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On SNR as a Measure of Performance for Narrowband Interference Rejection 
in Direct Sequence Spread Spectrum Systems 

Arif Ansari, Member, IEEE and R. Viswanathan, Senior Member, IEEE 

Abstract - The usefulness of SNR as a figure of merit to quantify 
the narrowband interference rejection capability of a DS 
receiver is examined. The interference considered is a peaked 
autoregressive Gaussian process. The probability of error and 
SNR estimates of a Kalman, a modified Kalman, and a 
nonlinear filter proposed in [2] are obtained by simulation. 
Based on this simulation study and the available theoretical 
error rate analysis of transversal filters, we can conclude that 
SNR is a useful measure if the processing gain, PG, of the DS 
system is moderately large. When the PG is small, such as 7, 
and if thermal noise is negligible compared to the signal, the 
SNR is not a reliable measure of performance. 

I. Introduction 

Narrowband interference in a received direct sequence 
(DS) signal can be reduced by filtering the received signal 
prior to despreading and demodulation (see [l] for review). 
The enhanced rejection of narrowband interference by the 
inclusion of a filter becomes more significant when the 
processing gain of the DS system is small. In several 
previous studies, the signal-to-noise ratio (SNR) obtained at 
the filter output has been used as a figure of performance of 
the interference rejection capability of a DS receiver [l], [2]. 
In general, SNR is used as a measure of performance when an 
analytical expression for the bit error rate (BER) is not 
available, and error rate evaluation by simulation is time 
consuming. However, performance comparison of two 
receivers based on SNR could be troublesome. Even though 
the error probability for each receiver is a monotonic 
function of its SNR, the monotonic curves of the two 
receivers may be different. Therefore, it is possible that the 
receiver showing a larger output SNR may have a larger error 
rate. In this letter, we study the suitability of SNR as a 
measure of performance of a DS-BPSK system employing 
one of the following for interference rejection: Kalman filter, 
a linear modification, the non-linear modification of [2] or a 
transversal filter. Simulations with a Kalman filter and its 
modifications are carried out to estimate the SNR's at the 
filters' output, which are sequences at the chip rate, SNR's of 
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the test statistics, and BER's of the receivers. To evaluate the 
transversal filter, the theoretical error rate and SNR 
expressions obtained in [3] are used. 

The received DS-BPSK signal, after chip matched 
filtering and sampling at the chip rate of the PN sequence, 
gives the following samples [21 for W09&17G*-*}* 
zk = s, + n, + i, ( 1) 

Here sk = d ck , denotes the data bit sequence, L is 

the PG, [$I denotes the integer portion of - for k 2 0 and 

k integer portion of - minus 1 for k < 0 ,and ck E {-1,1} is 
L 

the kth chip of the PN sequence. For later convenience, bit 
do is denoted as d. Each bit is i.i.d with value +1 or -1. 
{n,} is an i.i.d. Gaussian sequence with zero mean and 
variance CT, . The narrowband interference, {ik} ,  is a 
Gaussian autoregressive process of order p and variance 0;. 

k 
L 

2 

D 

i=l 

where { e k }  is zero mean white Gaussian noise and Cpi' s are 
known to the receiver. The sequences { s k } ,  {nk } and { i k }  
are mutually independent. In section 11, the interference 
filters that are simulated, are introduced along with a 
discussion of the key simulation variables. Section I11 
provides a discussion and conclusions derived from this 
study. 

11. Filtering for Narrowband Interference Rejection 

The Kalman filter and its nonlinear modification are 
described in [2]. By putting the autoregressive interference 
in a state-space representation, the Kalman filter algorithm is 
obtained. Asymptotically, as the observation interval 
becomes large, a Kalman filter is equivalent to a Wiener 
filter. However, consider the situation where a decision on a 
given bit is made using the observations corresponding to all 
the past and present bits. Whereas an observation interval 
longer than the bit interval is useful because of the correlated 
interference, by extending the observation interval beyond 
the current bit, we also inherit the uncertainty associated with 
the previous bits [3]. Hence, for certain ranges of 
parameters, the Kalman filter may perform poorly as 
compared to a transversal filter that has only a finite 
memory. Also, if the PN sequence is nearly Lid ,  then the 
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minimum mean square error filter that estimates the 
interference from the observations { z k }  is not linear 121. 

A different linear filter is obtained by modifying the state 
space model. The received signal ( 1 )  with ik as in (2) can be 
represented as 
x k  = Q>k x k - 1  + w k  

where x k  = i, ikWl ... ik-p+l d i f l ]  , 

(3) 
z k  = H k  x k  n k  

T 

[ 
H k = [ I  0 * * '  0 c k ]  8 W k = [ e k  0 * * '  0 U k I T ,  

1 o * * . o  0 0  
$1 0 2  .*. 0,-I 0, 

0 0 e . .  0 O 0 j k  O l  
0 0 1 

For k = O,+L,eL ,..., j k  = 0, Uk = f l ,  with equal probability, 
otherwise, j k  = 1, U k  = 0. 
The rationale for the above modified linear filter is as 
follows. If (3) is compared with the state model of a Kalman 
filter in [2], it can be seen that the x k  vector has an added 
component as shown in (3). This reflects the knowledge 

that the data bit does not change over the L chip intervals 
within a data bit. This knowledge is obtained at the expense 
of the unknown created in the very first chip of a bit. That 
is, for do, jo  =O is assumed, since the true bit (which is 
either + 1  or - 1 )  is unknown, and j k  = 1 represents the fact 
that the bit contribution is the same for 12 k 5 L - 1 . The 
filtering and update equations in [2],  with H ,  Q and 
replaced by Hk, Qk and @k respectively, are the filtering 
equations for this modified filter: 

E { e 3  0 ... 
1, k =O,+_L,f2L,... 
0, otherwise 1 :  ?:O], d={ 

Qk = 

... 
The bit decision procedure for the DS receiver is shown in 

Fig. 1. The input to the PN correlator is denoted as E,. The 
output of the correlator is the test statistic TS: 

L-l d =+1 

T S = x & k  Ck 2 0 (4) 
k=O d = - 1  

The per chip SNR at the output of the filter is defined as [2]: 

The test statistic SNR is defined as 
E ~ ( T S )  

S N R ,  = 
V a r ( T S )  

Since an interference rejection filter cannot eliminate the 
interference completely, &k has some residual correlation 

I 

I .... ZIZk ... 

I 
1-1 Interference Rejection Fdter ch 
L - - - - - - - 

Fig. 1. Filter Structure for Narrowband Interference Rejection and 
Bit decision of the Spread Spectrum receiver 

from chip to chip, especially when the interference is strong. 
Hence SNR,, cannot be estimated from SNR, unless the 
residual correlations and any signal distortions are accounted 
for. 

In a receiver with a Kalman filter, the test statistic for the 
current bit d is affected by a number of previous bits due to 
the filter memory. When the filter is designed for strong, 
highly correlated interference and thermal noise with a low 
variance, the intersymbol interference (ISI) introduced will 
be significant. Since the filter is linear, this effect may be 
studied by applying superposition. Let f, (.) be the function 
of the present and all past observations defining the Kalman 
filter operation. The test statistic is given by 

(7) 
k=O 

Define t, = d C k  - f ~ ( d [ + l C k  c k  as the contribution Of 
k=O 7 )I 

the signal component to the receiver test statistic. The 
density of t, provides a measure of the IS1 effect on the test 
statistic . For example, if no filter is used, the density of t, 
will be two impulses at +L and -L, indicating that the signal 
component of the test statistic is the true bit, i.e. no signal 
distortion or IS1 exists in this case. With the Kalman filter, a 
large variance of t, indicates that the interference from 
previous bits significantly affects the current test statistic. If 
t, is Gaussian, then so is TS. As seen from the simulation 
results below, for certain ranges of parameters, the 
approximate Gaussianity of TS holds, whereas in certain 
other ranges, TS is either non-Gaussian or approximately 
Gaussian conditioned on the previous bit. 

The test statistic corresponding to a nonlinear filter is, in 
general, non-Gaussian and its distribution is required in order 
to fmd the BER. .Any inference on the comparative 
performances of the linear and non-linear filters based on a 
test statistic SNR could be misleading, since the nature of the 
tail of the test statistics' densities of linear and nonlinear 
filters may be different. 

A.  Simulation 
Simulation of the receiver in Fig. 1 is done using samples 

generated according to (1). Denoting N as the length of the 
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PN sequence, the three cases considered are (i) L=N=7, (ii) 
L=7, N=1023 and (iii) L=N=63. Case (i) is an example of 
small PG situations where an entire PN sequence is 
embedded in each bit. In case (ii), L is still small, but a large 
N is used so that the PN sequence is approximately iid. This 
is the situation where the nonlinear Kalman filter is expected 
to be better than the Kalman filter[2]. Our BER simulation 
results given below verify this. Case (iii) is for a moderate 
PG situation. L exceeding 63 was not considered because of 
excessive simulation time requirements. Values of 0; and 
of used are those typically expected. For example, with 
L=7, 0:=1. no filter and no interference, the SNR is 

Present bit=+ 1 
A 

Present bit=- 1 
A 

lolog(;) = 8.45dB(without a filter and interference, the test 

statistic is Gaussian and pb = Q(&ZG), where Q(.> is one 

minus the standard normal cdf). For 0: = 0.01, SNR = 
28.45dB-a situation expected when the TX-RX pair are close. 
0!=10,000 for L=7 and of=lOO,OOO for L=63 correspond to 
a strong jammer. 

The interference obeys (2) with $,=1.98, $,=-0.9801. 
The spectrum of this interfering signal is sharply peaked. 
Sufficient number of realizations of TS are used to ensure 
that the variance in the BER estimate is small. We have 
typically used a number of samples exceeding 8OIBER. More 
details on the simulation procedure can be found in [4]. 

The simulation results and some related calculations are 
shown in Table I (L=N=7), Table I1 (L=7,N=1023) and Table 
I11 (L=N=63) for various values of 0: and 0;. The labeling 
of the estimates in the tables are explained below. SNR* is 
the estimate of the test statistic SNR, SNR,, of (6). P; is the 
BER estimate obtained directly from simulations. PiNR is an 
estimate of the BER obtained as e(=), i.e. under the 
assumption that the test statistic is Gaussian. SNR2, 
appearing in Table I only, is an estimate of the test statistic 
SNR obtained as L times the estimate of SNR, (5), i.e. an 
estimate obtained by ignoring the residual chip correlation 
and signal distortion. P; is an estimate of the BER obtained 
via e(,/=). In the case of Kalman-based filters, the two 
columns correspond to filter estimates and predictor 
estimates respectively. In the case of transversal filters, 
SNR*, Ps;VR ,and P i  shown in Table I are obtained 
analytically [3].  For the case of Kalman filter, the estimated 
conditional densities of t, given present bit equal to +1 and - 
1 are shown in Figs. 2-4. 

111. Discussion and Conclusions 
A.  Small Processing Gain and Short PN Sequence (L=N=7, 
Table I) 

For the two linear Kalman-based filters, the BER estimate 
from the test statistic SNR, P;NR, agrees with the BER 
estimate P,* for weak interference and relatively large 

~ 
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- - Fig. 2. Estimate of the conditional densities of ts for Kalman Filter 

thermal noise variance (0; =1 and 0, 2 =1000). In this 
situation, the IS1 effect is small and the Gaussian assumption 
for the test statistic is valid. This is somewhat justified by 
the density estimate of t, for the W a n  filter(Fig. 2). 
When the interference is strong and the thermal noise 
variance is small (0; = 0.01 ando; = lO,OOO), the variance 
of t, is large and the two peaks for each case of the true bit 
in the density estimate clearly show the IS1 effect (Fig. 3). 
As observed from the simulation data, the two peaks are due 
to the previous bit$, being 1 or -1. The error estimate 
obtained from the conditional Gaussian 
approximation, Q ( , / w l l , d  = +l), agrees with the 

BER estimate P;. In the case of a transversal filter , the 
correct BER is in fact the average of the conditional 
errors[3]. As shown in Table I for a one-sided, 4-tap 
transversal filter, weak thermal noise (of =0.01 and O.l), 

k{-l,l} 

and strong interference (O;=lO,OOO), the BER (P;) is larger 

than the estimate P;NR=Q(&GF), where SNR' is the 
average of the two conditional SNRs. This indicates 
significant IS1 for these parameters. For the two linear 
W a n  filters, the effect of ignoring residual correlation and 
signal distortion can be studied by comparing the two 
estimates SNR2 and SNR*. Irrespective of the strengths of 
the interference and thermal noise, the two estimates differ. 
Therefore, in general SNR* # L SNR,. 

When the filter is nonlinear, the test statistic is in general 
non-Gaussian. However, when the interference is not strong 
and the thermal noise variance is relatively high, (0; =1 and 
of=lOOO), the Gaussian approximation to the test statistic of 
the nonlinear filter also yields the correct BER (compare P; 
and P&R). Although SNR* of the nonlinear filter is much 
larger than thatof themodified linear filter or transversal 
filter, when 0: = 0.01 and 03 = 10000, P; of the nonlinear 

0.8 . 
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d 0.6 
E 

. 

.d c) 
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Present bit=-1 Present bit=+l 

Table I 
SNR and BER Estimates 

filter is also higher. The nonlinear predictor and the 
transversal filter have the same SNR* but the latter has a P l  
several decades below that of the former. Even a c:mparison 
of the two nonlinear filter estimates based on SNR could be 
misleading. The nonlinear predictor and filter show almost 
the same BERs ( P i s )  but differ in SNRs by almost 1OdB. For 
another set of noise parameters , 0:=0.1 and 0~=10000, the 

0.8 

0.6 

B 

'2 0.4 
?! 

2 
W 

0.2 

Present bit=-1 Present bit=+l 

0.0 
-10 -5 0 5 10 

I S  

Fig. 3. Estimate of the conditional densities of ts for Kalman Filter 

SNR*S of all three Kalman-based filters are comparable 
(SNR* of the nonlinear is slightly higher) but P l  for the 
nonlinear filter is higher than P; of the modified linear filter. 

B.  Small Processing Gain and Long PN Sequence (L=7, 
N= 1023, Table 11) 

For the Kalman filter, the BER estimates PiNR and P i  

0.4 

B 4 0.3 
g 
2 0.2 

0.1 

0.0 
-10 -5 0 5 10 

*S 

Fig. 4. Estimate of the conditional densities of ts for Kalman Filter 
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Table II 
SNR and BER Etimates 

Table III 
BER Estimates 

I L=N=63 L4LMA.N MODIFIED NONLINEL4Ft 

disagree for weak thermal noise and strong interference 
(Oi=O.Ol and O~=lO,OOO). This is due to the non-Gaussian 
nature of t, as shown by its density estimate (Fig. 4). The 
nonlinear filter has P; two decades below the others. 
However, based on SNR alone, one would have anticipated a 
much lower error rate for the nonlinear filter (the nonlinear 
filterwredictor) has a SNR* lOO(10) times the SNR* of the 
Kalman). For the modified linear filter, the estimates P;NR 
and P i  agree for all parameters considered. 

C.  Moderate Processing Gain and PN Sequence (L=N=63, 
Table In) 

For moderate processing gain, the simulations had to be 
restricted to not too small thermal noise variances in order to 
observe enough errors and obtain an estimate of the BER. 
For all parameters considered , P;NR and P; estimates 
agree. 

In conclusion, the SNR can be used as a measure of 
performance of a DS system employing narrowband 
interference rejection filters if the PG is moderately large. 
When the PG is small and the thermal noise is negligible as 
compared to the signal, SNR is not a reliable measure. 
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