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Outline

• Theory of stochastic functional
differential equations (SFDE’s) in flat
space: Itô and Nisio ([IN], Kushner
([Ku]), Mohammed ([Mo2], [Mo3])
and Mohammed-Scheutzow ([MoS1],
[MoS2]).

• Objective: to constrain the solution
to live on a smooth submanifold of
Euclidean space.

• Main difficulty: Tangent space along
a solution path is random (cf. unlike
flat case).
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• Difficulty resolved by pulling back the
calculus on the tangent space at the
starting point of the initial semi-
martingale using stochastic parallel
transport. Get SFDE on a linear space
of semimartingales with values in the
tangent space at a given point on the
manifold.

• Solve SFDE on flat space by Picard’s
iteration method. (cf. Driver [Dr]).
But two levels of randomness:
(1) stochastic parallel transport over
initial semimartingale path;
(2) driving Brownian motion.

3



Law of solution at a given time may
not be absolutely continuous with re-
spect to law of initial semimartingale.

• Example of SDDE on the manifold
with a type of Markov property in
space of semimartingales.

• Regularity of solution of SDDE in ini-
tial semimartingale: stochastic
Chen-Souriau calculus (Léandre [Le2],
[Le3]). Requires Fréchet topology on
semimartingales.
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The Existence Theorem

Notation:

M smooth compact Riemannian man-
ifold, dimension d.

Delay δ > 0, T > 0.

(Ω,Ft, t ≥ −δ, P ) filtered probability space-
usual conditions.

W : [−δ,∞)×Ω → Rp Brownian motion on
(Ω,Ft, t ≥ −δ, P ), W (−δ) = 0.
(p = 1 for simplicity.)

5



N any smooth finite-dimensional Rie-
mannian manifold; x ∈ N.

S([−δ, T ], N ;−δ, x) := space of all N-valued
(Ft)t≥−δ-adapted continuous semimartin-
gales

γ : [−δ, T ]× Ω → N

with γ(−δ) = x.
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The Itô Map:

Fix x ∈ M.

T (M) := tangent bundle over M.

Define the Itô map by

S([−δ, T ],M ;−δ, x) 3 γ → γ̃ ∈ S([−δ, T ], Tx(M);−δ, 0)

dγ̃(t) = τ−1
t,−δ(γ) ◦ dγ(t)

γ̃(−δ) = 0



 (1)

(Stratonovich).
τt,−δ(γ) := (stochastic) parallel trans-
port from x = γ(−δ) to γ(t) along semi-
martingale γ.([E.E], [Em])

Itô map is a bijection.

7



S̃T
2 := Hilbert space of all semimartin-

gales γ̃ ∈ S([−δ, T ], Tx(M);−δ, 0) such that

γ̃(t) =
∫ t

−δ

A(s) dW (s) +
∫ t

−δ

B(s) ds, 0 ≤ t ≤ T

(2)

and

‖γ̃‖22 := E[
∫ T

−δ

|A(s)|2 ds] + E[
∫ T

−δ

|B(s)|2 ds] < ∞ (3)

A(s), B(s) ∈ Tx(M) adapted previsible
processes-characteristics of γ̃ (or γ).
‖ · ‖2 gives slightly different topology
than traditional semi-martingale topolo-
gies ([D.M]).

ST
2 := image of S̃T

2 under the Itô map
with induced topology.
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Let γ ∈ ST
2 , t ∈ [−δ, T ]. Set

γt(s) := γ(s ∧ t), s ∈ [−δ, T ].

Then (̃γt) = (γ̃)t.

Evaluation map

e : [0, T ]× ST
2 → L0(Ω,M)

e(t, γ) := γ(t)

Vector bundle L0(Ω, T (M)) over L0(Ω,M)

with fiber over Z ∈ L0(Ω,M) given by

L0(Ω, T (M))Z := {Y : Y (ω) ∈ TZ(ω)M a.a. ω ∈ Ω}

e∗L0(Ω, T (M) := pull-back bundle of
L0(Ω, T (M)) over [0, T ]× ST

2 by e.
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A SFDE on M is a map

F : [0, T ]× ST
2 → L0(Ω, T (M))

such that F (t, γt) ∈ Tγ(t)(M) a.s. for all
γ ∈ ST

2 , 0 ≤ t ≤ T . I.e. F is a section of
e∗L0(Ω, T (M)).

Consider SFDE
dx(t) =F (t, xt) ◦ dW (t), t ≥ 0

x0 =γ0



 (4)

• Pullback SFDE (4) over Tx(M).
Then:

dx̃(t) = τ−1
t,−δ(x

t)F (t, xt) ◦ dW (t)

= F̃ (t, x̃t) ◦ dW (t), t ≥ 0

x̃0 = γ̃0





(5)
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(t, γ̃) 7→ F̃ (t, γ̃) := τ−1
t,−δ(γ)F (t, γ) can be viewed

as a functional

[0, T ]× S̃T
2 → L0(Ω, Tx(M))

on the flat space S̃T
2 ,

• Impose “boundedness” and “Lipschitz
condition” on F in terms of F̃ to get
existence and uniqueness:
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Hypothesis H.1 (Delay Condition):

F̃ (t, γ̃t) = F̃ (t, γ̃t−δ) (6)

The Stratonovich equation (5) now
becomes also the Itô equation:

dx̃(t) =F̃ (t, x̃(t−δ)) dW (t)

x̃0 =γ̃0



 (7)
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Hypothesis H.2:

(i) “Boundedeness”. There exists a
deterministic constant C1 such that

|F̃ (t, γ̃)| < C1 < ∞, a.s.

for all (t, γ̃) ∈ [0, T ]× S̃T
2 .

(ii) “Local Lipschitz property”. Suppose
γ̃, γ̃′ ∈ ST

2 have characteristics (A(.), B(.))

and (A′(.), B′(.)) respectively which are
a.s. bounded by a deterministic con-
stant R. Then

E[|F̃ (t, γ̃t)− F̃ (t, (γ̃′)t)|2] ≤ K(R)‖γ̃t − (γ̃′)t‖22 (8)

13



Example:

X := a smooth vector field on M.

SDDE:

dx(t) = τt,t−δ(x)X(x(t− δ)), t > 0 (9)

with

F (t, γ) := τt,t−δ(γ)X(γ(t− δ));

and

F̃ (t, γ̃t) = τ−1
t−δ,−δ(γ

t)X(γt(t− δ)).

F̃ satisfies (H.1) and (H.2)(i) because
parallel transport is a rotation and M

is compact.
14



For (H.2)(ii) embed M (isometrically)
into Rd′ and extend the Riemannian
structure over Rd′: the Riemannian
metric has bounded derivatives of all
orders and is uniformly non-degenerate.
Extend the Levi-Civita connection
over M to a connection which
preserves the metric over Rd′ on the
trivial tangent bundle of Rd′ with
Christoffel symbols having bounded
derivatives of all order. The pair (γ(t),
τt,−δ) corresponds to a process x̂(t) ∈
Rd′×Rd′×d′ which solves the Stratonovitch
SDE:

dx̂(t) = Ẑ(x̂(t)) ◦A(t) dW (t) + Ẑ(x̂(t))B(t) dt

x̂(−δ) = (x, IdTx(M))




(10)
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on Rd′ ×Rd′×d′

Ẑ is Lipschitz with derivatives of all
orders bounded (uniformly in A(.) and
B(.)).

(10) in Itô form:
dx̂(t) = Ẑ(x̂(t))A(t) dW (t) + Ŷ (x̂(t))A(t)2 dt

+ Ẑ(x̂(t))B(t) dt




(11)

In (11), A(t) ∈ Tx(M), but we consider
the one-dimensional case d = 1 for sim-
plicity.

Ŷ satisfies same hypotheses as the vec-
tor field Ẑ.

x̂(A,B) denotes dependence of x̂ on A

and B.
16



Lemma 1.

Suppose

|A(t)|+ |B(t)|+ |A′(t)|+ |B′(t)| ≤ R,

a.s. for all t ∈ [−δ, T ] and some deterministic R > 0.

Then there exists a constant K(R) > 0 such that:

E[ sup
−δ≤s≤t

|x̂(A,B)(s)− x̂(A′, B′)(s)|2]

≤ K(R)E[
∫ t

−δ

(|A(s)−A′(s)|2 + |B(s)−B′(s)|2) ds]
(12)

Proof.

Follows from (11) by Burkholder’s in-
equality and Gronwall’s lemma. ¤

Put t = 0 in Lemma to show that
SDDE (9) satisfies (H.2)(ii).
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Theorem 1.

Assume hypotheses (H.1) and (H.2).

Suppose that γ0 ∈ S0
2 has characteristics (A(t), B(t)), t ∈

[−δ, 0], a.s. bounded by a deterministic constant C > 0.

Then the SFDE (4) has a unique global solution x such

that x|[−δ, T ] ∈ ST
2 for every T > 0.

Proof.

Sufficient to prove theorem for the
SFDE (7) in flat space.

Define x̃n inductively:

dx̃n+1(t) = F̃ (t, x̃n,t−δ) dW (t), t ≥ 0

x̃n+1,0 = γ̃0



 (13)
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By (H.2)(i),(ii),

‖x̃n+1,t − x̃n,t‖22 ≤ C

∫ t

0

E[|F̃ (s, x̃n,s−δ)− F̃ (s, x̃n−1,s−δ)|2]ds

≤ C

∫ t

0

‖x̃n,s − x̃n−1,s‖22ds (14)

By induction:

‖x̃n+1,t − x̃n,t‖22 ≤
Cntn

n!
(15)

This gives existence.

For uniqueness, take two solutions x̃1, x̃2

of (7). By (H.2)(i), their characteristics
are a.s. bounded. Then

dx̃1(t) =F̃ (t, x̃1,(t−δ)) dW (t)

dx̃2(t) =F̃ (t, x̃2,(t−δ)) dW (t)

x̃1,0 =x̃2,0 = γ̃0





(16)
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imply

‖x̃1,t − x̃2,t‖22 ≤ C

∫ t

0

‖x̃1,s − x̃2,s‖22ds (17)

Hence ‖x̃1,t − x̃2,t‖22 = 0. ¤

Continuous dependence on initial
process:

Theorem 2.

Assume hypotheses (H.1) and (H.2). Let BT ⊂ ST
2 be

the family of all γ ∈ ST
2 with characteristics (A,B) a.s.

uniformly bounded on [−δ, 0] by a deterministic con-

stant. Denote by x(γ0) the unique solution of SFDE (4)

with initial semimartingale γ0 ∈ B0. Then the mapping

B0 3 γ0 7→ x(γ0) ∈ BT

is continuous.
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Proof.

Let γ̃0, (γ̃′)0 have characteristics (A,B),
(A′, B′) uniformly bounded on [−δ, 0] by
a deterministic constant. Let x̃(A,B) and
x̃(A′, B′) be corresponding solutions of (5).

By Burkholder’s inequality and (H.2)(ii):

‖x̃t(A, B)− x̃t(A′, B′)‖22

≤ ‖γ̃0 − (γ̃′)0‖22 + K

∫ t

0

‖x̃s(A, B)− x̃s(A′, B′)‖22ds

(18)

By Gronwall’s lemma:

‖x̃(A,B)− x̃(A′, B′)‖22 ≤ C‖γ̃0 − (γ̃′)0‖22 (19)

¤
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Example-Markov Behavior.

Consider the SDDE:
dx(t) = τt,t−δ(x)X(x(t− δ)) dW (t)

x0 = γ0,



 (20)

with γ0(−δ) = x ∈ M.

Replace x by a random variable Z ∈ L0(Ω,M)

independent of of W (t), t ≥ −δ.

Fix t0 > 0. The process x(t), t ≥ t0 solves the
SDDE:

dx′(t) = τt,t−δ(x′)X(x′(t− δ)) dW (t), t ≥ t0

x′(s) = x(s), s ∈ [t0 − δ, t0]



 (21)
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x(t0 − δ) is independent of dW (t), t ≥ t0 − δ,
and parallel transport in (20) depends
only on the path between t− δ and t.

Uniqueness implies

x′(t) = x(t), t ≥ t0.

For any semi-martingale γ(t), t ≥ −δ in M,
let γt := γ|[t− δ, t].
x(·)(γ0)(W ) := solution of (20) with initial
condition γ0.

Then

x(t)(γ0)(W ) = x(t− t′)(xt′(γ0))(W (t′ + ·)), t ≥ t′ (22)

W (t′ + ·) := Brownian shift

s 7→ W (t′ + s)−W (t′).
23



Differentiability in Chen-Souriau Sense:

Consider family of SDDE’s:

dx(t)(u) = τt,t−δ(xt(u))X(x(t− δ)(u)) ◦ dW (t), t ≥ 0

x0(u) = γ0(u)





(23)

parametrized by u ∈ U, open subset of Rn.

Embed M into Rd′.

Seek differentiability of x(t)(u) in u. Can
use Kolmogorov’s lemma, Sobolev’s imbed-
ding theorem because u is finite-dimensional.

Flat version of (23) given by SDDE (9)
with an added parameter u.
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For a parametrized semimartingale γ(u)

on M, the couple

(γ(u), τt,−δ(γ(u))) = x̂t

satisfies an Itô SDE depending on the
parameter u:

dx̂(t) = Ẑ(x̂(t))A(u)(t) dW (t) + Ŷ (x̂(t))A(u)(t)2 dt

+Ẑ(x̂(t))B(u)(t) dt
(24)

Ẑ and Ŷ have bounded derivatives of all
orders.

Introduce family of norms:

‖γ̃‖p
p := E[

∫ T

−δ

|A(s)|p ds +
∫ T

−δ

|B(s)|p ds]. (25)

on the space S̃T
∞ of all semimartingales

γ̃ ∈ S([−δ, T ], Tx(M);−δ, 0)
25



where γ̃(t) =
∫ t

−δ
A(s) dW (s) +

∫ t

−δ
B(s) ds, 0 ≤ t ≤ T

and ‖γ̃‖p is finite for every p ≥ 1.

Suppose A(u)(·) and B(u)(·) are bounded by
a deterministic constant C independent
of u, and

u 7→ (A(u)(·), B(u)(·))

is Fréchet smooth in the the Fréchet space
S̃T
∞ defined by the family of norms ‖ · ‖p.
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Theorem 3.

Consider the parametrized SDDE’s:

dx(t)(u) = τt,t−δ(xt(u))X(x(t− δ)(u)) ◦ dW (t), t ≥ 0,

x0(u) = γ0(u)





(26)

where X is smooth and γ0(u) is smooth in u as above.

Then x(t)(u) has a version which is a.s. smooth in u.

Theorem also holds if noise has a smooth
parameter u:

dx(t)(u)

= τt,t−δ(xt(u))X(x(t− δ))(◦A(u)(t) dW (t) + B(u)(t) dt)
(27)

with initial conditions x0(u) = γ0(u).
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Smooth functional in Chen-Souriau sense:

Definition 1

A stochastic diffeology is a family of sto-
chastic plots φ(u)(t) for u ∈ U, any open
subset of Euclidean space Rn, where

(i)

φ(u)(t) =

{ ∫ t

−δ
A(u)(s) dW (s) +

∫ t

δ
B(u)(s) ds, t < 0

∫ t

0
A(u)(s) dW (s) +

∫ t

0
B(u)(s) ds, t ≥ 0

(ii) A(u)(·) and B(u)(·) are a.s. bounded
in u by a deterministic constant
C and are Fréchet smooth in the
norms ‖.‖p.
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Definition 2:

A functional

G : S([−δ, 0], Tx(M);−δ, 0)× C([0, T ],R) → M

is smooth in the Chen-Souriau sense if it
satisfies the following:

(i) To each stochastic plot φ(u)(·)(ω),
associate a functional Gφ(u)(ω) which
has a smooth version in u for all ω in
a set Ωφ of probability 1.

(ii) Let j : U1 → U2 be a smooth determin-
istic map from an open subset U1 of
Rn1 into an open subset U2 of Rn2. Let
φ2(u2)(·)(ω) be a stochastic plot over U2.
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Let φ1(u1)(·)(ω) be the composite plot
φ2(j ◦ u1)(·)(ω). Then

Gφ1(u1)(ω) = Gφ2(j ◦ u1)(ω)

for all ω ∈ Ωφ1 ∩ Ωφ2.

(iii) Let φ1(u)(·)(ω), φ2(u)(·)(ω) be stochastic
plots over U. Suppose there exists a
random measurable map Ψ defined on
a subset of strictly positive probabil-
ity and which maps Ωφ1 into Ωφ2 and is
such that φ1(u)(·)(ω) = φ2(u)(·)(Ψω) for a.a.
ω. Then

Fφ1(u)(ω) = Fφ2(u)(Ψω)

for a.a. ω.
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The solution x(γ0)(t)(W ) of the SDDE has a
version which is a smooth Chen-Souriau
functional in (γ0,W ).
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Proof of Theorem 3-Outline.

α :=multi-index.

Dα := partial derivatives of order α.

• For a parametrized semimartingale γ(u)

on M, the couple

(γ(u), τ−1
t,−δ(γ(u))) := x̂(t)(u)

satisfies an Itô SDE depending on the
parameter u:

dx̂(t)(u) = Ẑ(x̂(t)(u))A(u)(t) dW (t)

+ Ŷ (x̂(t)(u))A(u)(t)2 dt + Ẑ(x̂(t)(u))B(u)(t) dt

Since the inverse of the parallel trans-
port is bounded, then Ẑ and Ŷ have
bounded derivatives of all orders. If

32



γ(u) ∈ ST
∞ has a.s. bounded character-

istics (A(u), B(u)) which are smooth in
u into the Fréchet space ST

∞, then the
pair x̂(t)(u) := (γ(u), τ−1

t,−δ(γ(u))) has characetris-
tics Fréchet smooth in u. Follows by
differentiating above SDE and apply-
ing Burkholder’s inequality and Gron-
wall’s lemma.

• Approximate the SDDE

dx(t)(u) = τt,t−δ(xt(u))X(x(t− δ)(u)) ◦ dW (t), t ≥ 0,

x0(u) = γ0(u)





(26)

by the sequence of SDDE’s:

dx̃n(t)(u) = g(x̂n((t− δ)n)(u))dW (t)

x̃n,0(u) = γ̃0(u)



 (∗)
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(t − δ)n is the unique k2−n such that
t− δ ∈ [k2−n, (k + 1)2−n),
x̂n(t) := (xn(t), τn,−1

t,−δ ),
g(y, z) := zX(y), where z represents par-
allel transport (orthogonal matrix),
y ∈ M.
Then g is bounded and has bounded
derivatives of all orders.
γ̃(t)0(u) :=

∫ t

−δ
A0

s(u)dws +
∫ t

−δ
B0

sds for t < 0

where A0(u)(·) and B0(u)(·) are bounded
independently of u and differentiable
in u in all the Lp semi-martingale norms
‖.‖p.
Hence γ̃(t)0(u) has u-derivatives of all
orders in all Lp semi-martingale norms.
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Follows from Kolmogorov’s lemma and
Burkholder’s inequality.

• x̃n(t)(u) is a.s. differentiable in u and

dDαx̃n(t)(u)

= Dg(x̂n((t− δ)n)(u))Dαx̂n((t− δ)n)(u) dW (t) + l.o.

where l.o. are terms containing lower-
order derivatives of x̃n(t)(u).

• Get uniform estimate:

sup
u∈U

‖Dαx̃n(·)(u)‖p ≤ C(p, α)

• Use SDDE for x̃n to get

sup
u∈U

‖Dαx̃n(·)(u)−Dαx̃m(·)(u)‖p → 0

as n,m →∞, for all p.
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• Dαx̂n(·)(u) and Dαx̃n(·)(u) are Cauchy se-
quences in all Lp semi-martingale norms.
By Sobolev’s imbedding theorem, x̂n(·)(u)

and x̃n(·)(u) converge to required smooth
version of the solution of the SDDE.
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