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Generalized Reciprocals, Factors of Dickson
Polynomials and Generalized Cyclotomic
Polynomials over Finite Fields

Robert W. Fitzgerald
and
Joseph L. Yucas

Abstract

We give new descriptions of the factors of Dickson polynomials
over finite fields in terms of cyclotomic factors. To do this general-
ized reciprocal polynomials are introduced and characterized. We also
study the factorization of generalized cyclotomic polynomials and their
relationship to the factorization of Dickson polynomials.

1 Introduction

Throughout, ¢ = p® will denote an odd prime power and Fq will denote the
finite field containing ¢ elements. Let n be a positive integer, set s = |n/2]
and let a be a non-zero element of Fq. In his 1897 PhD Thesis, Dickson
introduced a family of polynomials

Pt =32 (") o

=0

These are the unique polynomials satisfying Waring’s identity
)"

In recent years these polynomials have received an extensive examination.
In fact, a book [9] has been written about them. They have become known
as the Dickson polynomials (of the first kind).

a a
Dyalz+ =) ="+ (=
alz+ ) =a"+ (=
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In [5] and then later simplified in [2] a factorization of these Dickson
polynomials over Fy is given. We summarize their results as follows:

Theorem 1.1. D, ,(z) is the product of irreducible polynomials in Fq[x]
which occur in cliques corresponding to the divisors d of n for which n/d is
odd. To each such d there corresponds ¢(4d)/(2Ny) irreducible factors, each
of which has the form

Ny—1

] - va" (¢ +¢)

1=0

where C is a primitive 4d™ root of unity, ¢ is Euler’s totient function, kg is
the least positive integer such that ¢*¢ = 1 (mod 4d) and

ka/2 if Jag Fqy, kg =2 (mod 4) and ¢*/* = 2d £ 1 (mod 4d);
Ng=14q 2kqs ifJa¢ Fq and kg is odd;

kq otherwise.

Notice that the factors appearing in the above result are in Fg[x], al-
though their description uses elements from outside of F,. The purpose of
this paper is to better understand these factors. In this regard, we show
that these factors can be obtained from the factors of certain cyclotomic
polynomials. This generalizes the results of [7] where the case a = 1 was
considered. To do this we need the notion of generalized reciprocals. This is
introduced in section 2. Here we characterize polynomials which equal their
generalized reciprocals in terms of their orders. This generalizes Theorem 11
of [14]. Section 3 is a rather straight-forward generalization of results from
[7] and section 4 provides the factorization of the Dickson polynomials. In
section 5 we introduce cyclotomic factors and provide an algorithm for fac-
toring Dickson polynomials. Section 6 provides some computational aids and
in section 7 we introduce generalized cyclotomic polynomials and study their
factorization and their relationship to Dickson factors. Section 8 provides a
long and tedious proof of our result on the order of generalized cyclotomic
polynomials.

2 Generalized reciprocals of polynomials

Recall that ¢ is an odd prime power and 0 # a € Fy. For f(z) € Fq[x] monic
of degree n, with f(0) # 0, define the a-reciprocal of f(z) by
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fa(z) = mf(a/:v)
That is, if
flx) = Z b,z
i=0
then

. 1 & o
J(xr) = — b,a'x" ",
fal2) bg

Notice that f,(z) is monic and if « is a root of f(z) then a/a is a root
of f,(z). Also notice that f,(0) = a™/f(0) thus the a-reciprocal of f,(x)
is f(z). Consequently, f,(x) is irreducible over F, if and only if f(z) is.
However, f,(z) may not have the same order as f(x). For example, consider
f(x) = 23 4 3 over Fy. f(x) has order 9 while f3(z) = 2 + 2 has order 18.

A monic polynomial f(x) of degree n = 2m is said to be a-self reciprocal
if f,(x) = f(z). Notice that f(z) = S o bix® is a-self reciprocal if and only
if b, by = b;a’. When i = n we see that f(0)?> = a so there are two types
of a-self reciprocal polynomials:

1. (f(0) = —a™). Here, f(v/a) = —f(y/a) hence f(y/a) =0 and f(z) is a
multiple of 22 — a. We will refer to a-self reciprocal polynomials of this type
as being trivial .

2. (f(0) = a™). Here b,_;a™ = b'a’ hence b; = b, _;a™ * and f(z) has the

form
m—1

f@) =bpa™ + > bymi(a®" 4 ")
i=0

for some b; € Fq and by,, = 1. We will refer to a-self reciprocal polynomi-
als of this type as being non-trivial . As an example, it is easy to check
that f(z)f.(x) is a non-trivial a-self reciprocal polynomial for every monic
polynomial f(z).

Notice that the only irreducible trivial a-self reciprocal polynomial is 2 —a
when a is not a square in Fq. The following Theorem gives a characterization
of non-trivial a-self reciprocal polynomials.

Theorem 2.1. Suppose a € Fq with a # 0. For a monic irreducible polyno-
mial f(x) over Fy of degree n = 2m, the following statements are equivalent.
1. f(x) is a non-trivial a-self reciprocal polynomial.
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2. f(x) has a root o« € Fgn with a/a # « also being a root of f(x).
3. a?" = a/a for every root a of f(x).

Proof: 1=2. By 1.,

Hence, if a is a root of f(z) then so is a/a. If @ = a/a then a? —a = 0
which implies that f(z) = 2? — a, a contradiction.
2=3. By 2., f has aroot a with a? = a/a for some j with 1 < j < n—1.
Hence _ o _
o = () =a/a? =a/(aja) = a.

Consequently, n divides 2j. But 1 < j <n—1andn > 1, son = 2j and
m = j. If B3 is any other root of f(z) then 3 = a? for some i. We have

ﬁq’" _ (aqi)qm _ (Oéqm)qi _ (_)ql ——

3=1. By 3., f(») and g(x) = (z"/f(0))f(%) are monic polynomials
having the same roots and same degree hence they are equal. If f(z) = 22 —a
then by 3., va’"' = a hence a5 =aand a5 = 1 implying Vva € Fq and
contradicting the irreducibility of f(x). O
Define

D,, = {r : r divides ¢" — 1 but r does not divide ¢* — 1 for s < n}.

For r € D,,, write r = d,t, where d, = (r,¢™ + 1). We next characterize
a-self reciprocal polynomials in terms of their orders.

Theorem 2.2. Suppose f(x) is an irreducible polynomial of degree n over
Fq and let t be a divisor of ¢ — 1. The following statements are equivalent:
1. f(z) is a-self reciprocal for some a € ¥} with ord(a) =t.
2. f(x) has order r € D,, witht, =1t.

Proof: 1 = 2. Let § be a root of f(z). Since f(x) is a-self reciprocal,
39"+ = g and hence "Vt = 1. Let r = ord(f). Then r € D,, since f(x)
is an irreducible polynomial of degree n. Write r = d,.t,, where d,, = (r,¢"+1)
and write ¢™ + 1 = d,d. Then (t,,d) = 1. Since fl4" TV = 1, we see that
d,t, divides d,dt and thus ¢, divides t. On the other hand,

atr _ ﬁ(qm"‘l)tr — Bdetr — ﬁrd -1
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Consequently, t divides ¢, and hence t, = t.

2 = 1. Let 8 be a root of f(z) and write r = d,t, where d, = (r,q" + 1).
Then A%t = 1. Let a = 39"*'. Since d, divides ¢™ + 1 and t, = t divides
q — 1 we see that ¢! = 1 thus a € F} and f(z) is a-self reciprocal. Also
notice that a'~ = 1. Again write r = d,t, where d, = (r,¢™ + 1) and write
q" +1=d,.d. Suppose a® = 1. Then

1= ﬁ(qm+1)s — ﬁdrds'

Since [ has order r, we see that d,t, divides d,ds. Finally, (d,t,) = 1 implies
that ¢, divides s. O

Let Qq(z) be the dth cyclotomic polynomial, namely the product of (x—-~)
over all primitive dth roots of unity 7.

Corollary 2.3. Letr € D,, and suppose t, divides q—1. Then Q,.(x) factors
into all a-self reciprocal monic irreducible polynomials of degree n and order
r where a ranges over all elements of Fy of order t,.

Proof: By Theorem 2.47 of [10], the irreducible factors of @, are all the
irreducible polynomials of degree n and order r. The result now follows from
the previous Theorem. O

Our next goal is to give a description of the a appearing in Theorem 2.1.

Lemma 2.4. Suppose 3 € Fgn and ¢ = 37" € Fy. Then
c

J
s = Gor

Proof: (37"t1)%"" =1 hence 7" ~4"+4=1 = 1. Then

ﬂqmﬂ c

/Bq - /qu+l = ﬁqm+l

and
c

g = (BT = B
[
Lemma 2.5. Suppose 3 € Fgn and ¢ = 7" € Fy. If tr(371) # 0 then

tr(5)
tr(671)

C =



n—1 n—1 " _ lz;l_q"—l n—1
t?"(ﬁ_l) - i] - — }z,l ﬂ%iqj - —/8 ’ lnfl Z/Bqnil_qj'
(4 == ==
=0 frat =0 IR R —
Hence
tr(3) 5 tr(B) B " (B)

= o

tr(3-1) ﬁq:il*qn‘l Z;:(} Bt Z;:ol g )

Thus it suffices to show

—1 n—1__j
Z?:o B34 q

ﬁqnfl_qm_l Y

tr(3) =

that is we show )
n(@) =3 g
j=0

pIm=a+ = /37 = 4" by Lemma 2.4 thus

n—1 n—1 n—1
DB =R BT =D B = tr(B).
j=0 j=0 Jj=0

[

For an irreducible polynomial f(x) over F, the inverse trace of f(x) is the

coefficient of x in f(z) divided by the constant term of f(x). Equivalently,

if 5 is a root of f(x) and K = Fq4(f3) then the inverse trace of f(x) is
tri/r, (1/5). For f € Fq[x], let itr(f) denote the inverse trace of f.

Theorem 2.6. Suppose f(x) is a monic irreducible polynomial over Fq of
degree n = 2m. If ord(f)|(¢™+1)(¢—1) and tr(f) = a-itr(f) # 0 then f(x)

15 a-self reciprocal.

Proof: Let 3 € Fgn be a root of f(x). We show that 87"+ = a. Since
ord(f)|(¢™ 4+ 1)(g — 1), we see that (84" T1)7! = 1 hence 7" € F,. Let
c = (39"*!. By Lemma 2.5,

)t
(51 itr(f)




3 The mappings ¢, and V¥,

Let P,, be the collection of all monic polynomials over F of degree m and let
Sm.a denote the family of all monic non-trivial a-self reciprocal polynomials
over Fy of degree m.
We define
(I)a : Pm — ngﬂ

by "
f(z) = a™ fle+ ).

This transformation ®, has been studied extensively when a = 1. The
first occurrence is Carlitz [3]. Other authors writing about ®; are Miller
[12], Andrews [1], Meyn [11], Cohen [6], Scheerhorn [13], Chapman [4] and
Kyuregyan [8].

Recall that a non-trivial monic a-self reciprocal polynomial b(x) of degree
2m can be written as

m—1

f(I) = b,z + Z me_i(l,Qm—i + (lm_il‘i)

i=0
for some b; € Fq and by, = 1. Define
‘;[la : SZm,a - Pm

by

m—1
b(x) = b+ Y _ bom—iDiia().
i=0
The following theorem is nearly a straight-forward generalization of [7]. We
include a proof here for completeness.

Theorem 3.1. (a) ®,0 V¥, = idg,,, , and ¥, 0 ®, = idp, .

(b) @, and ¥, are multiplicative.

(c) If b(z) is a monic irreducible non-trivial a-self reciprocal polynomial
of degree 2m then WV, (b(z)) is irreducible. If f(x) is an irreducible polynomial
of degree m and not a-self reciprocal then Uo(f(z) fa(x)) is irreducible.

Proof: We first check that the codomains are correct. For f(x) = 2™ +
1@ 4 o we have ®y(f(x)) = (@ + 9"+ agoa(e+ 9 4]
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which is monic of degree 2m. Since the constant term of ®,(f(z)) is a™ we
see that the a-reciprocal of ®,(f(z)) is

2m ,m

LI C ) = e+ L) = 0 (f(2).

a™ xm

Thus ®,(Py,) C Som.q. And
qja(b(x)) - meDm,a(x) + b2m71Dmfl,a(x) + -

is monic of degree m since by, = 1 and Dj;, is monic of degree j. So
\Ifa(ngya) C Pm.
We now prove (a). Write b(z) = bpa™ + 370" bog—i (22" 4 a™ ).

®, 0 U, (b(z)) = ¥, (bm + m;l bgm_Z-Dm_i,a(:v))

m—1

bm + Z me—iDm—i,a(x + %)

=0

:{L‘m

where we have used Waring’s identity in the third line. Thus &, o ¥, is the
identity.

Now in P, the coefficient of ™ is 1 and the others are arbitrary so that
|P| = p™. And for b(z) € Sam.as bom—-1,- - ,bm are arbitrary and the other
coefficients are determined so that |Sg, .| = p™. Hence ¥, o @, is also the
identity.

We now prove (b). Say deg f(z) = r and deg g(z) = s. Then

®.((f0)(2)) =" (fa)w + %)
st
_ 0(/(2)Balg(a).

8



Now suppose b(x) and c(x) are monic self-reciprocal polynomials. From

" Oo(Wa(b(x)c(x)) = blx)e()
= (a0 o) (b(2)) - (Pq 0 W) (c(x))
= ®,[U,(b(x))V,(c(z))] by the first part.
Consequently,

as ®, is injective by (a).
For (c), let b(z) € Sam.q be irreducible. Suppose U, (b(z)) = f(z)g(x),
with deg f,degg > 1. Then using (a) and (b)

b(w) = (P4 0 W,)(b(2)) = Pu(f(2))Palg(w)),

a contradiction. Next suppose f(z) is irreducible and ¥,(f(x) fulz
u(z)v(x), with degu(x),degv(x) > 1. Then, taking ®,, we have f(z)f.(x) =
D, (u(x))P,(v(x)). Since f(z) is irreducible, it divides one of ®,(u(x)) o
O, (v(x)). Say f(x) divides ®,(u(x)). Since ®,(u(z)) is a-self reciproc 1
fo(x) also divides ®,(u(z)). Further, since f,(z) is irreducible and f(z) #
fal(z) we see that f(x)f,(z) divides ®,(u(z)). But then the degree of ®,(v(x ))
is less than 1, a contradiction.

(x)) =
fa
(

4 Factors of Dickson polynomials

If n = pk then D,, ,(x) = [Dyo(2)]P so we assume that (n,p) = 1.

Lemma 4.1. Let g(z) be a separable a-self reciprocal polynomial over Fy.
Then g(x) factors as

= [[f@)ful@) [ (@)

where each f(x) is irreducible and not a-self reciprocal, each b(x) is irreducible
and a-self reciprocal and the f(z) and b(z) are distinct.

Proof: Let p(z) be an irreducible factor of g(x) and let 8 be a root of
p(z). Then a/f is also a root of g(x) as g(z) is a-self reciprocal. If a/f is a
root of p(z) then p(x) is a-self reciprocal. Otherwise, the minimal polynomial
of a/B, namely p,(z), also divides g(x), and p(x) # p.(x). The factors are
distinct as g(x) has no multiple roots. O

9



Lemma 4.2. ®,(D,, ,(z)) = 2*" + a".

Proof;
n a n(,.n a\n 2n n
Q. (Dyo(z)) = 2" Dy oz + E) =z"(a" + (E) ) =a" +a",

where we have again used Waring’s identity. O]

Proposition 4.3. 2?" + a" is separable and a-self reciprocal. Factor as in
Lemma 4.1

2+ a* = [[ f@) fule) [] bla):
Then

Dya(x) = [T0(f (@) fa(@)) [T w(b(2)),

is the factorization of D, () into irreducible polynomials over Fy.

Proof: The first statement is clear. By Lemma 4.2, ®(D,, ,(z)) = z*" +
a". Applying ¥ using Theorem 2.1(b) we see that each VU (f(z)f,(x)) and
U(b(x)) is irreducible by Theorem 2.1(c). O

Example 4.4. We factor D(18,2) over F.

Here n = 18,a =2,¢q =7 and a" = 1.

2% 41 = [(2° +52% + 2) (2% + 62° + 4)][(z° + 22° + 2)(2° + 2° + 4)]

(2 + 4z +1)(2® + 2 +4)][(2* + 32+ 1) (2 + 62 +4)] (2 + 5z +2)(2? + 27+ 2).

Now (22 +5x+2) and (22 4 2x +2) are 2-self reciprocal; the other factors
are not but they have been paired with their 2-reciprocals. Consequently,
the factors of Digo(z) are

(1) Wo((2® +52° +2)(2° + 62° +4)) = Wy(z'? +42” + 2% + 42° + 1)
= Dgo(z) +4Ds2(x) + 1
= (% +22"+22+5)+4(° +2) +1
= 20+ 22% +42% + 2% + 42 + 6.
(2) Wo((2® +22% +2)(2° + 2% +4)) = 2°+22* +32% + 2 + 32 +6

10



(3) Uy((2* +4dx+ 1) (2> + 2 +4) = Uy(a* +52° +22° + 32 + 4)
= Dyo(x)+5D;o(x) + 2
= (@*+3)+5(x)+2=2"+5r+5
(4) Uy((a* + 3z +1)(2* +6x+4) = 2°+22+5
(5) Uy((x* +5x+2) = Dis(z)+5=2+5
(6) Wo((2? +22+2)) = Dis(z) +2=a+2.

5 Cyclotomic factors

As seen in the previous section, to factor D,, () it suffices to factor z*" +a".
In this section we derive the factors of z?® 4+ a™ from factors of cyclotomic
polynomials and we provide an algorithm for factoring D,, ,(x) for all a € Fy
with o(—a") = t.

Proposition 5.1. Suppose f(x) is a monic irreducible polynomial over Fg

which divides x®" 4+ a™. Then either f or fa has order 2dt for some divisor d
of n with n/d odd and t = o(—a").

Proof: Let 3 be a root of f. Since f divides 22" + a”, ** = —a™ and
(a/B)*™ = —a". Hence both o(3) and o(a/3) divide 2nt. Now, (—a™)°¥) =
(827)°®) = 1 so t divides o(3). Similarly, ¢ divides o(a/3). Write o(3) = st
and o(a/3) = sat. Then s1 and s, both divide 2n. Assume that s; and sy both
divide n. Then ™ =1 and (a/f)™ =1 thus 1 = g™ = a™. Since (—a")! =
1, t must be even. Write t = 2m. Then 1 = g™ = 32" = ()™ = (—a™)™.
Consequently, t divides m. But ¢t = 2m > m, a contradiction. Hence s;
and s, both do not divide n. Suppose s; does not divide n. Since s; divides
2n we can write s; = 2d for some d dividing n. Notice that n/d = 2n/s;.
Assume that n/d is even and write 2n/s; = 2r. Here we see that 2n = 2rs;
and s; divides n, a contradiction. Thus n/d is odd. A similar argument will
work if sy does not divide n. O

Proposition 5.2. Suppose f(x) is a monic irreducible polynomial over Fq
of order 2dt where d divides n with n/d odd and t divides ¢ — 1. Then x*"
mod f(x) is in Fq.

11



Proof: Let 3 be a root of f(x). Since 3?¥ = 1 and d divides n, we see
that (4*")" = 1 and thus ?" € Fq. Let ¢ = ?". Write 2*" = f(x)g(z)+r(x)
with the degree of r(z) less than the degree of f(z). Then

c=p" = f(B)g(B) +r(B) =r(B),

thus [ satisfies r(x) —c and f(x) divides r(z) —c. Since the degree of r(z)—c
is less than the degree of f(x) we must have r(x) = c. O
For a monic irreducible polynomial f(x) over Fy set

ro(f) = 2% mod f(x).

The following algorithm is not efficient. The algorithm works best for
factoring D,, ,(z) for various a’s. But still it is simpler to apply one of the
standard factorization algorithms to each D, ,(X). We present the algorithm
only to illustrate how the previous results combine to factor the Dickson
polynomials D, ,(x).

Algorithm for factoring D, ,(z) when o(—a") = t: For each divisor
d of n with n/d odd, factor (QQo. For each factor f of Qg compute 7,(f).
If r,(f) = —a™ then compute fa. If f = f, then U(f) is a factor of D(n,a).
If f # f, then U(ff,) is a factor of D(n,a).

Example 5.3. We factor Dis2(x) and Dig3(x) over Fs.

Let ¢ =5, n =13 and t = 4. The elements a of F5 with o(—a™) =t are
2 and 3. The divisors d of n with n/d odd are 1 and 13. Further, —2" =
and —3" = 2.

1.d=1.
Factor f of Qog(z) 7.(f) a a-reciprocal of f
2?2+ 3 2 3 z? +3
2 +2 3 2 2 +2

We see that both factors are a-self reciprocal for their respective a. Con-
sequently, Wo(z? + 2) = x is a factor of Dizo(z) and W3(z* +3) = z is a
factor of D3 3(z).

2. d=13.

12



Factor f of Qau(7) T
ot 4+ 23 + 222+ 3 + 4
2203+ +4
2t 203 + 42 + x4+ 4
xt + 423 4+ 32+ 4
ot + 22 4322 + 4o + 4
ot 4+ 423 + 2% + 30+ 4

f)

a-reciprocal of f

at 42 4+ 222 + 20 + 4
a2t + 32 + 4 +4

a2t + 303 442 + 4+ 4 .
23+ 2+ 4

2t 4+ 323 + 322 + 1+ 4

ot a3+ 2? +2r + 4

NN W W Wl —
L W W NN NIR

Here we omitted factors of Qo4 that are a-reciprocals of other factors
already considered. Notice that the first three factors will contribute to
Di35(x) and the last three factors will contribute to Di33(x). None of the
factors are a self reciprocal, Consequently,

Wy ((z* + 2° 4+ 22° + 30 + 4) (2* + 42° + 22° + 22 + 4)) = 2" + 2,

Wo((z* +22° + 2+ 4)(z* +32° + 40 +4)) =2 +32° +3

and
Uo((z* 4+ 22° + 40 + o+ 4) (2" +32° + 42® + 4o+ 4)) = 2" + 22 +2
are factors of Dy3(x).
Us((z* 4 42° + 30 + 4) (' + 2° + 20+ 4)) = 2* + 227 + 3,

Us((z* 4+ 22 + 30 + 4o+ 4)(2* + 32° + 322 + 1o +4)) =2* +2

and
Us((a* +42® + 2 + 3z +4) (2 + 23 + 22 + 22+ 4)) = 2* +42® + 2
are factors of Dy33(x) We have
Diza(x) = z(x* + 2) (2" + 327 + 3)(2* + 2* + 2)

and
Digy(x) = w(z! + 2) (2" + 227 + 3) (2" + 42 + 2).

13



6 Computing 7,(f)

In some cases it is not necessary to compute 7,(f) in the algorithm of the
previous section as the next two results illustrate.

Proposition 6.1. Let a € Fy. Suppose f(x) is a monic irreducible polyno-
mial over Fq of degree w and order r = 2dt where t = o(—a™). A necessary
condition for r,(f) = —a™ is

If (qw_1 q— 1) =1, this condition is sufficient.

r Y

Proof: Let 3 be a root of f in Fga and write ¢ — 1 = 2dts. Recall that
ro(f) = B*. If 32" = —a" then

62d%5 _ (_an)s

a*=1n ny =1
G = ()
wlg=1) ¢¥—1n w(g—1) n q“—1
(=) g a=(=1)" 7 (=a")~
But s
f0) = (=1)*p T
thus

since n/d is odd.
Conversely, if 3 is a root of f then since d divides n we have (3*")! =1
so 3% € Fq. Write again ¢* — 1 = 2dts.

Thus o o
U = (0
and
(8" = (~a")"
Consequently, 0(%) divides s. If (¢ — 1,5) = 1, we have §?" = —a". ]
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Example 6.2. We consider a = 2 and the polynomial f(x) = x*+ 2%+ 222+
3x + 2 over Fr.

T () is a monic irreducible polynomial over F7 of order 60 = 2 -5 - 6,
folz) = 2 + 323 + 42° + 42 + 1 and 0o(—2%) = 6. We have ¢ — 1 =6, t = 6,
n=>5,d=25, f(0) =2, w=4 and r = 60.

(g=1)n w(g=1) q“—1

(f(()))T = 2 and (—1) t (_an) =4

thus r,(f) # —a™ and U(f(x)f.(2)) is not a factor of Dsy(z). O

Proposition 6.3. Let a € F;. Suppose f(x) is a monic irreducible polyno-
mial over Fq of degree w and order r = 2dt where d divides n, n/d is odd
and t = o(—a"). Write ¢ — 1 = 2dts and suppose there ezist a positive
integer y such that t divides (sy — 1). A necessary and sufficient condition
for r,(f) = —a™ is

(g—1)ny

(f0)) = =(=1)

Proof: Suppose first that the condition holds. Let § be a root of f(z)
in qu.
w (g—1)ny -1
(=D)“f(0)) 7 =(6T)
Now, % = (v~ = 1 since ¢ divides (sy — 1) and d divides n. Conse-

quently, 32"¥ = 32" and we have

71 2
W _ 62nsy.

Conversely, by Proposition 6.1 we have

(F(0) 7 = (~1) " (—any
(F(0) ™ = (1) (=)
(=) (£(0) ™ = (—a)¥ = —a”
since ¢ divides sy — 1. -

Example 6.4. We consider a = 2 and the polynomials f(x) = 2*> +9 and
g(z) = 23 + 13 over Fyus.

15



f(x) and g(z) are both monic irreducible polynomial over F43 of order
126-9-7,and o(—2%) = 7. Wehave q—1=42,t=7,n=9,d =9, f(0) =9,
g(0) =13, w=3,r=60,s =631 and y = 1.

(a=1)ny

(f(0)) 7 =4

(g—1)ny

(9(0)) 7w =16

w(g—1)y

(—1)* T =1

and

thus 7,(f) = —a™ but r,(g) # —a™ Consequently, U(f(z)/,(z)) is a factor
of Dgo(x) and ¥(g(z)g.(z)) is not. O
In the final result of this section we show that r,(f) can be computed
using a standard recurrence.
Let f(x) = 2%+ cqg_12% 1 + -+ 4+ 12 + ¢ be an irreducible polynomial
over Fy. Consider the recurrence given by

pi(f) = p2(f) == paa1(f) =0
pa(f) =1
pk(f) = _Cdflpkfl(f> - Cd72,0k72(f) — Copk,d(f), for k > d.

Proposition 6.5. Suppose f(z) is a monic irreducible polynomial over Fy of
degree d and order st where t divides q—1. Then f(z) divides 2+ f(0)psi(f)
for any positive integer k.

Proof: Let 3 be aroot of f(x) in Fya. The linear mapping L : Fga — Fq
that sends 3’ to 0 for 0 < j < d—1 and which sends 3%~ to 1 satisfies L(37) =
pir1(f) for 0 < j < ¢? — 1. Since (5°%)" = 1 we see that 3°* € Fq and thus
for 1 <j<d—1, L(B*) = L(B*p7) = B*L(37) = 0. That is, psry1(f) =
pskr2(f) =+ = pskra-1(f) = 0. Let g(x) = Zfil pi(f)z**~". We will show
that 2%+ f(0)pai(f) = f(z)g(x). Notice that the leading term of f(z)g(z) is
28pg(f)r*F4 = 2% and the constant term of f(z)g(x) is f(0)psk(f), thus it
remains to show that the other terms of f(z)g(x) equal 0. For 1 < j < sk—d,
the coefficient of x**~7 in f(x)g(x) is cop; (f)+e1pjr (f)4 - +ca1pjra (f)+
pj+a(f) = 0 by the recurrence relation. For 1 < j < d, the coefficient of x7
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in f(x)g(z) is copsk—j (f) + c1psk—j+1(f) +- - - +¢;psi(f). Recall however that
psk+1(f) = pskr2(f) = -+ = pskra—1(f) = 0. Consequently, this coefficient
can be written as copsi—; (f)+c1psk—jr1 (f)+ - -+Cam1pskra—j—1 (f )+ Psktd—j (f)
and again the recurrence relation yields the result. O]

Corollary 6.6. Suppose f(z) is a monic irreducible polynomial over Fq of
order 2dt for some divisor d of n with n/d odd. Then r,(f) = f(0)p2.(f).

Proof: f(z) divides 22" — r,(f) by definition and f(z) divides z*" +
f(0)p2n(f) by Proposition 6.5 hence f(x) divides —r,(f) + f(0)p2n(f) and
thus 7, (f) = f(0)pan(f)- O

7 Generalized cyclotomic polynomials

Set T,.o(x) = 2" + ™. In our pursuit of factoring T;, ,(), some interesting
factors arose. We will call these factors generalized cyclotomic polynomials.
In this section we derive the degree, order and invariance of these polynomials
and study their relationship to Dickson factors.

Lemma 7.1. Ifk|n and n/k is odd then Ty, o(2)|Tp.o(z) and Dy o(2)| Dy o).

Proof: Note that y + z divides y™ + 2™ if m is odd. Set y k¥ and

= :(;2
z = a” to get the result for T,, ,(x). Apply W to get the result for D, ,(x). O
Set

) Toa(2)
Qna(x) - lcm{Tk,a(ﬂf) ckln, n/k oddand k <n}
and set
Hi () Peols

- lem{ Dy o(z) : kln, n/k odd and k <n}

Thus @), () consists of the factors of T}, ,(x) which have not occurred as
factors of Ty .(z), k < n, and similarly for H,, ,(z). We call the @, .(z) the
a-cyclotomic polynomials.

Let A,, denote the set of primitive mth roots of unity.

Lemma 7.2. 1. Qualz) is a-self reciprocal, separable and we have that

V(Qna(2)) = Hpal@).
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2. We have

Qnalz) = a®*VQyp(2° /a) = H (z° — ap).

pEA2,

3. deg Qna(x) = 20(2n).

Proof: (1) The first two statements follow from @, ,(x) being a quotient
of separable, a-self reciprocal polynomials. The third follows form ¥, being
multiplicative, Theorem 3.1.

(2) We begin with

m+1 = H Qa24()
d\n,%odd
2 +a" = a" H Qaa(/a).
dln, % odd

And so the new part of 22" + a” is

Qnal) = a®CMQon(2?/a) = ] (@* = ap).

peAZn

This proves (2) and (3) follows immediately from (2). O

Let w denote the order of ¢ modulo 2n. Then @2, () factors, over Fy, as
a product of irreducible polynomials, each of degree w. Let py be a particular
primitive (2n)th root of unity. The factorization of Q,(x) is [] ¢;(x) where

for each 7
ci(x) = [J (@ - p)

PES;

over a subset S; of Ay, an orbit under the automorphism group of F(po)/F.
Fix a p; € S; for each i. Let w’ denote the order of ¢ modulo 4n.

Lemma 7.3. FEither w' = w or w' = 2w.

Proof: Since ¢*° = 1 (mod 2n) we get wjw’. And ¢ — 1 = (¢¥ —
1)(g¥ + 1), ¢* + 1 is even, so ¢** =1 (mod 4n). Hence w'[2w. O

Lemma 7.4. 1. All irreducible factors of Q,q(x) have the same degree.
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2. The degree of an irreducible factor of Qn (%) is w iff one of the follow-
ing holds:

(a) w is even and w' = w.
(b) w is odd, w' = w and a is a square.

(c) w is odd, w' = 2w and a is a non-square.

3. In all other cases, the degree of an irreducible factor of Q, .(x) is 2w.

Proof: Set
hi(x) = H (2% — ap).
PES;
Then hi(xz) = a“c;(2?/a) € Fqlx] and Q,.(z) = []hi(z), by Lemma 7.2.
Note that the automorphisms of Fq(po)/Fq permute the 22 —ap, over p € S;.
Hence if 2% — ap; is irreducible over Fq(po) then h;(x) is irreducible, of degree
2w. If 2% — ap; splits as (z + u(p;))(z + v(p;)), for polynomials u, v over Fy,
then h;(z) = k)i(z)m;(x) where

ki(z) = [[ (@ +u(p)) and mi(2) = [](x+v(p)),

pES; pES;

are irreducible over Fq of degree w.

(1) Fix a primitive (2n)th root of unity py. Suppose one irreducible factor
of Qnq(x) has degree w. Then for some primitive (2n)th root of unity p,
x? — ap; splits in Fy(po). Thus ap; = u? for some u € Fq(po).

Let p; be another primitive (2n)th root of unity. Then p; = p; for some
s prime to 2n. In particular, s is odd. Then a®p; = u** = a®p; and so
ap; = [ufa=CV/212 € Fy(pg)?. Thus all 22 — ap; split in Fq(pe) and all
factors have degree w. Otherwise, no 2% — ap; split in Fq(po) and all factors
have degree 2w.

(2), (3) Let p be a primitive (2n)th root of unity. Note that Fq(p) = Fqw
and Fq(\/p) = Fyw. Thus \/p € Fo(p) iff w = w'. And /a € Fy(p) iff w is
even or a is a square (in Fy ).

We check the cases. If w’ = w is even then \/a and ,/p are in Fq(p). So
x? — ap splits in Fy(p) and all factors have degree w.

If w' = wis odd then \/p € Fq(p) and \/a € Fq(p) iff a is a square in Fy.
So if a is a square then 22 — ap splits in Fy(p) and all factors have degree w.
If a is not a square then z? — ap does not split in Fq(p) and the factors have
degree 2w.
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If w' = 2w with w even then \/a € Fq(p) and /p ¢ Fq(p). Hence 2> —ap
does not split in Fq(p) and the factors have degree 2w.

Lastly, suppose w’ = 2w and w is odd. Then neither \/a, \/p are in Fq(p).
Both have degree 2 over Fq(p) and so \/a = (,/p for some 3 € Fq(p). Then
ap = (%p* € Fq(p)®. Hence 2 — ap splits and the irreducible factors of
Qn.o(7) have degree w. O

Proposition 7.5. Let g(x) be an irreducible factor of Qna(z). If g(x) is
a-self reciprocal of degree d = 2e then 2n|q¢® + 1.

Proof: Let a be aroot of g(x). Then we have that a?° = a/a by Theorem
2.1, and o?/a is a primitive 2nth root of unity, by Lemma 7.2. Now

(@?/a)?” ! = (a7)2a?/a® = 1.
And so 2n divides ¢° + 1. ]

Lemma 7.6. 1. Either every irreducible factor of Qy.q(z) is a-self reci-
procal or none are.

2. An irreducible factor g(x) of Qn.o(x) is a-self reciprocal iff deg g is even
(say deg g = 2¢), 2n|q°+ 1 (say ¢° +1 = 2ns) and one of the following
holds:

(a) s is odd, e is odd and a is a non-square.
(b) s is even and a is a square.
Proof: Let g(z) be an irreducible factor of @, .(x). Suppose g(z) is
a-self reciprocal. Now deg g is even, say degg = 2e. Also, by Proposition
7.5, 2n|¢® + 1. Write ¢° + 1 = 2ns. Let a be a root of g(z). As g(x) divides

Qn.o(r) which divides T}, ,(z) = z?" + a™, we have that o*® = —a". Theorem
2.1 gives a? = a/a. So

a = aqe+1 —_ OéZns — (_1)5(1"3.
Then @@ ~1/2 = (—1)*. Write

c1 g¢-1
a > :q2 A+q+@++¢)

and let @ be the second factor. Then we have

20



a7 = (-1, (1)
Conversely, suppose irreducible g has degree 2e and that ¢¢ + 1 = 2ns.
We still have o®™ = —a™ as g divides T, ,(z). If Equation 1 holds then

aqe+1 =" = (_1)sans =a,

and g is self reciprocal.
(1) We have shown that g(z) being a-self reciprocal depends only on deg g.
By Lemma 7.4, all irreducible factors of @, .(z) have the same degree. Hence
either all factors are a-self reciprocal or none are.
(2) We need only check when Equation 1 holds. Note that with @ is odd
iff e is odd and
W5 {1, if a is a square

—1, if a is not a square.
Both sides of Equation 1 are —1 iff s is odd, e is odd and a is a non-square.
This is case (a). Both sides of Equation 1 are +1 iff s is even and either
e is even or a is a square. But s and e cannot both be even. Namely, e
even implies that ¢° = 1 (mod 4) and so ¢° + 1 = 2 (mod 4). But then
q¢° + 1 =2ns with s odd. Thus both sides of Equation 1 are +1 iff s is even
and a is a square, which is case (b). O

Proposition 7.7. Let a be a root of an irreducible factor g(x) of Qna(x).
Set = a/a and let t = o(—a™). We have lem(o(a),0(f)) = 2nt. In
particular, if g(x) is a-self reciprocal then o(g(x)) = 2nt and if g(z) is not
a-self reciprocal then o(g(z)ga(x)) = 2nt.

The proof is long and technical. It is postponed to the last section.

Theorem 7.8. Suppose n > 1. Let t = o(—a™).

1. Suppose that w' = w is even (say w = 2v), 2n|¢"+1 (say ¢"+1 = 2ns)
and one of the following holds:

(a) s is odd, v is odd and a is not a square,

(b) s is even and a is a square.
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Then each irreducible factor of Qn.o(z) has degree w, order 2nt and is
a-self-reciprocal.

2. Suppose that w' = w is even but Case 1 does not hold. Then each
irreducible factor g(z) of Qna(x) has degree w, is not a-self reciprocal
and g(x)gq.(z) has order 2nt.

3. Suppose that w' = w is odd and a is a square. Then each irreducible fac-
tor g(x) of Qna(x) has degree w, is not a-self reciprocal and g(x)g.(x)
has order 2nt.

4. Suppose that w' = 2w, w is odd, and a is not a square. Then each
irreducible factor g(z) of Qna(x) has degree w, is not a-self reciprocal
and g(x)gq.(z) has order 2nt.

5. In all other cases, each irreducible factor g(x) of Qn.a(x) has degree 2w,
is not a-self reciprocal and g(x)g,(x) has order 2nt.

Proof: First suppose w = w’ = 2v is even and 2n|q¢” + 1, with ¢" + 1 =
2ns. Then the degree of an irreducible factor is w, by Lemma 7.4. Apply
Lemma 7.6, with e = v, to get each factor is a-self reciprocal. The order
follows from Proposition 7.7.

The other cases follow even more easily from Proposition 7.7, Lemma 7.4
and Lemma 7.6. O

Example 7.9. Each of the cases of Theorem 7.8 does occur.

. Letg=5andn=7 Thenw=w"=6sov=3 And 5> +1=14-9
so that s = 9. If a = 2, a non-square, then we are in Case la. Here
t = 0o(—2") = 4. The irreducible factors of Q72(z) all have degree 6,
order 56 and are 2-self-reciprocal. If a = 4, a square, then we are in
Case 2 and the factors still have degree 6, but none are 4-self-reciprocal.
Here t = 1 so for each factor g(x), g(z)gs(z) has order 14.

2. Let¢g="7andn =11. Thenw = w' = 10sov = 5. And 7°+1 = 22.-764
so that s = 764. If a = 2, a square, then we are in Case 1b. Here
t = o(—2'") = 6. The irreducible factors of Q112(z) all have degree
10, order 132 and are 2-self-reciprocal. If a = 3, a non-square, then we
are in Case 2 and the degree of the factors is still 10 but none of them
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are 3-self-reciprocal. Here t = 3 so for each factor g(x), g(z)gs(z) has
order 66.

3. Let ¢ = 5and n = 11. Then w = w’ = 5. If a = 4 then we are in
Case 3. The irreducible factors of Q11 4(z) have degree 5 and none are
2-self-reciprocal. Here t = 1 so for each factor g(x), g(z)gs(x) has order
22. If a = 2 then we are in Case 5. The degree of the factors is now 10
and each g(x)ge(z) has order 22t = 88.

4. Let g =7 and n =9. Then w = 3 and w’ = 6. If a = 3 we are in
Case 4. Here t = o(—3%) = 1. The irreducible factors of Qq3(z) all
have degree 3 and are not 3-self-reciprocal. The order of g(x)gs(x) is
18. If a = 2 then we are in Case 5 and the factors now have degree 6
and each g(x)gs(z) has order 36.

Each of these examples may be easily verified with MAPLE.
The following corollary appeared, with different notation, in [2].

Corollary 7.10. The irreducible factors of H, .(x) all have the same degree.
This degree is (referring to the Cases of Theorem 7.8)

1. w/2 in Case 1,
2. w in Cases 2, 3, and 4,

3. 2w in Case 5.
Proof: Combine Theorem 3.1, Lemma 7.2 and Theorem 7.8. O

Example 7.11. Let n = 45, ¢ = 29 and a = 12, a non-square. Then t = 4,
w=w =6and ¢+ 1= 90271, so we are in Case 1(a). Factoring Q3s()
gives 16 polynomials of degree 6, all of the form x° + ba® + ¢ with ¢ = 12 or
17. These are:

c=12 b = 1,2,4,11,18,25,27,28

c=17 b = 5,10,12,13,16,17,19, 24.
Computation shows that rys(f) = 17 = —12% precisely for the factors with

¢ = 17 (see after Proposition 6.3 for an explanation of this). Each of these
factors is 12-self reciprocal and

Wi (2® + b2 +17) = Uig(2? (2 + (12/2)® + b) = D3 1a(x) +b = 2° + 222 + b,
The product of these Wy5(f), over the (b, 17), is Hys 12(2).
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Example 7.12. Let n = 45, ¢ = 31 and a = 3, a non-square.Then ¢t = 1,
w =3 and w’ = 6 so we are in Case 4. The only divisors d of 45 with the
order of ¢ modulo 2dt equal to 3 are d = 9,45. The factors of both Qq5(x)
and Qgo(x) have the form x3 + b. These are

ng(l’) b = 5, 25

Quw(z) b = 7,9,10,14,18, 19,20, 28.
We get r45(f) = 1 = —a® for all of these factors. But ro(f) = 2 = —a® for
a = 10,19 so these two values must be omitted. Each of the remaining f f3
has the form 28 +cx3+27 = 23(2*+(3/2)%+¢) for ¢ = 2,4, 5,12, 19, 26, 27, 29.
Hence R

Ws(ffs) = Dss () +c=a" + 221 +

and their product is Hys 3(x).

Note that the discarded factors, 2® + b for b = 10,19, have the same
degree, order and invariance as the factors of Qu53(x) (given by Theorem
7.8), but are not factors of Qu53(x).

8 Proof of Proposition 7.7

We begin with three not quite obvious lemmas about cyclic groups.

Lemma 8.1. Letb,c € GF(q)* and let ™ be an odd prime. Lete = v (q—1),
the highest power of © dividing ¢ — 1. If ™ = —b™"" then ™ = —b™".

Proof: We have ¢ = (=b)™" and so 2™ =1 for & = ¢/(—b). Then
o(x)|rett. Also o(x)|(g—1). Hence o(z) divides (7¢*1, g—1) = 7°. So 2™ =1
and we are done. O

Lemma 8.2. Let G be a cyclic group of even order and let € be the unique
element of order 2. Let a € GG.

1. o(a) = 2™ iff ¥ =e.
2. If o(a®") = 2™ then o(a) = 2",
3. If o(ea) = n then

n/2, ifn=2 (mod 4)
o(a) = ¢ n, ifn=0 (mod 4)
2n, ifn=1,3 (mod 4).
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Proof: (1) If o(a) = 2™ then a®" " has order 2 and so equals e. Con-
versely, assume that o = e. Then o(a)|2™. Suppose o(a) = 2* with
kE < m. Then

€ — a2m—1 _ <a2k)2m—1—k _ ]-7

a contradiction. Thus o(a )
(2) We have from (1) th

a2n+m—1 _ (a2n)2m—1 — ¢

Hence, by the other direction of (1), o(a) = 2"*™.

(3) First, suppose n = 2m with m odd. Note that (ea)™ has order two
and so (ea)™ =€, ea™ = € and a™ = 1. Let k = o(a). Then k|m and so k
is odd. We have a* = 1, (ea)* = ¢ and (ea)* = 1. Thus n|2k, m|k and so
kE=m.

Next, suppose n = 4m. Note that a” = (ea)® = 1. Further, (ea)*™ = ¢
and so a®™ + . Let k = o(a). Then k|4m. If k|2m then 1 = a* = 0> = ¢, a
contradiction. So k = 4m’ where m/|m. We have 1 = a*™ = (ea)*" so that
n = 4m divides 4m/. Thus m = m’ and k = n.

Lastly, suppose n is odd. Then (ea)” = 1 implies a™ = € and a*" = 1. Let
k = o(a). Then k|2n. If k|n then 1 = a* = a" = ¢, a contradiction. Thus
k = 2n’ where n’|n. Then " has order two and so a™ = e. As n’ is odd, we
have (ea)” =1 and n|n/. Thus n =n/ and k = 2n. O

Lemma 8.3. Let G be a finite cyclic group and let a,b € G.

1. If o(a®) =t then o(a) = ts for some s that divides k such that (k/s) is
prime to t.

2. If o(a) = n and o(b) = m then o(ab) = n'm’s where d = (n,m),
n' = n/d, m'" = m/d, and for some s dividing d such that (d/s) is
prime to n'm/’.

Proof: (1) Note (a*) < (a) so t divides o(a). And a* = 1 so o(a)|tk.
Hence o(a) = ts, for some s dividing k. Write k = sk’. We also have

ts t

o(a") = (ts, k) (6K

so that (¢,k') =1
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(2) We have (ab)? = a?b?, o(a?) = n' and o(b?) = m’. As (n’,m’) = 1, we
get o((ab)?) = n'm’. Apply (1). O

Let t = o(—a"). Let g(x) be an irreducible factor of @, .(z) and let « be
a root of g(z).

Note that as —a™ € F, t divides ¢ — 1. We set up notation:

n=2°AB,

where A is the largest common odd factor of n and ¢ — 1, and B is odd.
Write
q — 1= 2AA1,
tl = (t, A1> t= tltg Al == tlAQ 2A == tgAg.

Note that (t9, A2) = 1. Further, let ey = v9(Ay) and write
Ag == 262144.
Lastly, set f = max{0,e — ey}. Note that es + f > e.

Lemma 8.4. Let k be the least positive integer with o € F. Then k =
2/ Bt,.

Proof: We proceed in four steps.

Step 1. k|2/ Bt,.

We wish to calculate («

! _
2/ Bt2ya-1 Now

2/ Bty(q—1) = 2/ Bty(24)(t,2°2 Ay)
= 2(2/T2AB)tA,
= 2(2°AB)t27Te2c A,
= 2nt(27127eAy).

Since a2 = (—a™)' = 1, we get (a?'B2)41 = 1. Thus 02’82 ¢ F and
k|2/ Bt,.

Step 2. Blk.
We first introduce yet more notation. As a®* = —a™ € F, we have k|2n.
Write 2n = km.

Let B be a factor (greater than 1) of B that is prime to ¢ — 1. Suppose,
if possible, that Bj|m; write m = Bymy. Note that km is even as is kmy,
since B; is odd. In this notation, we have

akm = _q" = _ak:m/Z‘
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Let ¢ = o*; ¢ € F. Then

Cm — CBlml — _ak‘Blm1/2 — (_1>BlakBlm1/2'

The map = — P! is an isomorphism of F, since B; is prime to ¢ — 1, so we
have

M o= _akm1/2‘

But then
Oékml — (_a)kml/Q — _akm1/27

and « is a 100t of T, /2.4(x). Now n divided by km4/2 is (2n)/(kmy) =
m/my = By is odd. But «, a root of @4, is not a root of any 7; with i|n,
i # n and n/i odd. Hence 2n = kmy, m = my, By = 1, a contradiction.
Hence B; divides k.

Next we consider factors of B that are not prime to ¢ — 1. Suppose 7 is a
prime dividing B and ¢ — 1. Note that B is odd, so 7 is odd. Let e = v,(A)
and f = v.(B) > 1 so that vy(n) = e+ f. Note that v.(¢ — 1) = e as
A= (n,q—1).

We want to show 7/ divides k. Suppose instead that v, (k) < f—1. Then
vr(m) > e+ 1. Write m = 7°"'my. We have

o= —gm?
() = (b
GO
using Lemma 8.1. But then
ofmim = gmim — gmamt . gkm/(2m)

contradicting the fact that « is not a root of T; for i < n and n/i odd. Hence
7/|k. This completes that proof that B|k.

Step 3. Bty|k.

By Step 2, we have that k = B¢, for some ¢ dividing ¢,. Then

€ — .9e.
1 — (Oék)2 (q 1) anQ 2AA;

_ <a2-2€AB>£A1

— (_an)ZAl.
Thus ¢t divides £A;. So to = t/t; divides (A /t; = (Ay. Since (t3, Ay) = 1 we
have that t5|¢. So Bts|k as desired.

27



Step 4. Finish.
Combining Steps 1 and 3 shows we can write k = 2"Bt, for some h <
f<e. Let of = c € F. Now

CZE_hAg — aQe_hA;ngBtQ

=
a2 (24)B _ a?n _ _an’

has order t. Write t = 2"2¢ and Az = 2*243) A with ¢’ and A} odd. Then

/ e—hyt e—h+vg(Ag) 4/ /
(_an)t — 02 t'As _ 02 tAS,

has order 2*2(). By Lemma 8.2, the order of ¢/ is 2 to the power of
e — h 4+ vy(As) + va(t). This must divide ¢ — 1, as ¢ € F. So

Uz(q — 1) >e— h + U2(A3) + ’U2<t>.
Now q — 1= 2AA1 = t2A3 . tlAQ = tA2A3. Thus

Ug(t) + U2(A2> + U2<A3) > e— h + ’UQ(A3) + Ug(t)
h > e—wy(Ay) =e—es.
As h is non-negative, we have h > max{0,e — es} = f. But h < f by Step
1,s0 h = f and k = 2/ Bt,. n
As above, set:
Coy = B2 ¢ |

Lemma 8.5. 1. o(a) = 2/ Btyo(c,,).

R b ——
o

3. Suppose 2/ty is even. Then c, = wy, where o(z) = 2 -2/ A3 and
y = a2 B2/2 Fyrther, o(—y* '4s) = t.

4. Suppose 2/ty is odd. Then c* = xy, where o(x) = 2°As and y = bP'2.
Further, o(—y*43/2) = t.

Proof: (1) Just for this proof, let d = o(a). Then a? = 1 € F so
that k = 2/Bt, divides d, using the value of k from Lemma 8.4. Write

d= Qthng Then

1=a= a2th2d2 do

:Ca
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and so o(c,) divides d.

Also o2/ Btzolca) — (2(ca) _ 1 g5 g — 2/ Bt,yd, divides 2/ Btyo(c,). Thus we
have the converse that ds|o(cy). So dy = o(cy).

(2) We have,

e—f e 0e
ci Asg — a2 BtoAs — Oé22 AB — aQn — _an'

(3) We assume that 2/t, is even. Now e; > e — f so that 27/ divides As,
and so A;. And t, divides 24. Thus 2~ /¢, divides 244, = ¢ — 1. We have,
by (2),

e—f e
Ci 2A3 — _a2 Bt2A3/2‘

Thus, in F, we may take roots of order 27/ A3, obtaining ¢, = zy where
2274 = 1 and y = ¥ BR/2,
We check that o(z) = 2-2°7/A;. Recall that A3 = 2% A5 with A5 odd.

Then
(a) 7 = —1

So o(x5) = 2-2°7/*e by Lemma 8.2 (1). Hence o(z) = 2-2¢~ /1 for some
divisor 7 of As. Then

azeﬂthQw _ 626*f+637r _ m26*f+637ryzE*f+f%">7r _ (_1>b26+633t2w/2
s = .

Hence « is a root of T;(z), for i = 273 Btym /2 and n/i = As/7 is odd. Since
 is a root of QP (z), the new part of T),(z), we must have m = Ajs as desired.
To complete (3) note that y2 /48 = 2 B243/2 — ¢ 5o that —y2 45 has
order t.
(4) Now assume 2/t, is odd. Note that f = 0, A3 is even and A3/2 is
odd. We have

2€A3 QeBt2A3/2
o = —a .

Take roots of order 2°A3/2 to get:

C

2 2€A3/2 _ _toB
c, =Y T /2 =1 y=a?*".

The proof that o(x) = 2°A; is similar to that of (3). And, also similarly,
y>As/2 = 2" BAs/2 — gn g0 that —y? 43/2 has order ¢ O

We introduce yet more notation. Set § = a/a, which is a root of g, ().
Set

azf Bto

2f Bt
Cg = ﬁ = -
(07
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Proof of Proposition 7.7 It is enough to show lem(o(«), o(3)) = 2nt.
By the first part of Lemma 8.5, it suffices to show lem(o(c, ), 0(cg)) = 2¢77 Azt
as then

lem(o(a), 0(B)) = 27 Bty - 2°7 Agt = 2°(t, A3) Bt = 2nt.

Part I We first consider the case where 2/t is even. We check that t
is even in this case. If ¢y is even then ¢t = ¢t is even. Say f > 1. If t is
odd then o(a"™) = 2t by Lemma 8.2. Then o(a™) = 2, o((aP*)?") = 2 and
o(aBt) = 2¢*1 by Lemma 8.2. This must divide ¢ — 1. So

va(g—1) > e+1
vg(A2)+1 > e+1
ey, > e.

But then f = 0,a contradiction. Hence when 2/¢, is even, t is even.

From Lemma 8.5, we have that c, = zy, where o(r) = 2 -2/ A3 and
o(—y2 ) = t. Then, by Lemma 8.2, o(y* ') = t/2 if t = 2 (mod 4) and t,
ift=0 (mod 4).

Case 1 First suppose that ¢ =2 (mod 4). Then

1
O(y) = §t81/2 Wlth2€_fA3 = 5159, (82’ t/2) = 17

by Lemma 8.3. Then

1 1
(O(l’), O(y)) = (281827 itsl) = 81(2327 §t> = 51,
as s is prime to t/2 and ¢/2 is odd. Apply Lemma 8.3 to get
o(ca) = (282)(t/2)s3 with s7 = s384, (84,t82) = 1.

Now we have ¢z = y?/c,. Here o(y?) is ts1/2 if s1 is odd, and ts;/4 if s,
Is even.
Case 1A We suppose s1 is odd. Then

1
(0(ca,0(y?)) = (ts283, 5153334/2) = (ts3/2)(2s9,84) = ts3/2,
as s4 is prime to tsy and t is even. Apply Lemma 8.3 once again to get

o(cg) = s54(252)ss, ts3/2 = s586, (Se, 25284) = 1.
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We obtain:

lem(o(cy), 0(cg)) = lem(tsess, 2525455)

lem (2528586, 28954S5)

= 2s9s5lem(sg, s4),

where we have used ts3 = 2s55¢ in the second line. Lastly, sg is prime to so54
so lem(sy, sg) = s456. We get

lem(o(cq),0(cg)) = 282555654
= 259(ts3/2)s4
= ts9(s3S4)
= {898] = t2e’fA3,

as desired.
Case 1B Now we suppose that s; is even and so o(y?) = ts;/4. We
compute as in Case 1A:

(olca), o4?) = tss/d
o(cg) = s4(4s2)ss, with tss = s586, (S6,45254) =1
lem(o(cy),0(cg)) = 452555654
= 2¢7/ Ast.

This completes Case 1.

Case 2 Now suppose that t = 0 (mod 4). Here o(y) = ts; and o(y?) =
ts1/2 as t is even. Compute as in Case 1A to get lem(o(cy), 0(cg))2°7 Ast.
This completes Part I.

Part II Now we consider the case where 2/t, is odd. Note that f = 0
here and, from 2A = tyAs, that Aj is even, A3/2 is odd. The proof is
similar to the previous cases. We have ¢ = xy where o(z) = 2°A3 and
o(—y*43/2) = t. We thus have from Lemma 8.2

t/2 ift=2 (mod 4)
PN =L ift=0 (mod 4)
2t, ift=1,3 (mod4).

o(y

There are four cases, depending on ¢t modulo 4. The computations are all
similar to Part I. We present only the first case.
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Suppose t =2 (mod 4). Then
o(y) =ts1/2 with 2°A3/2 = s189, (s9,t/2) =1,
by Lemma 8.3. Then
(0(x),0(y)) = (2°As,ts1/2) = (28189,t51/2) = 51,
as Sy is prime to ¢/2 and ¢/2 is odd. So
o(c?) = (2s2)(t/2)ss with s, = 5354, (84, S2t) = 1,

by Lemma 8.3 again. As sotss is even, o(c,) = 28atss. Now

B bBtz y

We have

(0(ca),0(y)) = (289tss,ts1/2) = (2s9ts3,t5354/2) = ts3/2,

s4 is prime to s9 and s4 is odd (since it is also prime to t). Applying Lemma
8.3 once again gives

o(cg) = (4s2)s3ss with ts3/2 = s5s6, (6, 45253) = 1.

Hence
lem(o(cq), 0(cp)) = lem((2s2)(25556), 4525355)
= 48285(8684)
2¢ Ast,
as desired.
O
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