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Abstract: Relationships between spawning fish (S) and surviving offspring (recruits, R) are typically assumed to be contin-
uous and nonlinear. However, R may change abruptly with small changes in S if population-, community-, or ecosystem-
scale processes trigger low adult reproduction and cause populations to shift abruptly to regimes of low recruitment. We
simulated R with low mean and variation below a known S threshold and high mean and variation of R above it. We com-
pared simulations with published S–R relationships. For all data, we fit a conventional Ricker-type S–R model, a logistic
depensatory model, and also searched for an S breakpoint with a nonparametric test. The Ricker and logistic models often
fit discontinuous simulated data. The nonparametric test found the S threshold in simulated data, although its accuracy de-
pended on underlying distributions. The Ricker and logistic models and the nonparametric test identified apparent relation-
ships within published data, sharing common results in <50% of the data sets. Although population models often assume
continuous relationships, discontinuous threshold changes in R with small changes in S may occur. Identification of the
conditions that reproductive state changes abruptly in fish populations may be necessary to develop risk-averse regulatory
policies.

Résumé : On assume généralement que les relations entre les poissons reproducteurs (S) et les rejetons survivants (recrues,
R) sont continues et non linéaires. Cependant, R peut changer abruptement à la suite de petites modifications de S si les
processus qui opèrent à l’échelle de la population, de la communauté ou de l’écosystème déclenchent une reproduction
adulte faible et forcent les populations à passer rapidement dans un régime de recrutement faible. Nous avons fait des sim-
ulations dans lesquelles R possède une moyenne et une variation faibles sous un seuil connu de S et une moyenne et varia-
tion élevées au-dessus du seuil. Nous avons comparé nos simulations avec des relations S–R de la littérature. Sur
l’ensemble des données, nous avons ajusté un modèle S–R classique de type Ricker et un modèle logistique à effet Allee
et avons recherché un point de rupture de S avec un test non paramétrique. Le modèle de Ricker et le modèle logistique
s’ajustent souvent aux données simulées discontinues. Le test non paramétrique a trouvé le seuil de S dans les données si-
mulées, bien que la précision dépende des distributions sous-jacentes. Le modèle de Ricker, le modèle logistique et le test
non paramétrique ont identifié des relations apparentes dans les données publiées, obtenant des résultats communs dans
<50 % des ensembles de données. Bien que les modèles démographiques présupposent souvent des relations continues, il
peut se produire chez R des discontinuités et des seuils à cause de petits changements de S. Il peut être nécessaire d’iden-
tifier les conditions sous lesquelles l’état reproductif des populations de poissons change abruptement afin de mettre sur
pied des politiques de réglementation qui minimisent les risques.

[Traduit par la Rédaction]

Introduction
Understanding how fisheries respond to harvest requires

sound information about population dynamics in the face of
complex and perhaps counterintuitive underlying processes.
Managing these complex systems often involves forecasting
the density of fish recruiting to the fishery to set production

expectations and derive harvest limits (Ricker 1975). Given
that adult fish are typically targeted for harvest, it is impor-
tant to generate relationships between the density of adult
spawners and the number of surviving offspring produced
to determine the escapement needed to sustain populations.
These relationships often are fitted with continuous func-
tional models (e.g., classic Ricker or Beverton–Holt curves
or nonlinear regression models) that depend on assumptions
about continuous underlying population mechanisms, such
as compensation and depensation.

We suggest that fitting continuous functional models to
spawner–recruit relationships may not always be appropri-
ate. Rather, discontinuous processes may be at play, contri-
buting to rapid, possibly threshold shifts in reproductive
output as a function of adult density, ultimately leading to
regime shifts within fish assemblages (Steele and Henderson
1984; Collie et al. 2004; Schroder et al. 2005). At some re-
gion of low spawner densities, low recruit density may oc-
cur (Fig. 1; Holling 1973). Above this region, another
regime of high but possibly more variable recruitment may
exist (Fig. 1). This occurs because the number of offspring
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produced is no longer limited by adults and rather is primar-
ily affected by external processes (Leggett and DeBlois
1994; Myers 2002). In other words, ecological release from
the limited factor of hatchling production occurs and some
other limiting factor (or suite of factors) is at play.

Some populations may have inherent characteristics that
make them vulnerable to threshold shifts between low and
high recruitment (Fig. 1). Populations may contain pheno-
types with unique life histories (e.g., alternative reproductive
stable strategies, Gross 1991) that affect reproductive behav-
ior and subsequent recruitment. It is plausible that declining
densities of adults may cause rapid changes in the frequency
of reproductive phenotypes (e.g., earlier maturation and
lower fecundity, Jennings and Philipp 1992) that subse-
quently result in shifting recruitment regimes (Conover and
Munch 2002). In harvested populations, the behavior of fish
and their fishers may change abruptly as adults decline (e.g.,
both may become aggregated, thereby increasing fishing
pressure), again causing rapid shifts toward low recruitment
(Post et al. 2002). These mechanisms are often considered
depensatory because the reproductive output of individual
fish declines rather than increases as population density de-
clines.

From a community perspective, it is common for the out-
come of predator and prey interactions to depend on life
stage (e.g., intraguild interactions, Polis and Holt 1992; Ol-
son et al. 1995). Early life stages of predators and prey may
compete, with young prey being superior competitors; adult
prey also may consume young predators. If adult predator
densities are low and cannot control prey recruitment, then
early life stages of prey dominate and suppress predator
dominance by reducing predator recruitment (Walters and

Kitchell 2001). These types of interactions create stable
states of low predator density when adult predator densities
decline to some threshold region (Bampfylde and Lewis
2007). A classic example is the bluegill (Lepomis macrochi-
rus) crowded state that often occurs in small North Ameri-
can lakes, in which small, dense bluegill populations control
recruitment of their primary predator, largemouth bass (Mi-
cropterus salmoides) (Flickinger et al. 1999).

Ecosystem feedbacks also may cause abrupt shifts in re-
cruitment. Spawning adults may modify their environment
in ways that enhance the success of their recruits, such as
releasing nutrients from their carcasses after spawning
(Naiman et al. 2002). Below some threshold density, adults
may no longer provide sufficient environmental conditions
to enhance community conditions (i.e., primary and secon-
dary production) that promote survival of their offspring.
Again, the result may be a rapid shift to low recruitment.
Once the ecosystem has reached a state of low, externally
derived subsidies, it may be difficult for it to return to a
state of high adult production and increased recruitment
without human management (Budy et al. 1998) and ample
time for recovery.

We explored whether different recruitment regimes may
plausibly exist within fish populations as an alternative to
continuous relationships by first simulating expected pat-
terns based on simple assumptions about the production of
recruits at spawner densities at which recruitment regime
states may change. We treated these spawner densities as
threshold random variables ranging from invariant to highly
variable, because regimes of recruit production likely vary
among years and systems, depending on factors suppressing
recruitment at low spawner densities and density-independent
factors that affect adult recruitment success at high spawner
densities. We then compared these simulated distributions
with published spawner–recruit relationships. For both the
simulated and actual data sets, we used both continuous
models and discontinuous statistical tests (i) to determine
whether such apparently discontinuous recruit regimes are
common and may be mistaken for continuous relationships,
(ii) to hypothesize about underlying processes, and (iii) to
assess whether identifying purported spawner thresholds
and related recruitment regimes is useful for the manage-
ment and conservation of fisheries.

Materials and methods

We used computer simulations to generate normal, ran-
dom distributions of spawner (S) and recruit (R) bivariate
pairs, with the R regime state (i.e., its distribution) depend-
ing on the threshold spawner value (STH). Each negative,
randomly generated variable was discarded and replaced
with the next positive value. In all simulations, if S = 0,
then R = 0. The distribution of S values in each simulation
had a mean of 100 and a standard deviation (SD) of 100.
Thus, small and large values of S were less common than
those near 100. We treated STH as a normally distributed
random variable in all simulations, with its mean value de-
pending on the modeling scenario (see below). For each sce-
nario, STH variation was SD = 0, 10, 50, 75, and 100. Thus,
for simulations in which STH varied, a unique value of STH
was generated for each S,R pair. Each simulation within a

Fig. 1. Conceptual stock–recruitment scenario in which two re-
cruitment regime states occur. Each point is a hypothetical annual
sample from a population. The vertical line is the spawner or egg
density (S) at which a two-dimensional Kolmogorov–Smirnov
(2DKS) test finds the point of greatest difference in recruit produc-
tion (R). Below some ‘‘region’’ of spawner abundance, the stable,
equilibrium, recruit abundance is very low. Above this region, po-
tential average recruitment is high, but stochastic environmental
conditions create more variability. The 2DKS will identify the re-
gion of spawner densities where expected recruits produced shift
between these two regimes. Two horizontal mean lines can be fitted
through these data to the left and right of the breakpoint. A logistic
or Ricker model also may fit this relationship, although the under-
lying distribution is discontinuous.
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scenario generated 100 S,R pairs, with 10 simulations per
threshold (STH) variation category. Thus, each simulated
data set corresponded to 100 years of cohort production
within a population, with each modeling scenario having 10
replicate populations.

We assumed that the variance and mean of recruits was
greater for S > STH. Thus, the mean and variance in R de-
pended on location relative to STH. Below STH, values of R
were generated with a mean = 0 and SD = 10. Hence, below
STH, small values of R were common and large values rare,
which would be expected if recruits were constrained by a
strong depensatory-like effect. Above STH, the mean and
variation for R were identical to that of S (i.e., both mean
and SD = 100), as might be expected when recruits are un-
limited and density-independent mechanisms predominate
(i.e., ecological release is occurring).

The position of STH relative to the mean of the normally
distributed S values might affect the outcome of simulations.
This is because the highest density of S,R pairs generated
within each simulation likely occurred near the mean S, af-
fecting statistical power to detect a threshold effect. Within
each simulation, we generated distributions with one of two
STH mean values. In one case, mean STH = 50 was lower
than the mean S of 100, and thus S < STH occurred relatively
infrequently. In another set of simulations, we set the mean
STH = 100, which was the same as the mean of the S values,
causing S < STH to occur more commonly.

To compare our simulated S–R relationships with actual
data, we acquired 60 summary data sets from a Web site
formerly maintained by Ransom A. Myers at Dalhousie Uni-
versity (Halifax, Nova Scotia, Canada; www.mscs.dal.ca/
~myers/welcome.html). All of these data sets contained at
least 11 years of spawner and recruit abundance pairs and
represented a diverse array of taxa (Appendix A, Table A1).

For all data sets, we attempted to fit functional relation-
ships using two models. The first of these is a Ricker-type
model (Ricker 1975):

R ¼ Sea 1�Sb
� �

in which a and b were estimated with linear regression with
a multiplicative error term of ew where w is normally dis-
tributed with a mean of 0. We used the model transformed
into its linear form

ln
R

S

� �
¼ a� a

b

� �
S

(PROC REG, SAS Institute Inc. 2003); this model captures
potential downward inflections in R at high densities of S
(Ricker 1975). Given that depensation may suppress densi-
ties of recruits at low spawner densities (i.e., creating a sig-
moidal shape), we also fit these data to a logistic function

R ¼ Rmax R0 eaS

Rmax þ R0ðeaS � 1Þ
in which R0 is an intercept, Rmax is the theoretical maximum
recruit density, and a is a constant. These models were fit to
data using iterative nonlinear regression with error estimated
from residuals (PROC NLIN, SAS Institute Inc. 2003). All
regression models were considered significant at p < 0.05.

In addition to fitting these data sets to functional models,
a nonparametric, two-dimensional Kolmogorov–Smirnov
(2DKS) test was used to locate potential STH densities where
purported recruit regimes shifted from low and invariant to
high and variable (Fasano and Franceschini 1987; Garvey et
al. 1998). This test identifies the point (S*, R*) within a bi-
variate (i.e., S, R) distribution in which the distribution of
points among the quadrants formed with S*, R* at the center
differs the most from the expected distribution that arises
when all combinations of S and R are equally likely. This
point of maximum difference (i.e., that which generated the
maximum value of the test statistic, DBKS) corresponds to a
simulated threshold breakpoint, in which variation of the de-
pendent variable changes from constrained to relatively un-
constrained at a simulated threshold point (Fig. 1; Garvey et
al. 1998). In other words, the test found the maximum
change in variation in the data set rather than a functional
change between the two variables. If a functional relation-
ship is underlying the bivariate relationship, then the maxi-
mum change occurs at the median value of S. The test
appears to be robust to small sample sizes (Garvey et al.
1998).

Each simulated and actual data set was analyzed using the
2DKS test, where the DBKS test statistics generated for each
bivariate point were calculated and compared with those for
5000 rerandomized distributions. A p value for each test was
calculated as the proportion of rerandomized data sets that
produced a DBKS larger than the actual data set (see Garvey
et al. 1998). The smallest p value was associated with the
maximum DBKS and associated S,R pair (S*,R*) for each si-
mulated data set. We calculated the mean and standard error
of S values associated with each maximum DBKS value
within each simulation set (N = 10), which we hypothesized
reflected the true STH values that occurred between regimes
of low plus invariant versus high plus variable recruit abun-
dance.

Results

Even though the simulations had no underlying functional
assumptions, patterns could sometimes be represented with
Ricker and logistic models, although the fits of the models
varied. When the mean STH = 50, Ricker fits were signifi-
cant (p < 0.05) for only 6 of the 10 data sets when STH was
invariant and 0 of 10 data sets when STH was highly variant
with SD = 100 (see Fig. 2 for example distributions). When
the mean STH = 100, Ricker fits also did not fit the simu-
lated data well (Fig. 2). In contrast, for both mean values of
STH in simulations, the logistic fits were poor when STH was
invariant (Figs. 2f, 2g), but improved as STH increased in
variance (Fig. 2; 75% fit across all simulations). The abrupt
‘‘knife-edge’’ change in recruit abundance at low variation
in STH apparently prevented logistic model fits (e.g., Figs.
2f, 2g).

The STH values associated with the maximum DBKS statis-
tics in the 2DKS differed in their ability to match the true
location of STH in simulations (Fig. 2). The STH mean rela-
tive to the mean of S in each simulated population affected
the predicted value (Fig. 3). When the mean STH was 50,
less than the expected S of 100, the 2DKS overestimated
the true threshold value, with the bias increasing as the var-
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iance of STH increased (Figs. 2a–2e, Fig. 3). This bias was
likely due to the relative distribution of points generated
around STH and its effect on the test’s ability to identify the
simulated change (i.e., fewer points occurred to the left of
the STH). Biased estimates did not occur when STH was 100,
the same as the expected S (Figs. 2f–2j, Fig. 3).

Patterns within published S–R data sets were diverse
(Fig. 4). The Ricker model produced significant fits through
58% of the 60 data sets, whereas the logistic model fit 11%
of the populations. The 2DKS test found significant apparent
breakpoints in 45% of the data sets. The Ricker and 2DKS
jointly found significant relationships in 33% in the subset

Fig. 2. Randomly chosen example distributions of spawner abundance (S) and recruit abundance (R) (N = 100 per panel; nine additional
simulations were conducted for each scenario). In all of these simulations, mean and variance of R was small below the spawner threshold
(STH) and high above it. In panels a–e, the mean STH = 50 and in panels f–j, mean STH = 100. The diamond on each panel depicts the
predicted STH from a nonparametric 2DKS test (p < 0.05). The broken curve fitted through each relationship derives from a significant (p <
0.05) Ricker model, if one occurred. Solid curves are significant logistic model fits. (a and f) Standard deviation (SD) of STH = 0; (b and
g) SD = 10; (c and h) SD = 50; (d and i) SD = 75; (e and j) SD = 100.
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of data sets in which one test found a relationship. The lo-
gistic and 2DKS shared significant results for 55% of the
significant data sets.

Breakpoints identified by the 2DKS appeared to locate
meaningful changes in variation that could be qualitatively
categorized in all of the example data sets (Fig. 4). For ale-
wife (Alosa pseudoharengus) and capelin (Mallotus villosus)
examples, R was low below the purported STH; the average
R increased past the breakpoint (Figs. 4a, 4b). A significant
Ricker relationship also could be fit to these data (Figs. 4a,
4b). A logistic model fit the capelin data, but the fit was
poor (Fig. 4b). In bluefin tuna (Thunnus thynnus), Atlantic
cod (Gadus morhua), and Atlantic herring (Clupea haren-
gus) S–R distributions, the mean and variance in R was con-
strained below the purported STH (Figs. 4c–4e). Above the S
breakpoint, S and R were positively related for these species
(Figs. 4c–4e). For herring, both Ricker and logistic models
could be fit to the data (Fig. 4e). Both mean and variation
of recruits were constrained below the STH for red king crab
(Paralithodes camtschaticus) and lake whitefish (Coregonus
clupeaformis) (Figs. 4f, 4g). A Ricker fit occurred for the
red king crab data set and a logistic fit for the lake whitefish
data (Figs. 4f, 4g). For pink salmon (Oncorhynchus gorbu-
scha), only a breakpoint could be identified (Fig. 4h). In
most of these example data sets, the apparent clustering of
recruits at low densities below the S breakpoint (notably
Figs. 4c, 4d, 4e, 4f, 4g) was a pattern similar to that gener-
ated by our discontinuous simulations (Fig. 2).

Discussion
Conventional wisdom holds that smooth, continuous func-

tions underlie relationships between adults and offspring
production in populations and that these functions ultimately
shape population dynamics. Conversely, our results show
that it is plausible that rapid, discontinuous shifts in repro-
ductive output at some threshold region of adult density af-
fect recruitment success. As our simulations and some of the

actual data sets demonstrated, in the absence of underlying
mechanistic data (e.g., experimentally derived), it may be
difficult to ascertain under what circumstances the assump-
tion of continuous versus discontinuous processes is appro-
priate.

Assumptions about underlying ecological relationships
have important implications for managing risk (Walker and
Meyers 2004). Fisheries management strategies often de-
pend on setting allowable harvest to permit sufficient es-
capement of spawners. These surviving adults then live on
to generate sustainable and strong year classes of recruits.
Traditionally the spawner to recruit relationship has been
characterized with various continuous functional models
that seek to find the appropriate target adult density that en-
sures high recruitment in the future, with limited success
(Hilborn et al. 1995). A possible reason for failure is that
these models assume that recruitment within populations ex-
ists along a continuum of equilibrium states across a range
of adult densities, creating predictable management scenar-
ios. However, if populations have discrete stable recruitment
regime states depending on regions of spawner density, then
assuming that continuous functional relationships apply
through the entire data set may generate erroneous manage-
ment decisions.

Rather than assuming smooth underlying relationships, us-
ing tools that identify how adult abundance affects the mean
and variation in recruit abundance may be more appropriate.
In fact, as our simulations and some of the published data
sets suggest, statistical models such as the Ricker, with com-
pensatory assumptions, and the logistic, which incorporates
a depensatory-like response at low densities, may find con-
tinuous S–R relationships when patterns are in reality driven
by abrupt, discontinuous changes in recruitment state. Thus,
approaches for finding breakpoints in bivariate data such as
the 2DKS and others (e.g., biphasic linear regression, Nick-
erson et al. 1989; maximum likelihood modeling, Beckage
et al. 2007) may be necessary for defining important regime
state shifts or identifying abrupt functional changes within
fish populations and other ecological systems. Many ecolog-
ical mechanisms occurring at the population, community,
and perhaps ecosystem level may have affected individual
reproductive output and caused the abrupt changes.

Although real biological reasons may exist for threshold
changes in spawner–recruit relationships, the ability for the
statistical test we used (as well as others) to identify the
true threshold depends on complex factors, including under-
lying sampling distributions. Our simulations showed that
the 2DKS test would yield conservatively inaccurate esti-
mates of the true threshold spawning density under specific
circumstances. Although this may lead to risk-averse man-
agement, it also may result in economically costly limita-
tions to fishery yield. Thus, in addition to using statistical
tools to identify putative shifts in spawner–recruit relation-
ships, our results underscore the need to understand causal
mechanisms.

For other data sets, underlying relationships between
spawners and recruits may have been continuous, rendering
the assumption of a threshold change false, even if the
2DKS identified a breakpoint. In these continuous relation-
ships, the 2DKS was simply identifying some point of cen-
tral tendency in the bivariate distribution (i.e., the median);

Fig. 3. Mean ± standard error of predicted threshold spawner den-
sity (STH) that produced the largest test statistic in each simulation
(N = 10 simulations per mean) as a function of variation in the true
STH values. The solid horizontal line is STH = 50 (predicted means,
open circles), and the broken line represents STH = 100 (solid cir-
cles).
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the spawner–recruit patterns likely were nonlinear because
of density-dependent feedbacks within the population
(Myers 2002), with no abrupt shift in recruits. A candidate
from our example data sets may have been the alewife pat-
tern, as identified by its strong Ricker model fit. At low den-

sities of adults, reduced intraspecific competition may have
improved adult condition and enhanced birth rates (i.e., clas-
sic compensation). As adult abundance ascended toward
some purported carrying capacity, birth rates declined
(Myers 2002), causing recruit production to decelerate. Off-

Fig. 4. Spawner (S) and recruit (R) relationships for eight example fisheries out of 60 (Appendix A, Table A1). Panels correspond to data in
Appendix A: (a) alewife (Alosa pseudoharengus, data set 1), (b) capelin (Mallotus villosus, data set 8), (c) bluefin tuna (Thunnus thynnus,
data set 6), (d) Atlantic cod (Gadus morhua, data set 13), (e) Atlantic herring (Clupea harengus, data set 27), (f) red king crab (Paralithodes
camtschaticus, data set 48), (g) lake whitefish (Coregonus clupeaformis, data set 35), and (h) pink salmon (Oncorhynchus gorbuscha, data
set 43). The vertical line in each panel depicts the S that produced the maximum difference in each 2DKS test. The broken (Ricker) and
solid (logistic) curves fitted through each relationship derive from a significant (p < 0.05) regression model, if one occurred. Axes values
differ among data sets and are not depicted.
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spring survival also may have declined as intracohort com-
petition (Rettig and Mittelbach 2002) or predation (Forney
1976) increased.

It is also possible that continuous relationships may apply
across only a subset of spawner densities and that tests such
as the 2DKS find this transition. For example, the apparent
decline in mean R past some intermediate density of S in
some of the populations (particularly for red king crab) may
be explained by density-dependent responses at high S,
which we did not incorporate in our simulations. Similarly,
the linear increase in recruits above the purported spawner
breakpoint for Atlantic herring suggests a lack of compensa-
tory feedback and perhaps a lognormal increase in variation
of recruits produced, which again were not incorporated in
our simulations.

When they occur, putative threshold spawner densities
that affect recruitment state within a fishery may change
among years and populations. Our simulations demonstrated
that this variation might cause discontinuous relationships
between spawners and recruits to appear to be smooth if the
spawner threshold varies markedly. For example, behavior
of fishers and their impact on spawners may vary among
years depending on factors affecting fishing profitably and
success (Bettoli et al. 2007). Other factors such as climate,
food quality, and reproductive habitat that vary among years
and populations may influence the point at which recruit-
ment is constrained by adult abundance. Identifying variabil-
ity around the average spawner threshold would allow us to
bracket the region of spawner densities that fundamentally
different recruitment mechanisms (e.g., biotic versus abiotic)
are at play. Appropriate modeling and research may then be
directed toward identifying underlying processes (Muradian
2001; Bestelmeyer 2006).

An unfortunate characteristic of all our example relation-
ships is that spawner abundance declined to such a point
that the mean and variation in recruits were constrained,
and presumably these populations reached a state of low
spawner and recruit density. Thus, to identify such relation-
ships, either environmental conditions or harvest must have
been sufficiency deleterious to deplete adult densities and
perhaps cause populations to fall into an apparent, low-
recruitment regime state. Obviously, allowing recruits to
decline to identify the critical spawner threshold is not a
desirable management scenario. Further, recovery of these
populations to high recruitment states may be difficult.
Once populations have reached a low recruitment state,
lags may exist in the response of recruitment to increasing
spawner densities and favorable external factors. Within
populations, genotypes that favor reproductive phenotypes
with high inherent reproductive output (late maturation,
high fecundity) may be rare and take time to increase in
populations as adult densities rise (Jennings et al. 1997;
Walsh et al. 2006). At the community level, an increase in
sympatric predators and competitors at low recruit abun-
dance may suppress the ability for recruit production to
rapidly increase if spawner densities increase past the pur-
ported spawner threshold (Walters and Kitchell 2001). At
the ecosystem scale, adult-driven feedbacks to food webs
may be absent, preventing recruitment from successfully
occurring.

It is our hope that the 2DKS test and others that detect

breakpoints in bivariate data might be used to identify appa-
rently discontinuous relationships and potential recruitment
regimes in existing distributions. It would drive mechanistic
research into the nature of apparent adult reproductive
thresholds and allow managers to avoid these conditions in
other populations in which such possible regime shifts have
not yet occurred (Post et al. 2002). In other words, the goal
would be to keep populations from reaching regions of
spawner densities that cause regimes of low recruitment po-
tential. As a heuristic tool, the ability for the 2DKS test and
others to identify inflections may allow researchers to design
models or experiments to understand under what conditions
internal dynamics within populations versus external envi-
ronmental factors drive the production of cohorts.
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Appendix A

Table A1. List of spawner (S) and recruit (R) data used in analyses of patterns with a Ricker model and a
nonparametric, two-dimensional Kolmogorov–Smirnov (2DKS) test.

No. Species Location S R
1 Alosa pseudoharengus Atlantic Ocean, Damariscotta River Biomass Numbers
2 Alosa pseudoharengus Atlantic Ocean, Saint John River Biomass Numbers
3 Alosa pseudoharengus Atlantic Ocean, Saint John River Numbers Numbers
4 Engraulis mordax Pacific Ocean, California Biomass Numbers
5 Alosa sapidissima Atlantic Ocean, Connecticut River Numbers Numbers
6 Thunnus thynnus West Atlantic Biomass Numbers
7 Mallotus villosus Iceland Biomass Index
8 Mallotus villosus Barents Sea Biomass Numbers
9 Mallotus villosus Barents Sea Biomass Index
10 Mallotus villosus Barents Sea Biomass Index
11 Oncorhynchus tshawytscha Alaska, Blossom River Numbers Numbers
12 Oncorhynchus tshawytscha Alaska, Chickamin River Numbers Numbers
13 Gadus morhua North Atlantic, NAFO 2J3KL Biomass Numbers
14 Gadus morhua North Atlantic, NAFO 3NO Biomass Numbers
15 Gadus morhua North Atlantic, NAFO 3PN4RS2 Biomass Numbers
16 Gadus morhua North Atlantic, NAFO 3Pn4RS Biomass Numbers
17 Gadus morhua North Atlantic, NAFO 3PS Biomass Numbers
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Table A1 (concluded).

No. Species Location S R

18 Gadus morhua North Atlantic, NAFO 4tvn Biomass Numbers
19 Gadus morhua North Atlantic, NAFO 4vsw Biomass Numbers
20 Gadus morhua North Atlantic, NAFO 5Y2 Index Index
21 Gadus morhua North Atlantic, NAFO 5Z Biomass Numbers
22 Gadus morhua Baltic Ocean Biomass Numbers
23 Gadus morhua Baltic Ocean Biomass Numbers
24 Gadus morhua Iceland Biomass Numbers
25 Gadus morhua North Sea Biomass Numbers
26 Gadus morhua North Atlantic Biomass Numbers
27 Clupea harengus Downs Stock Biomass Numbers
28 Clupea harengus Georges Bank Biomass Numbers
29 Clupea harengus Gulf of Maine Biomass Numbers
30 Clupea harengus Vancouver Island Biomass Numbers
31 Clupea harengus Alaska Biomass Numbers
32 Clupea harengus Alaska Adult eggs Numbers
33 Clupea harengus Vancouver Island (SW) Biomass Numbers
34 Scomberomorus cavalla Gulf of Mexico Numbers Numbers
35 Coregonus clupeaformis Lake Huron Adult eggs Index
36 Coregonus clupeaformis Lake Superior Biomass Numbers
37 Coregonus clupeaformis Whitefish Bay, Lake Superior Biomass Numbers
38 Scomber scombrus North Atlantic Biomass Numbers
39 Scomber scombrus Black Sea Biomass Numbers
40 Brevoortia tyrannus US Atlantic Female biomass Numbers
41 Brevoortia patronus Gulf of Mexico Biomass Numbers
42 Engraulis ringens Peru Biomass Numbers
43 Oncorhynchus gorbuscha Auke Creek, Alaska Numbers Numbers
44 Oncorhynchus gorbuscha Bakhura River Numbers Numbers
45 Oncorhynchus gorbuscha Aristazabal Is., British Columbia Numbers Numbers
46 Oncorhynchus gorbuscha Bentinck, British Columbia Numbers Numbers
47 Oncorhynchus gorbuscha Alaska Numbers Numbers
48 Paralithodes camtschaticus Bristol Bay, Alaska Biomass Numbers
49 Sardinops sagax California Biomass Numbers
50 Sardinops sagax Gulf of California Numbers Numbers
51 Sander vitreum Balsam Lake, Ontario Index Index
52 Sander vitreum Lake Erie Index Index
53 Sander vitreum Lake Erie Numbers Numbers
54 Sander vitreum Lake Erie Index Index
55 Coregonus lavaretus Lake Constance, Europe Numbers Numbers
56 Theragra chalcogramma Gulf of Alaska Biomass Numbers
57 Theragra chalcogramma West Bering Sea Biomass Numbers
58 Pleuronectes ferrugineus North Atlantic Biomass Numbers
59 Thunnus albacares Eastern Pacific Ocean Biomass Numbers
60 Thunnus albacares Indian Ocean Numbers Numbers

Note: Each data set contains at least 11 years worth of cohort data.
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