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Distributed Detection With Multiple
Sensors: Part I—Fundamentals
RAMANARAYANAN VISWANATHAN AND PRAMOD K. VARSHNEY, SENIOR MEMBER, IEEE

Invited Paper

In this paper, basic results on distributed detection are reviewed.
In particular, we consider the parallel and the serial architectures
in some detail and discuss the decision rules obtained from their
optimization based on the Neyman–Pearson (NP) criterion and the
Bayes formulation. For conditionally independent sensor observa-
tions, the optimality of the likelihood ratio test (LRT) at the sensors
is established. General comments on several important issues are
made including the computational complexity of obtaining the
optimal solutions, the design of detection networks with more
general topologies, and applications to different areas.

I. INTRODUCTION

In recent years, signal processing with distributed sensors
has been gaining importance. The relatively low cost of
sensors, the inherent redundancy possible with multiple
sensors, the availability of high speed communication net-
works, and increased computational capability have spurred
great research interest in this topic [1]. Distributed sensor
systems were originally motivated by their applications in
military surveillance with respect to command, control, and
communications [2], [3] but are now being employed in a
wide variety of applications.

Interest in decentralized detection and estimation has
surfaced with anticipated applications in multiple-target
detection and estimation using multiple sensors, which may
be geographically dispersed [2]. In classical multisensor
detection and estimation, it is assumed that all the local
sensors (such as radar, sonar, infrared) communicate all
their data to a central processor that performs optimal
detection and tracking of targets based on conventional
statistical techniques. In decentralized processing, some
preliminary processing of data (often lossy compression)
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is carried out at each sensor and condensed information is
sent from each sensor to other sensors and ultimately to
the central processor which is often known as thefusion
center. In the terminology of distributed sensor networks,
we say that the network has intelligence at each node [4].
The centralized scheme may be too restrictive and in some
practical cases even unwise. For example, when coverage
areas of sensors do not completely overlap, it is possible
that a signal return may be received at some but not all the
sensors. In such cases, an optimum scheme would have to
be based on decentralized processing of the observations at
the sensors. Some of the advantages of distributed signal
processing schemes are reduced communication bandwidth
requirement, increased reliability, and reduced cost. In
addition, a distributed system architecture may yield a better
response to rapid changes in background scenario. Unlike
the central processor in centralized systems, the fusion
center of a decentralized system has only partial information
as communicated by the sensors. This results in a loss
of performance in decentralized systems as compared to
centralized systems. However, the performance loss can be
made small by optimally processing the information at the
sensors [5]. The objective of most studies in the field is to
develop computationally efficient algorithms at the sensors
and at the fusion center. In general, a distributed sensor
network has to address the issues of choice of topology,
ability to reconfigure the structure in the case of sensor/link
failures, existence of communication between sensors and
feedback communication between the fusion center and the
sensors, and robustness of signal processing algorithms with
respect to probability models, jammers, and other external
threats.

Following the broad classification of statistical infer-
encing into hypothesis testingand estimation, one can
identify two areas of distributed signal processing, namely
distributed detectionand distributed estimation. Here we
concern ourselves primarily with the fundamentals of the
distributed detection problem. Some advanced topics that
involve locally optimal detection, sequential detection, non-
parametric methods, robust procedures, and CFAR tech-
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Fig. 1. Parallel topology with fusion center.

niques are presented by Blumet al. in Part II of this paper
[6].

In Figs. 1–4 we show three major topologies used for
distributed signal processing [1]. These are calledparallel
(Figs. 1 and 2),serial or tandem(Fig. 3), andtree (Fig. 4)
configurations. Some notations that describe the observa-
tions at various points in these configurations as well as
the notations that describe some pertinent probabilities are
given at the bottom of the page.

II. NEYMAN–PEARSON FORMULATION

In this section, we present several interesting and funda-
mental results from the Neyman–Pearson (NP) formulation

Fig. 2. Parallel topology without fusion center.

of the distributed detection problem. Both parallel and
serial configurations are considered. We assume a binary
hypothesis testing problem in which the observations at all
the sensors either correspond to the presence of a signal
(hypothesis ) or to the absence of a signal (hypothesis

).

A. Parallel Configuration

First, let us consider the parallel configuration of
sensors that is shown in Fig. 1. We assume that the sensors
do not communicate with each other and that there is
no feedback from the fusion center to any sensor. Let

denote either a single observation that is available at
the th sensor, or, in the case of multiple observations,
a sufficient statistic that might exist for the given binary
hypothesis testing problem [7]. Theth sensor employs
the mapping rule and passes the quantized
information to the fusion center. Based on the received

Local observation (th sensor )
Local observation vector
Local observation vector excluding
Local decision/mapping rule
Local decision/mapping variable
Number of sensors
Local decision vector
Local decision vector excluding
Global decision rule
Global decision variable
Local decision vector
Local observation density
Prior probability or
Bayes risk
Set of decision rules
Local false alarm probability
Local detection probability
Local miss probability
Global false alarm probability
Global detection probability
Global miss probability
Likelihood ratio
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information , the fusion center arrives
at the global decision that favors either (say

) or (say ). The NP formulation of the
distributed detection problem can now be stated as follows:
for a prescribed bound on the global probability of false
alarm, , find (optimum) local and global decision rules

that minimize the global probability
of miss . Variations of this formulation include the
optimization of only the fusion rule for a given set of
local decision rules and the optimization of only the local
decision rules for a given fusion rule. Also, the solution to
the problem depends on whether the sensor observations are
conditionally independent (conditioned on the hypothesis)
or not.

1) Conditional Independence:Conditional independence
of sensor observations implies that the joint density of the
observations obeys

for (1)

For the above mentioned NP problem under the conditional
independence assumption, the mapping rules at the sensors
as well as the decision rule at the fusion center are threshold
rules based on the appropriate likelihood ratios [8], [9].
Here, we sketch the proof for the situation in which the

are binary-valued. That is, or
1 which implies that theth sensor decides on hypothesis

or . Since the observation at the fusion center is the
vector , according to the standard NP lemma, the optimal
fusion center test is given by [10] (see (2) at the bottom
of the page) where the threshold and the randomization
constant are chosen to achieve a desired . Thus the
optimal fusion center test is a likelihood ratio test (LRT).
In order to show that the optimal local decision rules are
also LRT’s, we first look at the following lemma [9].

Lemma 1: Let the local decision rules be such that
, for all . Then, for a given vector such

that , and any other vector such that
for all .

The conditional independence assumption implies that

(3)

The lemma becomes apparent when one uses the relation
in (3).

Since the decision variables are binary-valued, an LRT
of the form (2) is equivalent to the fusion center decision

being a Boolean function. Sincecan assume
possible values, the number of possible Boolean func-

tions are . However, for an optimal solution of the NP
problem, the fusion rule has to satisfy Lemma 1. A Boolean

function that satisfies the monotonicity property given in
Lemma 1 is called apositive unate function. The number of
positive unate functions for various integer values ofare
provided in [11]. Even though this number is significantly
smaller than , it still grows exponentially with . For
example, the number of positive unate functions for
is 168 and is 7581 for .

The optimality of a LRT at a sensor can now be estab-
lished. Let , where is a positive unate
function. Such a function, when expressed in a sum of
product form, has no complemented variables. Hence

(4)

Consider a set of decision rules that
achieves the desired and at the same time achieves
the detection probability . For this test, assume that the
corresponding local false alarm and detection probabilities
are and respectively. Consider an alternate set of
decision rules in which ,
with the same corresponding local false alarm probabilities

but different detection probabilities . According
to the NP lemma, for a given false alarm probability, a
LRT achieves the largest possible detection probability.
Therefore, if is such that each local decision rule is a
LRT, then each . Since the optimal fusion rule

has to be a monotone rule, (4) implies that .
Thus an optimal solution to the NP distributed detection
problem should employ LRT’s at the local sensors.

The above result is valid even if , are
multivalued. For a proof, see [5] and [12].

Even though the local decision rules as well as the global
fusion rule are LRT’s, finding the actual LRT’s is quite
difficult. This is because the threshold in (2) as well as
the local thresholds that enter the local tests

then
then
then w/probability

(5)
need to be determined so as to maximize for a given

(if the likelihood ratio in (5) is a continuous
random variable with no point mass, then the randomization
is unnecessary and can be assumed to be zero without
losing optimality). Since (2) is known to be a monotone
fusion rule, one can solve for the set of optimal local
thresholds for a given monotone fusion
rule and compute the corresponding . One can then
successively consider other possible monotone fusion rules
and obtain the corresponding detection probabilities. The
final optimal solution is the one monotone fusion rule and
the corresponding local decision rules (5) that provide the

decide or set
randomly decide with probability
decide or set

(2)
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Fig. 3. Serial topology.

largest . Finding the optimal solution in this fashion is
possible only for very small values of . The complexity
increases with because 1) the number of monotone rules
grows exponentially with and 2) finding the optimal

for a given fusion rule is an optimization
problem involving an dimensional search (it is one
dimension less than because of the constraint ).

The question of randomization is thoroughly analyzed in
[5]. It considers three cases: 1) no randomization in (5),
yielding a deterministic strategy, 2) each sensor choosing
randomization rules of the type (5) independently of all
other sensors, leading toindependent randomization, and
3) a strategy calleddependent randomizationin which
a member of the set of decision
rules, is
chosen with some probability . It is shown in [5] that
if the likelihood ratio in (5) has no point masses, then an
optimal solution within the set of deterministic strategies
is also an optimal solution within the set of independent
randomization strategies.

An earlier attempt to solve the NP distributed detection
problem assumed that the optimal decision rules can be
obtained by maximizing the Lagrangian,
[13]. Unfortunately, this method may not always yield the
correct solution [5]. The reason for this, as explained in
[5], is that if one plots all the possible receiver operating
curves (ROC’s) (showing versus ) corresponding to
different sets of decision rules, they may have nonconvex
regions for some probability distributions. In such situa-
tions, the optimal solution to the NP problem does not max-
imize the Lagrangian over the nonconvex regions and the
solution resulting from the maximization of the Lagrangian
is not optimum. Examples where the Lagrangian approach
fails are shown in [8]. Maximization of Lagrangian may
still be used for situations where the ROC is convex, e.g.,
derivation of local decision rules for a fixed fusion rule.

2) Conditionally Dependent Observations:The observa-
tions at the sensors are dependent when the joint density of
the observations, given the hypothesis, cannot be written
as the product of the marginal densities, as in (1). Such
situations would arise if one detects a random signal
in noise or if the sensor noise samples are correlated
when detecting a deterministic signal in noise. It is
shown in [14] that for the conditionally dependent case,
the optimal tests at the sensors are no longer of the
threshold type based solely on the likelihood ratio of

Fig. 4. Tree topology.

the observations at the individual sensors. In general, the
optimal solution is intractable. When the observations are
discrete and conditionally dependent, the optimal solution is
nonpolynomial complete [15]. When the joint distributions
of the observations at the sensors have a certain structure,
the performance of certain distributed decision rules can
be easily determined [16]–[18].

B. Serial Configuration

In a serial or tandem configuration of sensors, the
th sensor passes its quantized information to theth

sensor which generates its quantized information based on
its own observation and the quantized data received from
the “previous” sensor (see Fig. 3). The first sensor in the
network uses only its observation to derive its quantized
data for use by the next sensor. The last sensor in the net-
work makes a decision as to which one of the two possible
hypotheses the observations at the sensors correspond to.
Optimal solution to the NP problem corresponding to the se-
rial configuration is readily available when the observations
at the sensors are conditionally independent [5], [19]. The
problem is intractable when the conditional independence
assumption is not valid. Therefore, we assume conditional
independence in the sequel.

Let us consider the case when each sensor in the serial
configuration makes a binary decision, i.e., ,
for . Denoting the false alarm and the
detection probabilities of theth stage(sensor) as and

, respectively, the NP problem can be stated as follows:
subject to the constraint , find the decision
rules at all the sensors so that these rules together achieve
the maximum possible . It is shown in [19] that
the solution to the above problem yields likelihood ratio
threshold rule for the th stage, with the likelihoods being
computed using the observations at theth sensor and the
decision from the th stage. The solution is based on
the following observation. From the NP fundamental lemma
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it is clear that the last ( th ) stage must employ a LRT to
achieve the maximum possible . The proof is then
completed by showing that the probability of detection at
the th stage, for any given and , is a montonic
increasing function of and hence the test at the

th stage must be a likelihood ratio threshold test. As
in the parallel case, tests at all the sensors are LRT’s, but
solving for the optimal thresholds that need to be employed
in these tests is, in general, quite difficult. However, for the
serial case, there exist algorithms that can obtain optimal
thresholds with complexity that is linear in [20].

In general, the serial network has serious reliability
problems. Delays accumulate because each stage has to wait
for results from the previous stage. This delay problem can
be overcome by modifying the communication structure
[19]. A more serious problem is that the performance
degrades considerably if the “link” in the serial configu-
ration is broken at an intermediate stage. Even though the
performance of a serial network in the presence of failures
is an important issue, we do not address it here. In the
rest of this section, we investigate the question, can the
serial network provide a better detection performance than
the parallel network in the absence of any failures? For a
two-sensor network we have the following proposition [1],
[5], [19].

Proposition One: For distributed detection networks con-
sisting of two detectors, the optimal tandem network per-
forms at least as well as the optimal parallel network.

Proof: Consider a parallel fusion network with two
local detectors and a fusion center. Let
be the set of optimal decision rules for the fusion center and
the two local detectors. Decision rules and operate
exclusively on their observations and to yield the
decisions and . The fusion rule determines the
global decision based on the local decisions and .

Now consider a two-detector tandem network in which
the detectors employ the decision rules and . The
first detector employs to operate on its observation
and provides its decision to the second detector. The
second detector employs to operate on its observation
to come up with its preliminary decision. Then, it uses
the fusion rule to combine its preliminary decision and
the decision received from the first detector to yield the
final decision. The tandem network designed in thisad
hoc (not necessarily optimal) manner can always duplicate
the performance of the optimal two-detector parallel fusion
network. Thus, the optimal tandem network performs at
least as well as the optimal parallel network.

Similar results on the relative performance of serial and
parallel networks consisting of more than two detectors
are not available. For networks in which sensors gener-
ate binary decisions, a related result is that there always
exists a better serial rule than a parallel fusion rule that
is implementable as a sequence of two-input and one-
output Boolean rules [19]. However, it is possible that an
optimal parallel fusion rule does not belong to the class
of fusion rules that are implementable as a sequence of
two-input and one-output rules and the parallel network
might considerably outperform the serial network. In fact,
asymptotically for large , as compared to the parallel
scheme, the probability of a miss for a serial network goes
to zero at a much slower rate [21].

In the case of tree networks of the type in Fig. 4, for
conditionally independent observations, it can be shown
that an optimal solution to the NP problem yields threshold
tests based on the likelihood ratios [5]. Solving for the
optimal thresholds is, in general, complicated.

III. B AYESIAN FORMULATION

This section presents a Bayesian formulation of the
distributed detection problem in which the objective is to
minimize the Bayesian risk. Assignment of costs to differ-
ent courses of action and knowledge of prior probabilities
are required for the solution of this problem. First, the prob-
lem is solved for parallel and serial network topologies and
then several other detection network topological structures
are discussed. Throughout this section we assume that the
sensor observations are conditionally independent.

A. Parallel Configuration

We consider the system structure described in Section II-
A. Before we deal with the general problem in Section III-
A3, we consider two special cases in the next two subsec-
tions.

1) Parallel Configuration without a Fusion Center:Con-
sider a parallel network without fusion shown in Fig. 2.
All of the sensors observe a common phenomenon and
make local decisions regarding it. These decisions are not
combined to yield a global decision. Costs of decision
making at different sensors are assumed to be coupled
and a systemwide optimization based on the coupled
cost assignment is performed so that the resulting sensor
decision rules are coupled. For simplicity of presentation,
we limit our attention to a two-sensor network here. More
general results can be obtained in a similar manner. Let

and denote thea priori probabilities for the two
hypotheses and , respectively. The costs of different

(6)

(7)
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courses of action are denoted by , where
represents the cost of detector one deciding,

detector two deciding when is present. The goal
is to obtain decision rules at the two detectors that jointly
minimize the Bayesian risk given by (6), as shown at the
bottom of the previous page. It is shown in [1, Sec. 3.2], [2]
that the resulting decision rules are LRT’s of the form (5).
The threshold at the first sensor is given by (7), shown at
the bottom of the previous page. Note thatis a function
of which is determined by the decision rule
at the second sensor. Thusis a function of . A similar
expression for can be obtained as a function of. These
expressions represent the necessary conditions thatand

must satisfy. Solution of these coupled equations yields
a locally optimum solution. When there are multiple local
minima, each must be examined to find the best solution.

2) Optimal Fusion of Local Decisions:Next, we consider
the fusion of sensor decisions , in a
Bayesian framework. Each is a binary random variable
characterized by the associated and . The goal
is to determine the fusion rule that minimizes the Bayes
risk. Once again the result for this binary hypothesis testing
problem is an LRT given by [1, Sec. 3.3], [3]

(8)

where denotes the cost of global decision being
when is present. This LRT can be expressed in the
following form [1, Sec. 3.3], [3]

(9)
Thus a weighted sum of sensor decisions is formed and

is compared with a threshold. The weights are functions
of the probabilities of false alarm and miss of individual
sensor decisions and are, therefore, functions of the quality
of sensor decisions.

3) Global Optimization: Finally, we consider the system
shown in Fig. 1 that consists of a number of sensors
connected in parallel and with a fusion center. The goal
in the Bayesian formulation is to obtain the set of decision
rules that minimizes the average cost of
the overall system operation. As in [1, Sec. 3.4], [22], the
Bayes risk can be expressed as

(10)

where

and indicates summation over all possible values of.
A person-by-person optimization (PBPO) methodology is
adopted for system optimization. In this methodology, while

optimizing any one decision rule, it is assumed that all the
other decision rules remain fixed. System design equations
resulting from this PBPO procedure represent necessary
but not, in general, sufficient conditions to determine the
globally optimum solution. This set of equations is solved
simultaneously to obtain the desired PBPO solution. It is
shown in [1, Sec. 3.4], [22] that the sensor decision rules
and the fusion rule are LRT’s given by

(11)
and

(12)

where

and

A simultaneous solution of the above coupled
nonlinear equations yields the PBPO solution. As indicated
in Section II, determination of decision rules for distributed
detection networks is quite complicated. Several computa-
tional algorithms based on a variety of approaches such as
Gauss–Seidel cyclic coordinate descent and gradient based
techniques have been proposed in the literature [23]–[25].

Consider a special case in which the observations at
the sensors are identically distributed. In this situation,
it would appear that the decision rules at the sensors
should be identical. But examples have been found in
which nonidentical decision rules are optimal [26]–[28].
It has, however, been shown that the solution with an
identical decision rule constraint is asymptotically optimal
and that the identical decision rule assumption often results
in little or no loss of optimality [5], [29]. Therefore,
identical local decision rules are frequently assumed in
many situations. Also, with identical local decision rules
and identical distribution at all the sensors, the optimal
fusion rule reduces to a -out-of- form [1, Sec. 3.4],
i.e., the global decision if or more sensor
decisions are one. This structure of the fusion rule reduces
the computational complexity considerably.

4) Entropy-Based Cost Functions:Thus far, the cost for-
mulation involved assignment of a fixed cost to each
possible course of action. In signal detection applications
where these costs are not available or where we are inter-
ested in the amount of information we are able to transfer,
entropy-based cost functions have been found to be quite
useful [30]. Design of the system shown in Fig. 1 based on
the following logarithmic cost function has been considered
in [1, Sec. 7.2], [31]

(13)
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where represents . Based on the PBPO method-
ology, the fusion rule and the sensor decision rules that
maximize the mutual information can be obtained.
It is shown in [1, Sec. 7.2], [31] that the fusion rule in terms
of a specific incoming decision vector is

(14)

Sensor decision rules are LRT’s in which the thresholds
are given by

(15)

The PBPO solution is obtained by solving (14) and (15)
simultaneously.

B. Serial Configuration

In this section we consider the Bayesian hypothesis
testing problem for a serial network (Fig. 3). For simplicity,
we limit our attention to a two-detector serial network here.
More general results are available in [1, Sec. 4.2]. In this
network, the first detector makes the decision based
on . The second detector makes the final decision
based on and . Let denote the cost of deciding

when is present. The goal is to derive decision
rules at both detectors so that the average cost of making
decision is minimized. The Bayes risk in this case
can be expressed as (see (16) at the bottom of the page).
System optimization is carried out based on the PBPO
methodology. As shown in [1, Sec. 4.2], [8], the decision
rules at both detectors are LRT’s. A single threshold is used
at the first detector whereas two thresholds depending upon
the decision of the first detector are used at the second
detector. denotes the threshold at the second detector
when . The three thresholds are given by

(17)

(18)

(19)

where and represent the values of proba-
bilities of false alarm and detection at detector two based on
threshold value . The above coupled equations
need to be solved to determine the three thresholds. For
an -detector serial network, coupled equations
need to be solved to determine the thresholds. For large,
a more convenient approach is to represent these equations
recursively [1, Sec. 4.2].

An important question is whether the parallel topology or
the serial topology performs better under Bayes criterion.
Proposition One given earlier is independent of the criterion
and is hence valid for the Bayes criterion as well. For-
detector networks , no definitive statements can
be made. It has been shown that the parallel network is
better than the serial network in the asymptotic sense [5],
[32]–[34]. The value of at which the parallel network
becomes superior is not known.

Another interesting issue is the ordering of nonidentical
detectors in serial networks. It might be tempting to put the
better detectors toward the end but there exist examples that
show that placing the better detectors toward the end need
not always be optimal [32]. Ordering depends on many
factors such as prior probabilities, costs, etc. No general
results on this issue are available.

C. More General Network Topologies

In Sections III-A–B, we have discussed the Bayesian
formulation for two basic distributed detection network
topologies. The tree network can be handled in a similar
manner and decision rules can be derived at all the detectors
[1, ch. 4], [35], [36]. In all the configurations considered
thus far, information flowed in only one direction namely
toward the fusion center. No provision was made for
extensive communication/consultation among sensors or for
feedback information flowing from the fusion center toward
the sensors. Introduction of this additional communication
capability improves system performance. A number of
such network configurations have been considered in the
literature. For example, in a parallel network with feedback,
observations arrive sequentially at the sensors over the ob-
servation interval. After each received observation, sensors
make tentative decisions and transmit them to the fusion
center. The fusion center combines these and transmits
the tentative global decision back to the sensors. Sensors
use this feedback information to adapt their decision rules.
Design and analysis of this system is available in [1, Sec.
4.4], [37]. Another interesting notion is that of parleying
where a number of sensors reach a decision collectively
[38]. Each sensor transmits its tentative decision to all other
sensors. Based on its original observation and the most
recent set of tentative decisions, each sensor “rethinks” and
makes another tentative decision. This process continues
until all sensors reach a consensus. Performance of this
system is characterized by the time to reach a consensus and
correctness of the result. In [39], a generalized Bayesian
formulation for the design of arbitrary detection network
configurations and communication structures is presented.
PBPO methodology is employed to determine the decision
rule at any detector of the network [1, Sec. 4.5], [39].

(16)
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IV. DISCUSSION AND CONCLUSION

We have discussed some basic issues related to detection
of signals with a collection of distributed sensors. Two
main sensor topologies, parallel and serial, and two main
optimality criteria, NP and Bayesian risk, were considered
in some detail. A fundamental result is that for conditionally
statistically independent observations at the sensors, the
optimal tests at the sensors and at the fusion center, if one
exists, under either of the two criteria, are likelihood ratio
threshold tests. Although the optimality of the LRT’s is es-
tablished, finding the actual tests involves the determination
of thresholds, through a set of coupled integral equations,
a task which is computationally complex.

The literature on distributed detection is quite rich and
continues to grow. For a more extensive set of references,
see [1], [6], [40]. We briefly describe a few other ba-
sic results from the literature. All these results assume
conditionally independent observations. A somewhat sur-
prising result is the possibility that an optimal solution to
a distributed detection problem may exhibit nonsymmetry
with respect to sensors even though the observations at
the sensors may be identical [2], [5], [29]. However, for
a large number of sensors, under some mild restrictions,
the optimality of identical sensor tests was established
in [29]. Also, several results on asymptotic performance
(with respect to a large number of sensors) reveal that
the performance crucially depends on the nature of the
individual sensor ROC. For example, the asymptotic error
rate at the fusion center depends on the slope of the sensor
ROC at the origin and/or at [33], [41]. The
suboptimality of the OR and the AND rules, for a large
number of sensors, is also shown in [41]. Performance of
distributed detection systems in terms of (finite) number
of sensors has been investigated in [42] where results are
presented on the number of sensors required to attain a
certain performance. In [40], the author considers a model
that allows for recursive processing if the fusion center is
unable to decide on a hypothesis at a given instant. He
also derives recursive probability expressions that show the
progress of these probabilities as a function of the number
of recursion.

In [43] the authors describe what they call the fusion of
detection probabilities. In their model each sensor, based
on its observation, generates a probability that declares its
confidence on the signal present hypothesis. These proba-
bilities are then sent to a fusion center where a decision
regarding the signal hypothesis is made. Even though this
idea may look different, it is essentially equivalent to
the sensor sending multilevel information. The statistical
literature addresses a similar topic known as thecombining
of level of significance[44].

Since the optimal solution to the distributed detection
problem is computationally complex (see [5], [15], [45]
for more details on complexity issues), especially with
multilevel quantization, a suboptimal procedure is to max-
imize a form of distance measure such as-divergence.
Some numerical results for a specific problem based on

distance optimization are presented in [46]. Design of
multilevel quantizers for distributed hypothesis testing has
been further considered in [47]. An iterative procedure to
cyclically improve the system performance metric based
on distance measures such as the Bhattacharyya distance
has been proposed. Many examples have been presented
to illustrate the procedure. Several additional interesting
results on the design of quantizers at local sensors are
presented in [48]. Under a Bayesian formulation, [49]
shows how the risk at the fusion center, corresponding to a
minimum average cost receiver, can be expressed directly
in terms of the detection and the false alarm probabilities
of the decisions of the sensors. For identical sensors, it also
brings out the explicit dependence of the risk on the sensor
threshold.

Distributed detection in uncertain environments has re-
ceived some attention in the literature. Applications of
robust methods and nonparametric techniques to this prob-
lem are described in Part II of this paper [6]. In [50], [51],
an approach based on Dempster–Shafer theory is presented.
They deal with the situation when each decision maker has
an unknown probability of being jammed or defective and
an unknown probability to provide an incorrect decision
when jammed or defective. The uncertainty is handled
by discounting the degree of confidence in decisions and
Dempster’s combining rule is employed for information
aggregation. An alternate approach to treat uncertainty is by
means of fuzzy information systems. Design of the fusion
rule and decision rules at the sensors based on this approach
are presented in [52] and [53]. In [52], a decision fusion
scheme is derived where the uncertainty associated with
local sensor error probabilities is modeled by means of
fuzzy sets. A crisp decision is reached by defuzzifying the
Bayesian risk based on a criterion for mapping fuzzy sets on
the real line. In [53], measurement inaccuracies at sensors
are modeled as fuzzy events. Bayesian decision criterion is
employed in the design of decision rules at the sensors and
at the fusion center.

The problem of optimization of distributed decision mak-
ing structures with applications to the design of orga-
nizations has been investigated extensively [54]–[57]. A
normative model to study the interactions between task
structures and organizational design on the performance of
hierarchical organizations has been formulated. This model
has applications in a wide variety of areas such as social
sciences, medical diagnosis, and military command and
control [58].

Certain open problems remain to be investigated. One
is the question of accuracy (performance) achievable in
distributed detection. Given a complete knowledge of the
probability distributions of the observations, it is possible
to numerically evaluate the performance of a given dis-
tributed detection rule and compare its performance with
that of a central detection rule. However, it would be
nice to have a general type of accuracy bound, similar
to the Cramer–Rao bound in parameter estimation, that
describes the accuracy achievable by a class of distributed
detection rules. Such results do exist for the asymptotic
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(large number of sensors) case, but for finite sample case,
evaluation of an accuracy bound remains an open prob-
lem.

Another issue is the application of distributed detection
results to other areas. One such area is diversity com-
bining in communication receivers in which independent
pieces of information are available, but usually at a single
site. If a complete statistical description of these samples
(information) is available, then an optimal combining of
these samples (the optimal central rule, in distributed ter-
minology) can be carried out. An example of this is the
maximal ratio combining [59]. When a complete statistical
characterization is not possible, e.g., due to changes in link
conditions, or if a simpler decision rule is desirable, then
a hard limited decision of each sample can be obtained
and the decisions can then be combined using a-out
of- rule [60]. Unlike in decentralized detection problems,
where the sensors are geographically dispersed, the multiple
antennas used in space diversity receivers are usually
co-located. Therefore, making decisions using only the
signals at each antenna and then combining these decisions
using an appropriate rule is then dictated by the need
for robust rules that perform reasonably well over a wide
range of channel conditions. Yet another application area
is the object recognition problem in computer vision, using
multiple cues [61].

Many fundamental results on distributed detection have
been obtained and applied to several diverse areas. Much
research remains to be performed on the theory and appli-
cations of decentralized detection. Several recent results on
the theoretical aspects of distributed detection are described
in Part II of this paper [6].

REFERENCES

[1] P. K. Varshney,Distributed Detection and Data Fusion. New
York: Springer-Verlag, 1996.

[2] R. R. Tenney and N. R. Sandell Jr., “Detection with distributed
sensors,”IEEE Trans. Aerospace Elect. Syst., vol. AES-17, pp.
501–510, July 1981.

[3] Z. Chair and P. K. Varshney, “Optimal data fusion in multiple
sensor detection systems,”IEEE Trans. Aerospace Elect. Syst.,
vol. AES-22, pp. 98–101, Jan. 1986.

[4] S. S. Iyengar, R. L. Kashyap, and R. N. Madan, “Distributed
sensor networks—Introduction to the special section,”IEEE
Trans. Syst., Man Cybern., vol. 21, pp. 1027–1031, Sept. 1991.

[5] J. N. Tsistsiklis, “Decentralized detection,” inAdvances in
Statistical Signal Processing, Signal Detection, vol. 2, H. V.
Poor and J. B. Thomas, Eds. Greenwich, CT: JAI, 1993.

[6] R. Blum, S. Kassam, and H. V. Poor, “Distributed detection
with multiple sensors: Part II—Advanced topics,” this issue,
pp. 64–79.

[7] E. L. Lehmann,Theory of Point Estimation. New York: Wiley,
1983.

[8] A. R. Reibman, “Performance and fault-tolerance of distributed
detection networks,” Ph.D. dissertation, Dept. Electrical Engi-
neering, Duke Univ., Durham, NC, 1987.

[9] S. C. A. Thomopoulos, R. Viswanathan, and D. K. Bougoulias,
“Optimal distributed decision fusion,”IEEE Trans. Aerospace
Elect. Syst., vol. 25, pp. 761–765, Sept. 1989.

[10] E. L. Lehmann,Testing Statistical Hypothesis. New York:
Wiley, 1986.

[11] M. A. Harrison,Introduction to Switching and Automata Theory.
New York: McGraw-Hill, 1965.

[12] A. Ansari, “Some problems in distributed detection,” M.S. the-
sis, Dept. Electrical Engineering, S. Illinois Univ., Carbondale,
IL, 1987.

[13] R. Srinivasan, “Distributed radar detection theory,”IEE Proc.,
Part F, vol. 133, pp. 55–60, Feb. 1986.

[14] G. S. Lauer and N. R. Sandell Jr., “Distributed detection of
known signal in correlated noise,”Rep. ALPHATECH, Burling-
ton, MA, Mar. 1982.

[15] J. Tsitsiklis and M. Athans, “On the complexity of distributed
decision problems,”IEEE Trans. Auto. Contr., vol. AC-30, pp.
440–446, May 1985.

[16] V. Aalo and R. Viswanathan, “On distributed detection with
correlated sensors: Two examples,”IEEE Trans. Aerospace
Elect. Syst., vol. 25, pp. 414–421, May 1989.

[17] E. Drakopoulos and C. C. Lee, “Optimal multisensor fusion of
correlated local decisions,”IEEE Trans. Aerospace Elect. Syst.,
vol. 27, pp. 593–605, July 1991.

[18] M. Kam, Q. Zhu, and W. S. Gray, “Optimal data fusion of
correlated local decisions in multiple sensor detection systems,”
IEEE Trans. Aerospace Elect. Syst., vol. 28, pp. 916–920, July
1992.

[19] R. Viswanathan, S. C. A. Thomopoulos, and R. Tumuluri, “Op-
timal serial distributed decision fusion,”IEEE Trans. Aerospace
Elect. Syst., vol. 24, pp. 366–376, July 1988.

[20] Z. B. Tang, K. Pattipati, and D. L. Kleinman, “Optimization of
detection networks: Part I—Tandem structures,”IEEE Trans.
Syst. Man Cybern., vol. 21, pp. 1044–1059, Sept. 1991.

[21] P. Swaszek, “On the performance of serial networks in dis-
tributed detection,”IEEE Trans. Aerospace Elect. Syst., vol. 29,
pp. 254–260, Jan. 1993.

[22] I. Y. Hoballah and P. K. Varshney, “Distributed Bayesian signal
detection,”IEEE Trans. Inform. Theory, vol. 35, pp. 995–1000,
Sept. 1989.

[23] Z. B. Tang, K. R. Pattipati, and D. Kleinman, “An algorithm
for determining the detection thresholds in a distributed detec-
tion problem,” IEEE Trans. Syst., Man Cybern., vol. 21, pp.
231–237, Jan./Feb. 1991.

[24] Z. B. Tang, “Optimization of detection networks,” Ph.D. dis-
sertation, Univ. Connecticut, Storrs, Dec. 1990.

[25] C. W. Helstrom, “Gradient algorithms for quantization levels
in distributed detection systems,”IEEE Trans. Aerospace Elect.
Syst., vol. 31, pp. 390–398, Jan. 1995.

[26] J. N. Tsitsiklis, “On threshold rules in decntralized detection,” in
Proc. 25th IEEE Conf. on Decision and Contr., Athens, Greece,
1986, pp. 232–236.

[27] P. Willet and D. Warren, “Decentralized detection: When are
identical sensors identical,” inProc. Conf. on Inform. Sci. and
Syst., 1991, pp. 287–292.

[28] M. Cherikh and P. B. Kantor, “Counterexamples in distributed
detection,”IEEE Trans. Inform. Theory, vol. 38, pp. 162–165,
Jan. 1992.

[29] J. N. Tsitsiklis, “Decentralized detection with a large number of
sensors,”Mathemat. Contr., Signals Syst., vol. 1, pp. 167–182,
1988.

[30] D. Middleton,Statistical Communication Theory. New York:
McGraw-Hill, 1960.

[31] I. Y. Hoballah and P. K. Varshney, “An information theoretic
approach to the distributed detection problem,”IEEE Trans.
Inform. Theory, vol. 35, pp. 988–994, Sept. 1989.

[32] J. D. Papastavrou, “Decentralized decision making in a hy-
pothesis testing environment,” Ph.D. dissertation, MIT, May
1990.

[33] J. D. Papastavrou and M. Athans, “Distributed detection by a
large team of sensors in tandem,”IEEE Trans. Aerospace Elect.
Syst., vol. 28, pp. 639–653, July 1992.

[34] , “On optimal distributed decision architectures in a hy-
pothesis testing environment,”IEEE Trans. Automat. Contr.,
vol. 37, pp. 1154–1169, Aug. 1992.

[35] Z. B. Tang, K. R. Pattipati, and D. L. Kleinman, “Optimization
of distributed detection networks: Part II generalized tree struc-
tures,” IEEE Trans. Syst., Man Cybern., vol. 23, pp. 211–221,
Jan./Feb. 1993.

[36] L. K. Ekchian, “Optimal design of distributed networks,” Ph.D.
dissertation, Dept. Electrical Engineering/Computer Sci., MIT,
Cambridge, MA, 1982.

[37] S. Alhakeem and P. K. Varshney, “Decentralized bayesian
hypothesis testing with feedback,”IEEE Trans. Syst., Man
Cybern., vol. 26, pp 503–513, July 1996.

[38] P. F. Swaszek and P. Willett, “Parley as an approach to
distributed detection,”IEEE Trans. Aerospace Elect. Syst., vol.
31, pp. 447–457, Jan. 1995.

62 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 1, JANUARY 1997

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 30, 2009 at 15:48 from IEEE Xplore.  Restrictions apply.



[39] S. Alhakeem and P. K. Varshney, “A unified approach to
the design of decentralized detection systems,”IEEE Trans.
Aerospace Elect. Syst., vol. 31, pp. 9–20, Jan. 1995.

[40] B. Dasarathy,Decision Fusion. Los Alamitos, CA: IEEE
Comp. Soc., 1994.

[41] R. Viswanathan and V. Aalo, “On counting rules in distributed
detection,” IEEE Trans. Acoust., Speech Signal Process., pp.
772–775, May 1989.

[42] M. Kam, W. Chang, and Q. Zhu, “Hardware complexity
of binary distributed detection systems with isolated local
Bayesian detectors,”IEEE Trans. Syst., Man Cybern., vol. 21,
pp. 565–571, May/June 1991.

[43] R. Krysztofowicz and D. Long, “Fusion of detection probabili-
ties and comparison of multisensor systems,”IEEE Trans. Syst.,
Man Cybern., vol. 20, pp. 665–677, May/June 1990.

[44] V. Hedges and I. Olkin,Statistical Methods for Meta-Analysis.
New York: Academic, 1985.

[45] N. S. V. Rao, “Computational complexity issues in synthesis of
simple distributed detection networks,”IEEE Trans. Syst., Man
Cybern., vol. 21, pp. 1071–1081, Sept./Oct. 1991.

[46] C. C. Lee and J. J. Chao, “Optimum local decision space
partitioning for distributed detection,”IEEE Trans. Aerospace
Elect. Syst., Vol. AES-25, pp. 536–544, July 1989.

[47] M. Longo, T. Lookabaugh, and R. Gray, “Quantization for
decentralized hypothesis testing under communication con-
straints,” IEEE Trans. Inform. Theory, vol. 36, pp. 241–255,
Mar. 1990.

[48] D. J. Warren and P. K. Willett, “Optimal decentralized detection
for conditionally independent sensors,” inProc. 1989 Amer.
Contr. Conf., June 1989, pp. 1326–1329.

[49] W. A. Hashlamoun and P. K. Varshney, “Further results on
distributed Bayesian signal detection,”IEEE Trans. Inform.
Theory, vol. 39, pp. 1660–1662, Sept. 1993.

[50] E. Drakapoulos and C. C. Lee, “Decision fusion in distributed
detection with uncertainties,” inProc. 26th Annu. Allerton Conf.
on Commun., Contr. and Computing, Monticello, IL, Sept. 1988.

[51] , “Decision rules for distributed decision networks with
uncertainties,”IEEE Trans. Autom. Contr., vol. 37, pp. 5–14,
Jan. 1992.

[52] V. N. S. Samarasooriya and P. K. Varshney, “A fuzzy modeling
approach to decision fusion under uncertainty,” inProc. 1996
IEEE Int. Conf. on Multisensor Fusion and Integration for Intell.
Syst., Washington, DC, Dec. 1996.

[53] , “Decentralized signal detection with fuzzy information,”
Opt. Engineering, Mar. 1997.

[54] A. Pete, K. R. Pattipati, and D. L. Kleinman, “Team relative
operating characteristic: A normative—Descriptive model of
team decision making,”IEEE Trans. Syst. Man Cybern., vol.
23, pp. 1626–1648, Nov./Dec. 1993.

[55] , “Optimization of detection networks with multiple event
structures,”IEEE Trans. Autom. Contr., vol. 39, pp. 1702–1707,
Aug. 1994.

[56] , “Optimization of decision networks in structured task
environments,”IEEE Trans. Syst., Man Cybern., Nov. 1996.

[57] A. Pete, “Organizations with congruent structures,” Ph.D. dis-
sertation, Univ. Connecticut, Aug. 1995.

[58] A. Pete, K. R. Pattipati, and D. L. Kleinman, “Optimal team and
individual decision rules in uncertain dichotomous situations,”
Public Choice, vol. 75, pp. 205–230, 1993.

[59] J. G. Proakis,Digital Communications. New York: McGraw-
Hill, 1989.

[60] R. S. Blum, “Distributed reception of fading signals in noise,”
in Proc. 1995 Int. Symp. on Inform. Theory, Sept. 1995, p. 214.

[61] J. Aloimonos and D. Shulman,Integration of Visual Modules:
An Extension of the Marr Paradigm. New York: Academic,
1989.

Ramanarayanan Viswanathan received the
B.E. degree (honors) in electronic and com-
munication engineering from the University of
Madras, India, the M.E. degree (with distinction)
in electrical communication engineering from
the Indian Institute of Science, Bangalore, and
the Ph.D. degree in electrical engineering from
Southern Methodist University, Dallas, TX, in
1975, 1977, and 1983, respectively.

From 1977 to 1980 he was a deputy engineer
at Bharat Electronic, Ltd., Bangalore, India.

Since 1983 he has been with Southern Illinois University, Carbondale,
where he is a Professor of Electrical Engineering. His research interests
include detection and estimation, communication theory, and wireless
communications. He co-authored a textbook,Introduction to Statistical
Signal Processing with Applications(Prentice-Hall, 1996).

Dr. Viswanathan is a registered Professional Engineer in the State of
Illinois.

Pramod K. Varshney, for a photograph and biography, see this issue, p. 5.

VISWANATHAN AND VARSHNEY: DISTRIBUTED DETECTION WITH MULTIPLE SENSORS 63

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 30, 2009 at 15:48 from IEEE Xplore.  Restrictions apply.


	Southern Illinois University Carbondale
	OpenSIUC
	1-1997

	Distributed Detection With Multiple Sensors: Part I—Fundamentals
	Ramanarayanan Viswanathan
	Pramod K. Varshney
	Recommended Citation



