel, as, for example, in a time-division duplex system.
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[15],[12].
We initially consider a backlogged system with n users,

where each user always has a packet to send. In this setting,
the throughput of the distributed MAC scheme is shown to
increase with the number of users at the same rate as the
optimal centralized scheme. Asymptotically, the ratio of the
throughput of the channel-aware ALOHA to the throughput
of a centralized scheduler is shown to be 1/e, the same as
the well-known ratio achieved by a standard slotted ALOHA
system in an unfaded channel. This can be interpreted as
saying that the only loss due to distributed channel knowledge
is the loss due to contention for the channel. For a finite
number of users, it is shown that the loss in throughput due
to contention when fading is present is less than the loss in a
channel without fading. In other words, lack of centralized
control is less harmful in a fading environment. We also
introduce a splitting algorithm; when the channel changes at
a slow enough rate, this is shown by simulation to approach
the optimal throughput. Next we consider a variation of the
ALOHA protocol for random arrivals. For an infinite user,
Rayleigh fading model, it is shown that the channel-aware
ALOHA is stable for any total arrival rate. This stability is
achieved by leveraging the increasing multiuser diversity as
the number of backlogged users increases. Finally, we consider
a variation of the model for a channel with memory, in this
case the total throughput is shown to be the same as in the
memoryless case, but the average delay increases.

The remainder of the paper is organized as follows: first
we describe the model of the channel-aware ALOHA system
and analyze this model for the case of a memoryless channel.
In Sect. III, we compare this distributed MAC scheme with
a centralized scheme and introduce a splitting algorithm. In
Sect. IV, the random arrival case is addressed. Finally an
extension of these results to a simple model of a channel with
memory is discussed in Sect. V.

II. MODEL AND ANALYSIS - MEMORYLESS CHANNEL

A. Basic Model:

We consider a model of the uplink in a wireless network
with n users all transmitting to a common receiver. The
channel between each user and the receiver is modeled as
a time-slotted, block-fading channel; if only the ith user
transmits in a given time-slot, the received signal, yi(t) is
given by

yi(t) =
√

Hixi(t) + z(t),

where xi(t) is the transmitted signal, Hi is the time-varying
channel gain, and z(t) is additive white Gaussian noise. If
user i uses transmission power Pt during this time-slot, the
received power level for the user is given by Pr = HiPt.
The channel gain is assumed to be fixed during each time
slot and to randomly vary between time-slots. In this section,
we assume that the channel gains of each user in each time-
slot are i.i.d. random variables with probability density fH(h).
For example, to model a Rayleigh fading channel, we have
fH(h) = e− h

h0 /h0, where h0 is the average fading level. We

assume that at the start of each time-slot, each user knows
their own channel gain during the slot, but not the gain of any
other users. However, the distribution of each user’s channel
gain is known.

Given this distributed channel knowledge, we consider a
variation of a slotted ALOHA protocol, where each user bases
their transmission probability on their channel gain. As in a
standard ALOHA model, we assume that if two or more users
transmit packets in the same slot, a collision occurs and no data
gets through. 2 After each slot, the users receive instantaneous
(0, 1, e) feedback indicating whether a slot was idle, contained
a successful transmission or contained a collision. 3 Initially,
we focus on a model of a saturated system where all n users
always have packets to send. In Sect. IV, random arrivals are
considered.

In a standard ALOHA system, each backlogged user inde-
pendently sends a packet in every slot with probability p. In
this case, we assume a user only transmits when its channel
gain is above a threshold H0. The threshold, H0, can be chosen
to achieve a desired transmission probability. Let FH(h) =∫ ∞
h

fH(h) dh denote the channel gain’s complimentary dis-
tribution function, and assume this is strictly decreasing. For
a transmission probability p, the desired threshold is H0 =
F−1
H (p).
Let R(Pr) be a function which denotes the rate at which a

user can reliably transmit as a function of the received power.
For example, if a user can transmit at rates approaching the
Shannon capacity of the channel in each slot, then we have
R(Pr) = W log(1 + Pr

NoW
), where W is the bandwidth of

channel. Initially, assume in each slot that when users transmit,
they do so with a fixed rate; this will require a constant
received power of Pr. When users transmit, they will simply
invert the channel and transmit with power Pt = Pr

h .4 Suppose
each user has a long-term average power constraint of P̄ , i.e.

lim
N→∞

1
n

N∑

n=1

Pn ≤ P̄ ,

where Pn is the power used in the nth slot. For a given
transmission probability p, this is equivalent to

∫ ∞

F−1
H (p)

fH(h)
Pr

h
dh ≤ P . (1)

To satisfy this constraint, we must have

Pr ≤ P∫ ∞
F−1

H (p) fH(h) 1
h dh

.

2In particular, we do not consider any capture effects or multi-user
reception; our main reason is to simplify the following discussion; however,
many of these ideas could be extended to such settings.

3In most cases, additional feedback will be available and more elaborate
MAC protocols can be used. Again, our reason for focusing on ALOHA is
to illustrate the basic ideas in the simplest setting.

4Some improvement can be gained by allowing users to vary both their
rate and power, but, as we will show below, this improvement is minor.
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The total throughput of the system, s(p, n) in bits/second is
then given by

s(p, n) =
(
np(1 − p)n−1)R

(
P∫ ∞

F−1
H (p) fH(h) 1

h dh

)
. (2)

This expression is the product of two terms. The first term
represents the probability of a successful transmission in a slot;
the second term gives the transmission rate of each success.
The transmission probability p can be chosen to maximize
this expression. Initially, we consider the sub-optimal choice
of p = 1

n ; this choice maximizes the first term in (2)
and simplifies the following analysis; subsequently, we will
compare this choice to the optimal p which maximizes s(p, n).

B. Throughput scaling

Given p = 1
n , we denote the throughput in (2) by s(n).

We consider how s(n) scales as n increases. Notice that the
first term in (2) is decreasing with n and approaches the well-
known asymptote of 1

e . The threshold H0 = F−1
H ( 1

n ) increases
as n increases. Hence, with an average power constraint of P̄ ,
the maximum received power per slot, Pr, will also increase
with n. This in turn will enable users to transmit at a higher
rate. Taking both of these factors into account, the total
throughput is increasing with n; the rate of increase is given
by the following proposition. 5

Proposition 1: Assume R(x) is a monotonically increasing
and concave function of x, and FH(h)

h = O(fH(h)) , then as
n → ∞,

s(n) = Θ
(
R

(
P̄ nF−1

H (
1
n

)
))

.

Proof: See Appendix I.

The p.d.f.’s for most widely used fading models have
exponential tails, in which case the condition that FH(h)

h =
O(fH(h)) is satisfied. As an example, consider a Rayleigh
fading channel, i.e. fH(h) = 1

h0
e− h

h0 , where h0 = EH ,
and assume R(Pr) = W log(1 + Pr

N0W
). From Prop. 1, the

throughput s(n) is then increasing at a rate of Θ(log(n) +
log(log(n))).

C. Optimal power/rate allocation

Now instead of channel inversion, we consider an opti-
mal power allocation scheme. In other words, when a user
transmits, it can vary both its transmission power and rate
in order to maximize the total throughput. For simplicity,
we focus on the case of a Rayleigh fading channel with
R(P ) = W log(1+ HP

NoW
); similar results hold for other fading

distributions that satisfy the condition in Prop. 1. In this case
we must specify a power allocation P (h), which indicates the
transmission power used for all states h > H0, subject to an
average power constraint. Thus for a given number of users,

5We use the notation an = O(bn) if limn→∞
|an|
|bn| < ∞ and an =

Θ(bn) if both limn→∞
|an|
|bn| < ∞ and limn→∞

|bn|
|an| < ∞.

0 5 10 15 20 25
1

1.005

1.01

1.015

1.02

1.025
throughput ratio of optimal power allocation to channel inversion

SNR (dB)

ra
tio

n=5
n=10
n=100

Fig. 1. Ratio of the throughput with optimal power allocation to that with
channel inversion versus the expected received SNR for n = 5, 10, 100 users.

n, and still assuming p = 1/n, the optimal power allocation
is the solution to the following optimization problem:

maximize
P (h)

W

∫ ∞

h0 ln(n)

1
h0

e− h
h0 log

(
1 +

P (h)h
N0W

)
dh

s.t.
∫ ∞

h0 ln(n)

1
h0

e− h
h0 P (h) dh = P .

The solution of this optimization problem will be a well-
known “water-filling” power allocation [4] over those channel
states, h > ho ln(n). This can be written as,

P (h) =

{
N0W ( 1

h′ − 1
h ), h > max{h′, ho ln(n)}

0, h < max{h′, ho ln(n)},

where h′ is chosen to satisfy the average power constraint. For
n large enough, it can be shown that h′ < ho ln(n), in which
case we have

h′ =
N0W

nP + nN0W
∫ ∞
h0ln(n)

1
h0h

e− h
h0 dh

, (3)

and the throughput becomes

sop(n) =Wn(1 − 1
n

)n−1

∗
∫ ∞

h0 ln(n)

1
h0

e− h
h0 log

(
h

h′

)
dh.

The next proposition states that asymptotically there is no
advantage to optimally allocating the power.

Proposition 2: As n → ∞, sop(n)
s(n) → 1, where s(n) is

given in (2).
The proof of this is similar to Prop. 1 and is omitted.
In Fig. 1, the throughput ratio of a system using the optimal

power allocation to a system using channel inversion is shown
as the function of the expected received SNR. As can be seen,
the ratio is close to 1 even for a small number of users and
a small SNR. The ratio decreases as the number of users
increases and as the SNR increases.
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D. Short-term Power Constraint

In addition to a long-term average power constraint, a
user in wireless network may also have short-term power
constraints, for example, limiting the power used for any
transmission. We model this as a constraint on the transmission
power a user can use in any one time-slot. For the model in
Sect. II.B., let Pm(n) be the maximum power used by any user
in a system with n users. Under a long-term average power
constraint P̄ ,

Pm(n) =
Pr

H0
=

P

H0
∫ ∞
F−1

H ( 1
n ) fH(h) 1

h dh
.

As the number of users increases, the fraction of time any one
user transmits will decrease. Hence, under a long term power
constraint, the power per transmission will increase with the
number of users. This quantity grows linearly with the number
of users, as summarized by the following proposition.

Proposition 3: Assume R(x) is a monotonically increasing
and concave function of x, and FH(h)

h = O(fH(h)), then as
n → ∞, Pm(n) = Θ(n).

The proof of this is similar to Prop. 1 and is omitted. It
follows that a short term power constraint will eventually limit
the throughput growth in Prop. 1. Next, we consider how
the throughput scales with such a constraint. Specifically, we
assume that each user’s transmission power is limited to be
less than Pm in each slot. As in Sect. II.B we assume the
transmission rate is fixed. In this case, the maximum rate at
which a user can transmit at for all channel gains H > H0, is
given by R(H0Pm). If the threshold H0 is still chosen so that
the transmission probability is 1/n, then the total throughput
is given by

sm(n) =
(

1 − 1
n

)n−1

R

(
PmF−1

H (
1
n

)
)

. (4)

This quantity can be shown to be increasing at rate
Θ(R(PmF−1

H ( 1
n ))). Notice that this is a slower rate of growth

than under an average power constraint. This can be explained
as follows, with an average power constraint the total power
available to the system is increasing with the number of users.
This increase in power is responsible for part of the growth
rate given in Prop. 1. Indeed, if the average power per user
is normalized by the number of users, the growth rate under
the average power constraint will be the same as with a short-
term power constraint. For our example of a Rayleigh fading
channel with R(Pr) = W log(1+ Pr

N0W
), sm(n) in (4) can be

shown to increase at rate Θ(log(log(n))).

E. Optimal transmission probability

So far we have been assuming that the transmission prob-
ability for each user is p = 1

n ; as noted in Sect. II.A., this is
generally a suboptimal choice for p. In this section we look
at the difference in throughput when p is chosen optimally.
We focus on the Rayleigh fading example with a short-term
power constraint of Pm. In this case, given that each user

transmits with probability p, then the channel threshold is
H0 = −h0 ln(p), and the total throughput is given by

sm(p, n) = np(1 − p)n−1W log
(

1 − Pmh0 ln(p)
NoW

)
(5)

The optimal transmission probability, p∗(n) is the value of p
that maximizes (5). The next proposition shows that p(n) =
1/n is a good approximation of the optimal transmission
probability and it approaches the optimum as n approaches
infinity. A similar result holds under a long term power
constraint.

Proposition 4: For any finite n, p∗(n) = α(n)
n , where 0 <

α(n) < 1, and α(n) → 1 as n → ∞.
Proof: See Appendix II.
From this proposition, it follows that sm(p∗(n), n) also

grows at rate Θ(log(log(n))), and sm(p∗(n), n) approaches
sm(n) as n increases; therefore the preceding discussion
applies equally well when the optimal transmission probability
is used.

F. Numerical comparisons

In this section, we present a numerical study that compares
the throughput of the channel-aware ALOHA protocol with
three other cases under a short-term power constraint.

The first case we compare to is a slotted ALOHA system
where there is no fading and the channel between each user
has a constant channel gain of h0. In this case, given a short-
term power constraint of Pm, the maximum rate a user can
send in a slot is

R = W log
(

1 +
Pmh0

NoW

)

independent of the number of users. Thus, in this case the total
throughput is given by

snf (n) = W

(
1 − 1

n

)n−1

log
(

1 +
Pmh0

NoW

)
. (6)

As n → ∞ this quantity approaches a constant value of
W
e log

(
1 + Pmh0

NoW

)
.

The second case is an ALOHA system with Rayleigh fading
where users do not base their transmissions on the channel
state. As in the channel aware ALOHA, users attempt to
transmit at a constant rate R and still do “channel inversion”.
With Rayleigh fading, a user will not be able to transmit as
the channel gain approaches to zero and satisfy the short-
term power constraint. Therefore, there will still be a threshold
hmin, and only above this threshold will users transmit, i.e.
users will not transmit when the channel fading is severe. The
difference in this case is that we assume that this threshold
does not change with the number of users. We choose hmin

subject to a short term power constraint to maximize the
average throughput, i.e.

hmin = arg max
h

{
log

(
1 +

Pmh

NoW

)
e− h

h0

}
. (7)
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The throughput in this case is

sa(n) = W (1 − 1
n

)n−1 log
(

1 +
Pmhmin

NoW

)
e− hmin

h0 . (8)

The third case we consider is a TDM system. In a fading
channel, assume each user is assigned a time slot in a TDM
frame. During each time slot only one user can transmit. As
in the second case, we assume users transmit at a constant
transmission rate R, and only transmit when the channel gain
is larger than hmin given in (7). The throughput in this case
is given by

sTDM (n) = log(1 +
Pmhmin

NoW
)e− hmin

h0 . (9)

Figure 2 shows a comparison of the total throughput as
a function of the number of users in all four cases. The
parameters are the same as before. Notice for the first case
when fading is not present, the throughput approaches to a
constant as expected. For the second case, the throughput is
even lower than in the first case. The poor performance can be
attributed to the fact that the MAC protocol ignores the channel
variations leaving the physical layer to compensate for deep
fades. For the third case, notice that for small values of n,
this TDM approach has a higher throughput than the channel
aware ALOHA system. As n grows, however, the ALOHA
approach quickly achieves higher throughputs, despite the fact
that collisions occur. This is interesting as in a wire-line
channel, for a backlogged system, a TDM approach would
always be preferable to any random access technique. However
in the wireless setting, the channel-aware ALOHA system has
a higher throughput when enough users are present to provide
sufficient multiuser diversity. Fig. 3 shows the number of users
required for channel-aware Aloha to have a higher throughput
than TDM under both long-term power constraint and short-
term power constraints as a function of a function of the SNR.
Under a long-term power constraint, channel inversion is used
in channel-aware Aloha, while the optimal power allocation is
used in the TDM scheme. It can be seen that when the SNR
is not too large, only small number of users are required to
out perform TDM. Therefore, the channel-aware Aloha would
perform better than the TDM approach in a fading environment
when power is limited.

III. COMPARISONS WITH CENTRALIZED SCHEDULERS

A. Throughput scaling

In this section, we compare the throughput scaling of the
channel aware ALOHA protocol with that achieved by a
centralized scheduler. In this section, we are still considering a
backlogged system. As in [7], to maximize the total through-
put, the optimal centralized scheduler will schedule the user
with the best channel gain in each slot. Assuming variable-
rate transmissions and a short-term power constraint of Pm,
the average throughput achieved, sct(n), is then

sct(n) = E

(
R(Pm max

i=1,... ,n
Hi)

)
. (10)

Channel-aware ALOHA
ALOHA Without Fading
TDM
ALOHA With Fading

Throughput(bps) vs. Number of Users
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Fig. 2. Comparison of throughput versus the number of users under a short-
term power constraint. The parameter used here are W = 1KHz, Pm = 40W,
N0 = 0.001 and h0 = 1.
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Fig. 3. Number of users required for Channel-aware ALOHA to outperform
TDM under both short-term and long-term power constraints.

The rate of growth of this quantity depends on the growth of
the maximum of n i.i.d. random variables. The following result
from extreme order statistics [3] is helpful in characterizing
this growth [17].

Lemma 1: Let z1, ..., zn be i.i.d. random variables with
a complimentary distribution function F (·) and p.d.f. f(·)
satisfying F (z) < 1 for all z, F (z) is twice differentiable
for all z, and limz→∞[F (z)

f(z) ] = c > 0 for some constant c.
Then max1≤i≤n zi − ln converges in distribution to a limiting
random variable with c.d.f. exp(−e

−x
c ), where ln is given by

F (ln) = 1/n.
Common fading distributions, such as Rayleigh and Ricean,

satisfy the assumptions of this lemma. For the above system,
this implies the maximum channel gain grows like ln, where
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ln = F−1
H ( 1

n ). Therefore with an optimum scheduler, the
throughput will increase at the rate R(PmF−1

H ( 1
n )); this is the

same as the rate at which sm(n) is growing in the ALOHA
system under a short-term power constraint (cf. in Sect. II.D).
Also notice that in the ALOHA system, we restricted ourselves
to using a fixed transmission rate; with this restriction we are
still able to achieve the optimal growth rate in throughput.
The following proposition shows the ratio of sm(n) to the
transmission rate, sct(n) converges to 1/e as n approaches to
infinity.

Proposition 5: If R(·) is strictly increasing, then

lim
n→∞

sm(n)
sct(n)

= lim
n→∞

(1 − 1
n

)n−1 = 1/e

Proof: Let zn = R(Pmhn). Because R(·) is monotoni-
cally increasing, we have

max zn = maxR(Pmhn) = R(Pm max(hn)).

The complimentary distribution function F (z) =
FH(R−1(z)/Pm), satisfies the conditions of Lemma 1
(assuming R−1(.) is twice differentiable ). Hence, max zn−ln
converges in distribution to a limiting random variable with
c.d.f. exp(−e−x/c), where ln = R(PmF−1

H (1/n)).
Therefore, we have

lim
n→∞

E(max zn − ln) = c0,

where c0 = E(X) and X is a random variable with
c.d.f. exp(−e

−x
c ), for some constant c. Recall,

sm(n) =
(

1 − 1
n

)n−1

R(PmF−1
H (1/n)).

It follows that,

lim
n→∞

sct(n) − sm(n)
(

1 − 1
n

)−(n−1)

= c0.

Dividing by sm(n) and taking limits, we have the desired
result.

Prop. 5 implies that that limn→∞
R(PmF−1

H (1/n))
sct(n) = 1; this

means the transmission rate averaged over all non-collision
slots in the channel-aware ALOHA (R(PmF−1

H (1/n)) ap-
proaches the average rate in the optimal centralized scheme
E(R(max(hn))), as n approaches to infinity. In other words,
asymptotically, the only penalty incurred due to distributed
channel knowledge is due to the contention inherent in the
ALOHA protocol.

B. Finite user comparisons

In the previous section, we assumed that in the ALOHA sys-
tem all users transmitted at a fixed rate, while in the centralized
approach a user employed variable rate transmission. In this
section, we assume that users in both the ALOHA system and
the centralized approach use variable rate transmission with a
fixed transmission power of Pm. For the ALOHA case, we still
assume that each user only transmits when H > H0, however

the rate at which the user transmits is given by R(HPm). In
this case, the throughput for the ALOHA system is given by

s̃m(n) =
(

1 − 1
n

)n−1

E(R(PmH)|H > H0),

where we are still assuming H0 = F−1
H (1/n).

The ratio rf (n) = s̃m(n)
sct(n) can be viewed as a measure of the

loss in throughput due to the medium access control protocol.
In a channel without fading, the ratio of the throughput when
using ALOHA compared to the throughput with a centralized
scheduler is simply rnf (n) =

(
1 − 1

n

)n−1
. Both rf (n) and

rnf (n) converge to 1
e as n → ∞. Next, we compare these

two quantities for finite n and show that rf (n) > rnf (n) for
all finite n. In other words, the penalty for lack of coordination
is smaller in a fading channel. This is summarized in the
following proposition.

Proposition 6: For all finite n, rf (n) > rnf (n).
Proof: From the definitions of the various quantities

this is equivalent to showing that E(R(PmH)|H > H0) >
E(R(PmHmax,n)), where Hmax,n = maxi=1,... ,n{Hi}.

To show this we use the following stochastic ordering result
[13]: for two random variables, X and Y , if Pr(X > a) ≥
Pr(Y > a) for all a, then E[f(X)] ≥ E[f(Y )] for all
increasing functions f .

Let X be the channel gain H when a successful transmis-
sion occurs in the ALOHA systems, thus

Pr(X > h) =

{
nFH(h) for all h > H0

1 otherwise,

where we have used that Pr(H > H0) = 1/n. Let Y =
Hmax,n, then

Pr(Y > h) = 1 − p(Y < h)
= 1 − (1 − FH(h))n

For h < H0, Pr(X > h) = 1, thus Pr(X > h) > Pr(Y > h).
For all h > H0, let z = FH(h). Since nz > 1−(1−z)n for all
0 < z < 1, we again have Pr(X > h) > Pr(Y > h) for all
h > H0. By assumption, R(x) is monotonically increasing,
thus applying the above result we have E(R(PmH)|H >
H0) > E(R(PmHmax,n)) as desired.

C. Splitting Algorithm

If the time-scale over which the channel varies is larger than
the round-trip time between each user and the receiver, then
the throughput of the channel aware ALOHA approach can
be improved by using a type of splitting algorithm to resolve
collisions [2]. Furthermore, by basing the splitting decision
on the users’ channel gains, the splitting algorithm could be
used to find the user with the best channel at the beginning
of each slot in a distributed way. Assume that the round-trip
time is β, where this is smaller than the time-slot used to send
packets. At the beginning of each slot, consider using several
mini-slots with length β to communicate with the base station
and find the best user.
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h

H0=h0ln(n) H2=h0ln(4n/3) H1=h0ln(2n)

Fig. 4. One example of the splitting sequence

As before, we assume instantaneous (0, 1, e) feedback after
each mini-slot. Based on this feedback information, we set
the threshold for the next slot to attempt to maximize the
success probability in that slot. One example of such a splitting
sequence is shown in Fig. 4. Initially we set the threshold
H0 = h0 ln(n). Users whose channel gains are above H0
transmit in the first mini-slot. If a collision occurs, we know
there are two or more users with channel gains above H0.
The probability of more than two users’ channels being above
H0 is much less than the probability that exactly two users are
above H0 when n is large. Therefore we set the next threshold
H1 = h0 ln(2n) so that the probability that one user’s channel
is above H1 given that two users’ channels are above H0 is
1/2. In the second mini-slot, users whose channel gains are
above H1 transmit. In the example, no users will transmit in
this slot; thus we know there must be two or more users whose
channel gains are within the range H0 < H < H1. The next
threshold is set to be H2 = h0 ln(4n/3), again this is chosen
so that the probability that one user’s channel is in the range
H2 < H < H1 given that two users’ channels are in the
range H0 < H < H1 is 1/2. After the third mini-slot, a “1”
feedback is received and the user with the best channel gain
is found and will transmit in the rest of the slot.

Generally, at the beginning of each slot, we set the threshold
H0 = h0 ln(n) initially. Then based on the feedback received
in each mini-slot, there are the following three possibilities:
(i) if the feedback is “1” (success), the requested user will
continue to transmit the data packet; (ii) if feedback is
“0”(idle), the threshold is lowered; (iii) if the feedback is e
(collision), we know there are multiple users within the current
range, so we increase the threshold. In each mini-slot, users
whose channel gain is larger than the threshold attempt to
transmit. This process continues until a successful transmission
occurs or there are no more mini-slots in the time-slot. In the
next time-slot a new search interval begins. Compared to the
previous approaches, the extra overhead involved is the mini-
slots we use to transmit the requests.

Fig. 5 presents simulation results showing the ratio of
the throughput from the splitting algorithm compared to a
centralized scheduling scheme for a Rayleigh fading channel.
This ratio decreases slightly as the number of users increases;
this is because with more users, more overhead is required for
splitting. Fig. 6 shows the number of mini-slots required as
the number of users in the system increases. Notice that for
the range shown, the number of required mini-slots is small,
which suggests that this approach is effective.
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Fig. 5. Ratio of throughput of splitting algorithm to centralized scheduler
for different numbers of users.
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Fig. 6. The number of mini-slots required for a success by the splitting
algorithm

The slot length used in Fig. 5 is 4ms, and β is 0.1 ms. If
the ratio of β to the slot length decreases, throughput of the
splitting algorithm will increase and approaches to the central
scheduling scheme; if the ratio increases, the performance
approaches the ALOHA algorithm. A more detailed analysis
of this approach can be found in [20].

IV. RANDOM ARRIVALS

In previous sections, we assumed all nodes are backlogged
and have an infinite reservoir of packets to send. In this section,
we relax this assumption and assume packets randomly arrive
with total arrival rate λ. First, we consider an infinite user
model, where it is assumed that each new packet arrives to a
new user [2]. Such a model is reasonable for a system with
a large number of users, each with a small arrival rate. We
assume that the number of backlogged users n in each slot
is known. Practically, the backlog would have to be estimated
using an algorithm such as the Pseudo-Bayesian algorithm [2].
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We still consider an approach where users base their trans-
mission on whether their channel gain is above a threshold
H0; however, now we allow this threshold to depend on the
backlog. Specifically, we assume that

H0(n) =

{
hmin for F−1

H ( 1
n ) < hmin

F−1
H ( 1

n ) for F−1
H ( 1

n ) >= hmin.
(11)

Here hmin is the minimum threshold above which the user
will transmit regardless of the backlog.

As in Sect. II.D., we consider a model with a short-term
power constraint of Pm. Given that n users are backlogged,
each user will transmit at rate R(PmH0(n)) if successful.
As n increases, the transmission rate R(PmH0(n)) will also
increase. If all packets have a fixed length of L bits, then
the time needed to transmit a packet is L/R(PmH0(n)),
which will decrease as n increases. We consider a slotted-time
model, where the length of time-slots vary with the backlog
according to this relationship. Packet arrivals are assumed to
be independent in each time-slot with an expected arrival rate
of λL/R(PmH0(n)). In this section, we still assume that the
channel variation is memoryless between slots. 6

Given the above assumptions, we consider over what range
of arrival rates, λ, the system is stable. The following propo-
sition states that if R(PmH0(n)) is unbounded (as in the
Rayleigh fading model), then the system will be stable for
any total arrival rate. 7

Proposition 7: Under memoryless fading, if R(PmH0(n))
is unbounded, then the infinite user, channel-aware ALOHA
system is stable for any arrival rate λ.

Proof: Let for t = 1, 2, . . . , let n(t) denote the back-
log at the start of the tth time-slot. Given the memoryless
assumption, {n(t)} will be a Markov chain. To show that the
system is stable, it is sufficient to show the following drift
condition[2]: there exists some D > 0, N > 0 such that

E(n(t + 1) − n(t)|n(t) = n) ≤ −D (12)

for all n ≥ N .
Given that n(t) = n, each user will transmit with probability

1/n in each slot, therefore the departure rate in packets per
time-slot would be (1− 1

n )n−1. The arrival rate in packets per
time-slot would be λ(n) = λL/R(PmH0(n)). Thus we have,

E(n(t + 1) − n(t)|n(t) = n) = −(1 − 1
n

)n−1 + λ(n) (13)

As n approaches to infinity, λ(n) decreases to 0, while (1 −
1
n )n−1 approaches to 1/e. Therefore for any δ < 1/e, an N
can be found such that (12) is satisfied, and so the system is
stable.

Figure 7 illustrates the idea behind this stability result. This
figure shows both the total arrival rate and departure rate
normalized in units of packets per time-slot, as a function

6Since the slot sizes are variable, this may seem to be a questionable
assumption. In Sect. V, we discuss removing this restriction.

7However, for high enough arrival rates this requires a prohibitively high
diversity gain and the underlying physical model becomes unrealistic.
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Fig. 7. Stability of channel-aware ALOHA.

of the backlog. The parameters used in the figure are λ =
0.6 packets/second, L = 1000bits/packets, W = 1kHz and
Pmh0
N0W

= 1. For small backlogs the normalized arrival rate is
larger than the departure rate, and so the backlog will tend to
increase. Eventually, for high enough backlogs, the arrival rate
will drop below the departure rate; the system will stabilize
around the point where these curves cross. As the arrival rate
increases, the system will stabilize around a larger backlog;
this is because more users are needed to provide the multiuser
diversity gain necessary to stabilize the system. The higher
backlog results in a larger delay. This is illustrated in Fig. 8.
This figure shows simulation results of the delay for a system
with a finite number of users for various arrival rates, λ. In
these simulations, arrivals are assumed to be from a Poisson
process. For each curve the total arrival rate is fixed as the
number of users varies. Notice that for a given arrival rate,
the delay decreases as the number of users increase; this is
due to the increased multiuser diversity.

We note that Prop. 7 does not imply that a system with
a finite number of users is stable for any arrival rate. For
example, consider a system with n users and symmetric traffic.
If the arrival rate λ satisfies λ ∗ L/R(PmH0(n)) > 1/e, the
system will be unstable.

V. CHANNEL WITH MEMORY

We have been considering the case where the channel is
memoryless from slot to slot. In this section, we consider a
simple model that incorporates channel memory. Specifically,
we still assume that each backlogged user only transmits when
its channel is above a threshold value, H0. When the channel is
memoryless, the transmission attempts of a user are an i.i.d.
sequence of random variables. For a channel with memory,
we assume that the sequence of transmission attempts by a
backlogged user can be modeled as a two-state Markov chain
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         NX X

pX,NX

pNX,X

Fig. 9. Markov chain representing each user’s transmission state for the
channel model with memory.

as shown in Fig. 9. The state X corresponds to time-slots
when the user will transmit (i.e., the channel gain is greater
than H0), and the state NX corresponds to slots when the
user does not transmit. The transition probability from state
X to NX and from state NX to X is denoted by pX,NX and
pNX,X , respectively. If the steady-state probability of state X
(i.e., the probability that a user attempts a transmission) is
p, then it can be shown that the transition probabilities must
have the form pX,NX = r(1 − p) and pNX,X = rp, for some
r > 0. Notice that r = 1 corresponds to a memoryless channel;
smaller values of r correspond to increased channel memory.

First, consider a backlogged system with n users; each user
transmitting according to the Markov chain in Fig. 9. Because
the users’ channel gains are independent of each other, the
steady-state probability of a successful transmission is still
given by np(1 − p)n−1, as in the memoryless case. The total
throughput, will only depend on the steady-state distribution,
hence the analysis in Sect. II can be seen to apply in this case
as well. In other words, for the backlogged model, channel
memory has no effect on the total throughput.

Next, we consider the random arrival case from Sect. IV.
As in the memoryless case, we assume that the length of
a time-slot needed to send a packet will vary depending
on the backlog. When n users are backlogged, each user’s
transmission attempts can be modeled as in Fig. 9, where the
transition probabilities of this Markov chain are parameterized
by the quantity r. Only now this parameter will vary with the
number of backlogged users; we denote this by r(n). As the

0 0,1 1,1 0,2 1,2 2,2 0,n 1,n ...... n,n...... ......

Fig. 10. Markov chain model for the whole process.

backlog increases, there are two factors that effect r(n) – first
for a fixed threshold, H0, shorter time-slots will lead to an
increased correlation between time-slots and hence a smaller
r(n); on the other hand, for a fixed time-slot, as the threshold,
H0, increases, the probability that the channel stays above
the threshold will decrease, leading to larger r(n). The exact
behavior of r(n) will depend on the specifics of the underlying
channel model. We will look at one example of this at the end
of this section.

Given a backlog of n users, assume that the channel
threshold is still set so the transmission probability, p is 1/n.
In this case, the transition probabilities in Fig. 9 become
pX,NX = r(n)(1 − 1/n) and pNX,X = r(n)/n.

The entire system can also be modeled as a Markov chain,
a part of which is shown in Fig. 10. Each state has two
parameters, (k, n), k stands for the number of backlogged
users whose channel gains are above the threshold level and
n stands for the number of backlogged users. Given that
the system is in state (k, n) and no new arrivals occur, the
probability of a successful transmission attempt in the next
slot is given by

ps(k, n)
= k(pX,NX)k−1pX,X(pNX,NX)n−k

+ (n − k)pNX,X(pNX,NX)n−k−1(pX,NX)k

= k

(
r(n)

(
1 − 1

n

))k−1 (
1 − r(n)

(
1 − 1

n

))

×
(

1 − r(n)
n

)n−k

+ (n − k)
(
r(n)
n

)

×
(

1 − r(n)
n

)n−k−1 (
r(n)

(
1 − 1

n

))k

.

Notice that if r(n) → 1 as n → ∞, then ps(k, n) → 1/e for
any k. This corresponds to the channel effectively becoming
memoryless as the backlog increases. In this case, by a similar
argument as in the memoryless case, the system can be shown
to be stable for any total arrival rate λ. However, if r(n) is
bounded to be strictly less than some c < 1 as n increases, then
ps(k, n) will decrease at a rate faster than ncn, for all states
with k = qn, where 0 < q ≤ 1 is a constant. The normalized
arrival rate λ decreases at rate Θ(1/(log(log(n))) which is
slower than ncn. This suggests that if r(n) has this behavior,
the system may be unstable as n becomes large. Fig. 11 shows
simulation results of the delay versus the number of users
when the channel has different memories. It can be seen that
the delay increases as the channel memory increases. This is
because as the channel has more memory, packet transmissions
become more bursty which leads to larger queueing delays.
Fig. 11 also shows that, for a small number of users, the delay
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Fig. 11. Average delay versus the number of users in a channel with memory
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decreases as the number of users increases; this is achieved
by exploiting the increasing multi-user diversity. A similar
behavior is shown in Fig. 8 in a memoryless channel, i.e.
r = 1. However, when r < 1, as the number of users continues
to increase, the delay begins to increase as well.

The following is one example of how r(n) may change
with n. This example is based on the finite-state Markov chain
model for a Rayleigh Fading channel in [18]. Using this model,
the transition probability, pX,NX can be approximated as,

pX,NX =
NH0

RH0

, (14)

where NH0 is the average number of times per second that
the channel gain drops below H0. This is given by

NH0 =
√

2π
H0

h0
fme− H0

h0 , (15)

where fm is the Doppler frequency and fm = v
λ , v is the

velocity of the user, and λ is the wavelength of the signal.
The quantity RH0 stands for the average number of slots the
channel gain stays above H0; this is given by

RH0 = e− H0
h0 R(PmH0)/L, (16)

Where R(PmH0)/L is the length of a time slot when the
threshold is set to H0. Assume R(PmH0) = W log(1 +
PmH0
NoW

), using that pX,NX = (1 − p)r(n) and the above
relations, we have

r(n) =

√
2πH0

h0
fmL

W log(1 + PmH0
NoW

)(1 − e− H0
h0 )

, (17)

where we have assumed that p = FH(H0). Setting H0 =

h0 ln(n), we have

r(n) =

√
2π ln(n)fmL

W log(1 + Pmh0 ln(n)
NoW

)(1 − 1/n)
. (18)

For this example it can be seen that r(n) is increasing at a

rate of
√

log(n)
log(log(n)) . This is a very slow rate and for a large

range of n, r(n) stays almost constant. This suggests that if
the channel can be approximated as memoryless for a small
backlog, then it is reasonable to assume it is still memoryless
as the backlog changes; this was the assumption we made in
Sect. IV. For large enough backlog, r(n) will increase and
finally become bigger than 1. What this means is that as users
are using larger and larger thresholds, eventually the time that
channel stays above the threshold will become smaller than
the time needed to send a packet, and the model breaks down.
However, the number of users is needed before this becomes
an issue appears to be too large for practical concern.

VI. CONCLUSIONS

In this paper we presented a media access control scheme,
channel aware ALOHA, for users in a wireless network. We
have shown that this scheme enables users to exploit multi-
user diversity without relying on a centralized controller or
complete knowledge of all users’ channel gains. We have
demonstrated that the total throughput for such a system grows
at the same rate as a system with an optimum centralized
scheduler. With a splitting algorithm, the optimal throughput is
approached. We have also shown that there is little advantage
to be gained in such a system from allocating transmission
power and rate based on the channel state. In an random
arrival case, we proved that channel-aware ALOHA is stable
for any arrival rate in an infinite user model, but at the expense
of large backlogs. Finally, an extension to a simple model
of a channel with memory was examined. Other directions
that this work could be extended include considering more
sophisticated MAC protocols and more detailed physical layer
models.

APPENDIX I
PROOF OF THE PROP.1

Proof: We want to find the growth rate of

s(n) = (1 − 1
n

)n−1R

(
P∫ ∞

F−1
H ( 1

n ) fH(h) 1
h dh

)
(19)

as n increases. This rate depends on the behavior of∫ ∞
F−1

H ( 1
n ) fH(h) 1

h dh. This quantity can be upper bounded as
∫ ∞

F−1
H ( 1

n )
fH(h)

1
h
dh <

∫ ∞

F−1
H ( 1

n )
fH(h)

1
F−1
H ( 1

n )
dh (20)

=
1

F−1
H ( 1

n )n
. (21)

By assumption, R(x) is an increasing function of x; substi-
tuting this into (19), we have

s(n) >

(
1 − 1

n

)n−1

R

(
P̄F−1

H

(
1
n

)
n

)
(22)
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Next we lower bound
∫ ∞
F−1

H ( 1
n ) fH(h) 1

h dh. By assumption,

limh→∞
|FH(h)|
|hfH(h)| < ∞. Therefore, there exists some hc > 0

and some M > 0, such that for all h > hc, fH(h) > M FH(h)
h .

Hence, when n is large enough, we have
∫ ∞

F−1
H ( 1

n )
fH(h)

1
h
dh >

∫ ∞

F−1
H ( 1

n )

(
FH(h)
h2 +

fH(h)
h

)
C dh

= −CFH(h)
h

,

∣∣∣∣
∞

F−1
H ( 1

n )
,

where C > 0 is a constant. Thus
∫ ∞

F−1
H ( 1

n )
fH(h)

1
h
dh >

C

F−1
H ( 1

n )n
. (23)

Substituting this into (19) yields

s(n) <

(
1 − 1

n

)n−1

R

(
P̄CF−1

H

(
1
n

)
n

)
. (24)

By assumption, R(x) is concave, hence

R
(
CF−1

H (1/n)n
)
< CR

(
P̄F−1

H (1/n)n
)
. (25)

Therefore

s(n) < C

(
1 − 1

n

)n−1

R

(
P̄F−1

H

(
1
n

)
n

)
. (26)

From (22) and (26) and using that

lim
n→∞

(
1 − 1

n

)n−1

= 1/e, (27)

we have

1
e
R

(
P̄F−1

H

(
1
n

)
n

)
< lim

n→∞
s(n)

<
1
e
C

(
R

(
P̄F−1

H

(
1
n

)
n

)) (28)

Therefore s(n) = Θ(R(P̄F−1
H ( 1

n )n)) as desired.

APPENDIX II
PROOF OF PROP.4:

Proof: The transmission probability p∗(n) maximizes

sm(p, n) = np(1 − p)n−1W log
(

1 − Pmh0 ln(p)
NoW

)
. (29)

Choosing p = 1/n maximizes the np(1 − p)n−1 term. Since

W log
(
1 − Pmh0 ln(p)

NoW

)
is a monotonically decreasing func-

tion of p, it follows that p∗(n) = α(n)
n , where 0 < α(n) < 1.

Furthermore, it can be shown that α(n) converges to some
value α∗ > 0 as n → ∞. We want to show that α∗ = 1.

Consider the ratio,

sm(p∗(n), n)
sm(n)

=
α(n)(1 − α(n)

n )n−1 log(1 − Pmh0 log( α(n)
n )

N0W
)

(1 − α
n )n−1 log(1 − Pmh0 log( 1

n )
N0W

)
.

As n → ∞, for any α ∈ (0, 1],

log(1 − Pmh0 log( α
n )

N0W
)

log(1 − Pmh0 log( 1
n )

N0W
)

→ 1. (30)

Therefore,

lim
n→∞

sm(p∗(n), n)
sm(n)

= α∗e−α∗
. (31)

It must be that sm(p∗(n),n)
sm(n) ≥ 1 for all n. Therefore α(n) → 1

as n → ∞.

REFERENCES

[1] P. Bender., et al., ”CDMA/HDR: a bandwidth efficient high speed wire-
less data service for nomadic users,” IEEE Communications Magazine,
Vol. 38, No. 7, pp. 70-77, July 2000.

[2] D. Bertsekas and R. Gallager, ‘Data Networks, 2nd Ed., Prentice Hall,
1992.

[3] H. A. David, Order Statistics, Wiley, 1970.
[4] R. G. Gallager, Information Theory and Reliable Communication, John

Wiley and Sons, NY, 1968.
[5] M. Grossglauser and D. Tse, ”Mobility increases the capacity of ad-hoc

wireless networks” Proc. INFOCOM 2001, Vol. 3, pp. 1360-1369, 2001.
[6] L. Klienrock, Queuing Systems, Vol. II, Wiley, New York, 1975.
[7] R. Knopp and P. A. Humblet, ”Information capacity and power control

in single-cell multiuser communications,” Proc. IEEE ICC ’95, Seattle,
WA, June 1995.

[8] C. C. Lee, “Random Signal Levels for Channel Access in Packet
Broadcast Networks,” IEEE JSAC, vol. 5, pp. 1026-1034, July 1987.

[9] A. Leon-Garcia, Probability and Random Processes for Electrical Engi-
neering, 2nd ed., 1994, pg. 483.

[10] X. Liu, E. K. P. Chong, and N. B. Shroff, “Opportunistic Transmission
Scheduling with Resource-Sharing Constraints in Wireless Networks,”
IEEE JSAC, vol. 19, pp. 2053-2064, Oct. 2001.

[11] W. Luo and A. Ephremides, “Power Levels and Packet Lengths in
Random Multiple Access,” IEEE Trans. on Information Theory, vol. 48,
pp. 46-58, Jan. 2002.

[12] M. Medard, et al., “Capacity of Time-slotted ALOHA Systems” Proc. of
2000 IEEE Inter. Symp. on Information Th., June 2000.

[13] S. Ross, Stochastic Processes pp. 405, 1996.
[14] S. Shamai and E. Telatar, “Some Information Theoretic Aspects of

Decentralized Power Control in Multiple Access Fading Channels,” 1999
Information Theory and Networking Workshop, June 1999.

[15] G. Thomas, “Capacity of Wireless Packet Collision Channel Without
Feedback,” IEEE Trans. on Information Theory, vol. 46, pp. 1141-1144,
May 2000.

[16] M. Tsatsanis and R. Zhang, “Network-Assisted Diversity for Random
Access Wireless Networks”, IEEE Transactions on Signal Processing,
Vol. 48, No. 3, March 2000.

[17] P. Viswanath, D. Tse and R. Laroia, “Opportunistic Beamforming using
Dumb Antennas”, submitted IEEE Trans. on Information Theory.

[18] H. Wang and N. Moayeri, “Finite-State Markov Channel - A Useful
Model for Radio Communication Channels” IEEE Transactions On
Vehicular Technology, vol. 44, No. 1, pp. 163-171, Feb. 1995.

[19] Q. Zhao and L. Tong, “A Dynamic Queue Protocol for Multiaccess Wire-
less Networks with Multipacket Reception”, IEEE/ACM Transactions on
Networking, June, 2001.

[20] X. Qin and R. Berry, “A Distributed Splitting Algorithm for Exploiting
Multiuser Diversity”, in preparation.

1094

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 5, 2009 at 19:29 from IEEE Xplore.  Restrictions apply.


	Southern Illinois University Carbondale
	OpenSIUC
	2003

	Exploiting Multiuser Diversity for Medium Access Control in Wireless Networks
	Xiangping Qin
	Randall Berry
	Recommended Citation



